Pusa Caspica English – Caspian Seal Synonym(S): Phoca Caspica Gmelin

Pusa Caspica English – Caspian Seal Synonym(S): Phoca Caspica Gmelin

Biologie und Bedrohung: Pusa caspica English – Caspian Seal Synonym(s): Phoca caspica Gmelin, 1788 The Caspian Seal belongs to the Phocina group of northern seals, which includes the ringed seals (Pusa), the harbour and largha seals (Phoca) and the grey seal (Halichoerus). The radiation of the Phocina group is now believed to have started in the northern seas of the late Pliocene, 2-3 MY ago, and was accompanied by invasion of the continental basins, though the paleogeography in this period is not clear (Palo and Väinöla). The taxonomic relationships between the seals of the continental lakes and those of the open ocean remain unclear, and the placement of the Caspian Seal has varied between the genera Pusa (Gmelin 1788) and Phoca. Following Wozencraft (2005): "Burns and Fay (1970), Rice (1977), McDermid and Bonner (1975), Gromov and Baranova (1981), King (1983), and Wyss (1988) considered Phoca, Pusa, Histriophoca, and Pagophilus a monophyletic group. Cladistic analysis based on morphology and mtDNA revealed two clades, Pagophilus+Histriophoca and the Phocina group, Phoca+Pusa+Halichoerus (Muizon 1982, Mouchaty et al. 1995, Perry et al. 1995, Carr and Perry 1997, Rice 1998, Bininda-Emonds et al. 2007). In the most recent phylogenetic studies using large mtDNA datasets, Palo and Väinöla (2006) consider Pusa to be basal to the Phocina, but suggest that the Caspian Seal is most closely related to Phoca and Halichoerus, while Arnason et al. (2006) suggest the Caspian Seal to be most closely related to the Gray Seal, with the Baikal Seal forming a sister taxon, and Phoca, Ringed Seals being basal to this group. Assessment Information [top] Red List Category & Criteria: Endangered A2abd+3bd+4abd ver 3.1 Year Published: 2008 Date Assessed: 2008-06-30 Assessor(s): Härkönen, T. (IUCN SSC Pinniped Specialist Group) Reviewer(s): Kovacs, K. & Lowry, L. (Pinniped Red List Authority) Geographic Range [top] Range Description: Caspian seals are confined to the Caspian Sea. They range throughout the sea with seasonal migration between the southern, middle and northern basins. Almost all breeding takes place on ice, which covers the shallow northern parts of the Caspian Sea in winter. Occasional observations of low numbers (tens) have been made at islets off Turkmenistan. Countries occurrence: Native: Azerbaijan; Iran, Islamic Republic of; Kazakhstan; Russian Federation; Turkmenistan Population: Historically, the population of Caspian seals was estimated to have exceeded one million (Krylov 1990, Härkönen et al. 2005). However, the most recent abundance estimate of the total population is in the region of 111,000 in 2005. This estimate was based on an estimate of pup production that year of about 21,000 pups (95% confidence intervals 19 329 to 22 797), derived from counts made during aerial transects across the winter ice conducted in late February 2005 (Härkönen et al. 2005, 2008). The population decline throughout the 20th century has been reconstructed by a demographic model using hunting statistics (Härkönen et al. 2005). By the 1950s–1960s, the population was estimated from this model to have been reduced to between 400,000- 500,000 seals (Härkönen et al. 2005), while an estimate based on a harvest of 86,000 pups in 1966, believed to be most pups born that year, also produced an estimate of 500,000 seals for that year (Badamsin 1969, cited by Krylov 1990). Aerial surveys conducted in 1976 and 1980 suggested an estimate of 450 000 animals (Krylov 1984, cited by Krylov 1990), although the hind-casting analysis suggests a population of only about 200,000 seals remaining at that time (Härkönen et al. 2005). Surveys in 1987 and 1989 resulted in an estimate of approximately 360,000-400,000 (Krylov 1990), but again the hind-casting analysis suggests this might again have been an over-estimate, with perhaps only about 148,000 seals remaining by the late 1980s. The hind-casting analysis suggests an ongoing population reduction averaging about 3-4% per year since 1960 and an 83% reduction in the size of the breeding female population since 1955 (approximately 3 generations, with one generation being 16.5-20 years , Härkönen et al. 2005). Habitat and Ecology: During late spring, summer, and early autumn, Caspian seals are distributed throughout the Caspian Sea. They feed throughout the sea, exploiting both the shallow basin in the north and the deep middle and southern basins. After the ice melts, the seals use sandy islands and reefs as haulout sites, preferring the tips of peninsulas and sand bars in many areas, although large concentrations of seals in reed-bed areas of islands also occur. In late autumn the breeding adults gather in the northeast, hauling out on sandy islands and reefs in increasing numbers until sea ice begins to form (Krylov 1990). When the surface freezes over, females form aggregations on the ice to