Characterization of CSL Complexes in the Notch Pathway: the Su(H)-NICD Interaction and the RBP-J-DNA Interaction

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of CSL Complexes in the Notch Pathway: the Su(H)-NICD Interaction and the RBP-J-DNA Interaction Characterization of CSL Complexes in the Notch Pathway: the Su(H)-NICD Interaction and the RBP-J-DNA Interaction Ashley N. Contreras B.A., Earlham College, 2007 Committee Chair: Rhett A. Kovall, Ph.D. A dissertation submitted to the Division of Graduate Studies and Research of the University of Cincinnati In partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ph.D.) In the Department of Molecular Genetics, Biochemistry, and Microbiology of the College of Medicine November 2014 Abstract In metazoans, the Notch pathway is a conserved cell-to-cell signaling mechanism that plays a key role in cellular specification. It is essential for cell fate determination in embryonic development, organogenesis, hematopoiesis, and adult tissue homeostasis. Aberrant Notch signaling has been implicated in various cancers, developmental defects, and cardiovascular disease. Despite these various roles, Notch signaling is relatively simple; extracellular ligand-receptor binding triggers proteolytic processing of the Notch receptor. The newly generated receptor fragment, the Notch intracellular domain (NICD), translocates to the nucleus and interacts with the DNA-binding protein CSL (CBF1/RBPJ in mammals; Suppressor of Hairless [Su(H)] in flies; Lag-1 in worms), to ultimately activate transcription of Notch responsive genes. In the absence of pathway activation, however, CSL also represses transcription of these genes. The ability of CSL to differentially regulate gene expression is determined by its interaction with co-regulators (co-activators or co-repressors). The research described in the following chapters characterizes the molecular details of two different interactions of CSL—the Su(H)-NICD interaction and the RBP-J-DNA interaction. Chapter 1 reviews Notch signaling. In Chapter 2, the thermodynamic details of the Su(H)-NICD interaction are explained, revealing a domain-domain interaction novel to the complex in Drosophila. The interaction between RBP-J and different sequences of DNA is quantified in Chapter 3, which demonstrates variations to the CSL binding sequence can positively or negatively affect the binding affinity of CSL. In Chapter 4, the work presented here is summarized and additional studies are proposed to further elucidate ii the molecular mechanisms of the complexes regulating expression of Notch target genes. iii iv Acknowledgements Science is a difficult path, full of obstacles and failure and fleeting joy. When I chose to go to graduate school for molecular biology, I could not comprehend this truth. Since then, I have experienced my share of obstacles and failure and joy, but I would not have succeeded in reaching this point in my graduate career without a few tremendously important people. I would like to acknowledge them now. First and foremost, I am grateful for my mentor, Dr. Rhett Kovall, and the Kovall lab, who have guided and supported me every step of the way. Rhett, with his passion for science and genuine interest in our scientific development and our well-being, has been the best mentor any graduate student could want. I truly appreciate that he allowed me to pursue options outside the lab, like the Preparing Future Faculty program and being a teaching assistant, and how he has supported me during challenging parts of my graduate career. He has, by word and action, shown me what a scientist should be. As for my lab colleagues, thank you for everything and then some. Zhenyu Yuan and Brad VanderWielen answered a few million questions from me alone, teaching me how to use and even fix equipment, how to troubleshoot a problem, and how to multitask like a pro. Nassif Tabaja and Nate Miller have been equally helpful in developing my lab skills, though I am also grateful they gave me the opportunity to teach them when they first started in the lab. They have gone beyond anything I could teach them now, and I know they will go much further. And for all other members of the Kovall lab, past and present, I will miss our morning coffee discussions, where I learned so much about science and life. Without the Kovall lab, I would not be here. v Next, I would like to thank my family and friends, who have been with me through the roller coaster of graduate school. They have all listened to me drone on about how cool science is or about how frustrating repeated failures in the lab are or about how I will never decide what to do with my life. Because they are incredible, patient, supportive people, they remained with me through it all and have continued to encourage my scientific career. In particular, I would like to thank my parents, Bill and Patsy Reyer, who have always believed in me and helped me with everything beyond the