give birth to their pups, tending to gather along cracks in the ice giving them ready access to the water, although they also construct and maintain holes in the ice for water access (Heptner 1996, Härkönen et al. 2008). Pups are generally born from mid-January to late February on the ice and nursed for 4-5 weeks. Females do not usually construct lairs (Frost and Lowry 1981), possibly because sufficient amounts of snow overlying the ice is normally lacking. Pupping on the ice has allowed direct counts of pups to be made in the recent aerial surveys (Härkönen et al. 2008). Pups do not enter the water until the ice melts in mid to late March. The first documented observations of small numbers of seals breeding in other parts of the Caspian were made in 1982, with females reported pupping on small sand islands in the southern part of the Caspian Sea, although it is likely this behaviour was not new (Krylov 1990). Large numbers of mostly nonbreeding seals spend the winter in the middle and southern Caspian, with one estimate of 15,000 seals along the Turkmenistan coast (Krylov 1990). A post-breeding moult occurs from April to May, during which the seals first use the ice and then islands and reefs for hauling out (Krylov 1990). Both sexes become sexually mature at around 6 years of age, with most breeding females (74% in a 1974 sample) aged between 8 and 17 years (Popov 1982). The pregnancy rate for females older than 9 is reported to be as low as 0.2-0.33 (Watanabe et al. 1999, Miyazaki 2002), and Krylov (1990) reports a similar low rate of 0.34 for females aged 10-14 years. Härkönen et al. (2005), acknowledge that the reproductive rate is low in females >20 years old, but suggest that the reproductive rate is >0.5 for females et al. (1999) and Härkönen et al. (2005) attribute the lower reproductive rates of older females to the effect of long term exposure to organochlorine contaminants in the older animals. Caspian seals feed on a variety of fish species. During the summer and autumn, seals move to and congregate where prey are abundant, particularly Caspian kilka (Clupeonella sp.), Caspian silverside (Atherina mochon), and Caspian gobies (Gobidae) (Krylov 1990), with Clupeonella species historically making up a major proportion of their total annual diet (Kosarev and Yablonskaya 1994). A report on fish found in the stomachs of seals in the northern Caspian in 1986-1987 (Piletskii and Krylov 1990) suggested that fish eaten in order of frequency were roach (Rutilus rutilus), zander (Lucioperca lucioperca), gobies (Knipowitschia sp., Neogobius kessleri and Benthophilus sp.), and bream Blicca bjoerkna and Abramis brama), followed by Clupeonella deliculata and other species. A preliminary study from faecal samples on the Apsheron Peninsula in June 2001 and March 2002 suggested that gobies, silverside and shrimp were important constituents of the diet of seals hauled out at that time (Eybatov et al. 2002). New studies of diet in Caspian seals are urgently required in order to get an accurate picture of current prey in different areas of the Caspian in light of potential changes to the abundance of fish species due to recent ecological changes occurring in the Caspian Sea. Systems: Terrestrial; Freshwater Major Threat(s): Caspian seals have been commercially exploited on an intensive basis since the early 1800s. Harvests averaged 119,000-174,000 per year throughout the 19th century, with peaks of 300,000 having been recorded. In the 20th century, harvest levels peaked in the 1930s with an average annual harvest of 164,000 and a maximum single year take of 227,600. The numbers of seals taken fell during World War II to an average of 60,800 per year, and subsequently ranged between a low of 41,400 and a high of 108,300 for the period 1951-1975 (Krylov 1990). Commercial harvesting was temporarily halted in 1996 after a much-reduced estimated take of 14,000 seals. Commercial and scientific hunting in the region of 3,000-4,000 seals a year – mainly pups - has continued at least since 2004, and is currently ongoing. The hunting quota, set by the Caspian Bioresources Commission for 2007, was 18,000 seals which exceeded the estimated annual pup production for that year (Harkonen et al. 2008). Significant population declines have been attributed to the high harvest levels (Härkönen et al. 2005). Another contributory cause to high pup mortality is natural predation by wolves (Canis lupus) and sea eagles (Haliaeetus spp.). Krylov (1990) estimated that wolves killed 17- 40% of Caspian seal pups on “some breeding grounds from 1974 to 1976”, while eagles took less than 1% of pups. The reverse was found during a systematic survey by Harkonen et al. (2008). Few wolves were observed during this survey, but about 2,000 eagles were seen on the ice preying on pups in 2005-2006; they likely took approximately 10% of the annual estimated births of 20 000 pups.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    17 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us