lab. I would also be remiss if I did not thank my close friends Maureen and Megan as well as the other ladies in my year of graduate school—Kayleigh, Christine, and Fabiola—who made life fun, encouraged me, and commiserated with me. Last, I owe endless gratitude to my husband, Eric Contreras. We met during my first year of graduate school, and my life has been infinitely better because of it. I cannot say thank you enough for listening to me prattle on about my research or school issues or searching for a career. Eric listens, then tells me to calm down, points out it is not that big a deal, gives me encouragement, and makes me laugh. Without his strength, calm, and humor, I could never have survived the obstacles of graduate school. vi Table of Contents ABSTRACT…………………………………………………………………………….. ii ACKNOWLEDGEMENTS…………………………………………………………….. v TABLE OF CONTENTS………………………………………………………………. vii LIST OF ABBREVIATIONS…………………………………………………………... x CHAPTER 1: AN OVERVIEW OF THE NOTCH SIGNALING PATHWAY…….. 2 Signaling Through the Notch Pathway………………………………………….. 3 Figure 1: Overview of the Notch Signaling Mechanism…………………… 6 Regulation of Notch Signaling……………………………………………………. 7 Biological Role of Notch Signaling and Associated Disease States…………. 12 Notch Pathway Components……………………………………………………… 21 Figure 2: Domain Schematics of Notch Signaling Components………….. 24 CSL and DNA Binding………………..………………..………………..…………. 32 Figure 3: CSL Binds Two Distinct Sites in the Hes1 Target Gene………… 35 Figure 4: Structures of Corepressor Complexes in the Notch Pathway….. 43 Figure 5: The Ternary Complex………………………………………………. 45 CHAPTER 2: THERMODYNAMIC BINDING ANALYSIS OF NOTCH TRANSCRIPTION COMPLEXES FROM D. MELANOGASTER………………….. 49 Abstract..………………..………………..………………..………………………... 50 Introduction..………………..………………..……………………………………… 51 Figure 1: Overview of CSL-Mediated Transcription Regulation……………. 53 Results………………..………………..………………..…………………………… 55 Analysis of Su(H)-NICD Interactions……………….………………………….. 55 Cross-species Binding Studies of CSL-NICD Interactions…………………...56 Table 1: Calorimetric Data for the Binding of Drosophila NICD to Su(H)…. 57 Figure 2: Thermodynamic Binding Analysis of Notch Proteins from Drosophila………..………………..………………..…………. 58 Table 2: Calorimetric Data for NICD-CSL Binding Between Mouse and Drosophila Components…………………………………………….. 59 Figure 3: Cross-Species Binding Experiments (RBP-J + dNICD)…………. 60 Figure 4: Cross-Species Binding Experiments (Su(H) + mNICD)…………. 61 Binding Analysis of Su(H)-dRAMANK Point Mutations……………………… 62 Characterizing the Effect RAM Binding Has on Su(H)-Hairless Interactions 63 Table 3: Calorimetric Data for Su(H) and dNICD Points Mutants…………. 64 Table 4: Calorimetric Data for Competition ITC Between Su(H)-RAM and Hairless…………………………………………….. 64 Discussion………………………..………………..………………..……………….. 65 vii Figure 5: Characterizing the Effect RAM has on Su(H)-Hairless Interactions………………………………………… 66 Figure 6: Revised Model of Ternary Complex Assembly for Drosophila Notch Proteins……………………………………… 70 Materials and Methods……………………………………………………………... 71 CHAPTER 3: QUANTITATIVE BINDING ANALYSIS OF THE CSL-DNA INTERACTION IN THE NOTCH PATHWAY………………………………………… 74 Figure 1: CSL Binds two Distinct Sites in the Hes1 Gene………………….. 78 Figure 2: Diagram of the Contacts Made Between CSL and the Hes1 Consensus Sequence DNA………………………………….. 83 Figure 3: CSL-Hes1 DNA ITC Binding Assays………………………………. 86 Putative CSL Binding Sites in the Mouse Math5 Gene…………………………. 89 Thermodynamic Characterization of Computationally Derived CSL Binding Sites…………………………………………………………. 90 Figure 4: ITC Binding Data for RBP-J and Putative CSL Binding Sites in the Math5 Gene……………………………………………………………. 93 Additional DNA Sequences………………………………………………………… 95 Figure 5: ITC Binding Data for RBP-J and Computationally Derived Sites…………………………………….... 97 Table 1: Additional Sequences of DNA Analyzed for RBP-J Binding by ITC…………………………………………….. 99 CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS…………………….. 100 Hairless and NICD Competition for Binding to Su(H)…………………………… 101 The Effect of Sequence Variation on the CSL-DNA Interaction………………. 105 Figure 1: Species-Specific Models of Ternary Complex Assembly………. 107 Figure 2: Sequence Alignments of CSL, NICD, and the ANK Domain for Mouse and Fly Orthologs……………………….. 108 Future Directions……………………………………………………………………. 110 Figure 3: Comparison of CTD Binding Site for Hairless and ANK Domain 114 BIBLIOGRAPHY………………………………………………………………………… 117 APPENDIX A: A COMBINATION OF COMPUTATIONAL AND EXPERIMENTAL APPROACHES IDENTIFIES DNA SEQUENCE CONSTRAINTS ASSOCIATED WITH TARGET SITE BINDING SPECIFICITY OF THE TRANSCRIPTION FACTOR CSL……………………………………………………………………………. 130 Figure 3: CSL-DNA ITC Binding Experiments………………………………. 138 Table 2: Calorimetric Data for Various DNA Sequences Binding to CSL… 141 APPENDIX B: STRUCTURAL
Recommended publications
  • STAT3-Ser/Hes3 Signaling: a New Molecular Component of the Neuroendocrine System?
    Review 77 STAT3-Ser/Hes3 Signaling: A New Molecular Component of the Neuroendocrine System? Authors P. Nikolakopoulou1, S. W. Poser1, J. Masjkur1, M. Fernandez Rubin de Celis1, L. Toutouna1, C. L. Andoniadou2, R. D. McKay3, G. Chrousos4, M. Ehrhart-Bornstein1, S. R. Bornstein1, A. Androutsellis-Theotokis1, 5, 6 Affiliations Affiliation addresses are listed at the end of the article Key words Abstract evidence suggests that a common non-canonical ●▶ STAT3 ▼ signaling pathway regulates adult progenitors in ●▶ Hes3 The endocrine system involves communication several different tissues, rendering it as a poten- ▶ stem cells ● among different tissues in distinct organs, includ- tially valuable starting point to explore their ing the pancreas and components of the Hypo- biology. The STAT3-Ser/Hes3 Signaling Axis was thalamic-Pituitary-Adrenal Axis. The molecular first identified as a major regulator of neural mechanisms underlying these complex interac- stem cells and, subsequently, cancer stem cells. In tions are a subject of intense study as they may the endocrine/neuroendocrine system, this path- hold clues for the progression and treatment of a way operates on several levels, regulating other variety of metabolic and degenerative diseases. A types of plastic cells: (a) it regulates pancreatic plethora of signaling pathways, activated by hor- islet cell function and insulin release; (b) insulin mones and other endocrine factors have been in turn activates the pathway in broadly distrib- implicated in this communication. Recent uted neural progenitors and possibly also hypo- advances in the stem cell field introduce a new thalamic tanycytes, cells with important roles in level of complexity: adult progenitor cells appear the control of the adrenal gland; (c) adrenal pro- to utilize distinct signaling pathways than the genitors themselves operate this pathway.
    [Show full text]
  • Supplemental Table 1. Complete Gene Lists and GO Terms from Figure 3C
    Supplemental Table 1. Complete gene lists and GO terms from Figure 3C. Path 1 Genes: RP11-34P13.15, RP4-758J18.10, VWA1, CHD5, AZIN2, FOXO6, RP11-403I13.8, ARHGAP30, RGS4, LRRN2, RASSF5, SERTAD4, GJC2, RHOU, REEP1, FOXI3, SH3RF3, COL4A4, ZDHHC23, FGFR3, PPP2R2C, CTD-2031P19.4, RNF182, GRM4, PRR15, DGKI, CHMP4C, CALB1, SPAG1, KLF4, ENG, RET, GDF10, ADAMTS14, SPOCK2, MBL1P, ADAM8, LRP4-AS1, CARNS1, DGAT2, CRYAB, AP000783.1, OPCML, PLEKHG6, GDF3, EMP1, RASSF9, FAM101A, STON2, GREM1, ACTC1, CORO2B, FURIN, WFIKKN1, BAIAP3, TMC5, HS3ST4, ZFHX3, NLRP1, RASD1, CACNG4, EMILIN2, L3MBTL4, KLHL14, HMSD, RP11-849I19.1, SALL3, GADD45B, KANK3, CTC- 526N19.1, ZNF888, MMP9, BMP7, PIK3IP1, MCHR1, SYTL5, CAMK2N1, PINK1, ID3, PTPRU, MANEAL, MCOLN3, LRRC8C, NTNG1, KCNC4, RP11, 430C7.5, C1orf95, ID2-AS1, ID2, GDF7, KCNG3, RGPD8, PSD4, CCDC74B, BMPR2, KAT2B, LINC00693, ZNF654, FILIP1L, SH3TC1, CPEB2, NPFFR2, TRPC3, RP11-752L20.3, FAM198B, TLL1, CDH9, PDZD2, CHSY3, GALNT10, FOXQ1, ATXN1, ID4, COL11A2, CNR1, GTF2IP4, FZD1, PAX5, RP11-35N6.1, UNC5B, NKX1-2, FAM196A, EBF3, PRRG4, LRP4, SYT7, PLBD1, GRASP, ALX1, HIP1R, LPAR6, SLITRK6, C16orf89, RP11-491F9.1, MMP2, B3GNT9, NXPH3, TNRC6C-AS1, LDLRAD4, NOL4, SMAD7, HCN2, PDE4A, KANK2, SAMD1, EXOC3L2, IL11, EMILIN3, KCNB1, DOK5, EEF1A2, A4GALT, ADGRG2, ELF4, ABCD1 Term Count % PValue Genes regulation of pathway-restricted GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, SMAD protein phosphorylation 9 6.34 1.31E-08 ENG pathway-restricted SMAD protein GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, phosphorylation
    [Show full text]
  • HER Tyrosine Kinase Family and Rhabdomyosarcoma: Role in Onset and Targeted Therapy
    cells Review HER Tyrosine Kinase Family and Rhabdomyosarcoma: Role in Onset and Targeted Therapy Carla De Giovanni 1,* , Lorena Landuzzi 2,†, Arianna Palladini 1 , Giordano Nicoletti 2, Patrizia Nanni 1 and Pier-Luigi Lollini 1,* 1 Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; [email protected] (A.P.); [email protected] (P.N.) 2 Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; [email protected] (L.L.); [email protected] (G.N.) * Correspondence: [email protected] (C.D.G.); [email protected] (P.-L.L.); Tel.: +39-051-2094786 (P.-L.L.) † Co-first author. Abstract: Rhabdomyosarcomas (RMS) are tumors of the skeletal muscle lineage. Two main features allow for distinction between subtypes: morphology and presence/absence of a translocation be- tween the PAX3 (or PAX7) and FOXO1 genes. The two main subtypes are fusion-positive alveolar RMS (ARMS) and fusion-negative embryonal RMS (ERMS). This review will focus on the role of receptor tyrosine kinases of the human epidermal growth factor receptor (EGFR) family that is comprised EGFR itself, HER2, HER3 and HER4 in RMS onset and the potential therapeutic targeting of receptor tyrosine kinases. EGFR is highly expressed by ERMS tumors and cell lines, in some cases contributing to tumor growth. If not mutated, HER2 is not directly involved in control of RMS cell growth but can be expressed at significant levels. A minority of ERMS carries a HER2 mutation Citation: De Giovanni, C.; Landuzzi, with driving activity on tumor growth.
    [Show full text]
  • Single Cell Derived Clonal Analysis of Human Glioblastoma Links
    SUPPLEMENTARY INFORMATION: Single cell derived clonal analysis of human glioblastoma links functional and genomic heterogeneity ! Mona Meyer*, Jüri Reimand*, Xiaoyang Lan, Renee Head, Xueming Zhu, Michelle Kushida, Jane Bayani, Jessica C. Pressey, Anath Lionel, Ian D. Clarke, Michael Cusimano, Jeremy Squire, Stephen Scherer, Mark Bernstein, Melanie A. Woodin, Gary D. Bader**, and Peter B. Dirks**! ! * These authors contributed equally to this work.! ** Correspondence: [email protected] or [email protected]! ! Supplementary information - Meyer, Reimand et al. Supplementary methods" 4" Patient samples and fluorescence activated cell sorting (FACS)! 4! Differentiation! 4! Immunocytochemistry and EdU Imaging! 4! Proliferation! 5! Western blotting ! 5! Temozolomide treatment! 5! NCI drug library screen! 6! Orthotopic injections! 6! Immunohistochemistry on tumor sections! 6! Promoter methylation of MGMT! 6! Fluorescence in situ Hybridization (FISH)! 7! SNP6 microarray analysis and genome segmentation! 7! Calling copy number alterations! 8! Mapping altered genome segments to genes! 8! Recurrently altered genes with clonal variability! 9! Global analyses of copy number alterations! 9! Phylogenetic analysis of copy number alterations! 10! Microarray analysis! 10! Gene expression differences of TMZ resistant and sensitive clones of GBM-482! 10! Reverse transcription-PCR analyses! 11! Tumor subtype analysis of TMZ-sensitive and resistant clones! 11! Pathway analysis of gene expression in the TMZ-sensitive clone of GBM-482! 11! Supplementary figures and tables" 13" "2 Supplementary information - Meyer, Reimand et al. Table S1: Individual clones from all patient tumors are tumorigenic. ! 14! Fig. S1: clonal tumorigenicity.! 15! Fig. S2: clonal heterogeneity of EGFR and PTEN expression.! 20! Fig. S3: clonal heterogeneity of proliferation.! 21! Fig.
    [Show full text]
  • Pubertal Androgenization and Gonadal Histology in Two 46,XY
    European Journal of Endocrinology (2012) 166 341–349 ISSN 0804-4643 CASE REPORT Pubertal androgenization and gonadal histology in two 46,XY adolescents with NR5A1 mutations and predominantly female phenotype at birth M Cools1, P Hoebeke2, K P Wolffenbuttel3, H Stoop4, R Hersmus4, M Barbaro5, A Wedell5, H Bru¨ggenwirth6, L H J Looijenga4 and S L S Drop7 1Division of Pediatric Endocrinology, Department of Pediatrics, Division of Pediatric Urology, Department of Urology, University Hospital Ghent, Ghent University, Building 3K12D, De Pintelaan 185, 9000 Ghent, Belgium, 2University Hospital Ghent, Ghent University, Ghent, Belgium, 3Division of Pediatric Urology, Department of Urology, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, The Netherlands, 4Department of Pathology, Josephine Nefkens Institute, Daniel Den Hoed Cancer Center,Erasmus Medical Center,Rotterdam, The Netherlands, 5Department of Molecular Medicine and Surgery, Karolinska Institutet, Center for Inherited Metabolic Diseases (CMMS), Karolinska University Hospital, Stockholm, Sweden, 6Department of Clinical Genetics and 7Division of Pediatric Endocrinology, Department of Pediatrics, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, The Netherlands (Correspondence should be addressed to M Cools; Email: [email protected]) Abstract Objective: Most patients with NR5A1 (SF-1) mutations and poor virilization at birth are sex-assigned female and receive early gonadectomy. Although studies in pituitary-specific Sf-1 knockout mice suggest hypogonadotropic hypogonadism, little is known about endocrine function at puberty and on germ cell tumor risk in patients with SF-1 mutations. This study reports on the natural course during puberty and on gonadal histology in two adolescents with SF-1 mutations and predominantly female phenotype at birth.
    [Show full text]
  • Hes Genes and Neurogenin Regulate Non-Neural Versus Neural Fate
    RESEARCH ARTICLE 2531 Development 135, 2531-2541 (2008) doi:10.1242/dev.021535 Hes genes and neurogenin regulate non-neural versus neural fate specification in the dorsal telencephalic midline Itaru Imayoshi1,2,3, Tomomi Shimogori4, Toshiyuki Ohtsuka1,3 and Ryoichiro Kageyama1,3,* The choroid plexus in the brain is unique because it is a non-neural secretory tissue. It secretes the cerebrospinal fluid and functions as a blood-brain barrier, but the precise mechanism of specification of this non-neural tissue has not yet been determined. Using mouse embryos and lineage-tracing analysis, we found that the prospective choroid plexus region initially gives rise to Cajal-Retzius cells, specialized neurons that guide neuronal migration. Inactivation of the bHLH repressor genes Hes1, Hes3 and Hes5 upregulated expression of the proneural gene neurogenin 2 (Ngn2) and prematurely depleted Bmp-expressing progenitor cells, leading to enhanced formation of Cajal-Retzius cells and complete loss of choroid plexus epithelial cells. Overexpression of Ngn2 had similar effects. These data indicate that Hes genes promote specification of the fate of choroid plexus epithelial cells rather than the fate of Cajal-Retzius cells by antagonizing Ngn2 in the dorsal telencephalic midline region, and thus this study has identified a novel role for bHLH genes in the process of deciding which cells will have a non-neural versus a neural fate. KEY WORDS: Cajal-Retzius cells, Choroid plexus, Hes1, Hes5, Neurogenin, Mouse INTRODUCTION Awatramani et al., 2003; Currle et al., 2005; Hunter and Dymecki, The telencephalic hemispheres are formed by bilateral evagination 2007). The role of Bmp signaling in the development of the choroid of the anterior end of the neural tube.
    [Show full text]
  • PAX3-FOXO1 Transgenic Zebrafish Models Identify HES3 As a Mediator
    RESEARCH ARTICLE PAX3-FOXO1 transgenic zebrafish models identify HES3 as a mediator of rhabdomyosarcoma tumorigenesis Genevieve C Kendall1,2, Sarah Watson3, Lin Xu1, Collette A LaVigne1,2, Whitney Murchison1, Dinesh Rakheja1,4, Stephen X Skapek1, Franck Tirode5, Olivier Delattre3,6,7, James F Amatruda1,2,8* 1Department of Pediatrics, UT Southwestern Medical Center, Dallas, United States; 2Department of Molecular Biology, UT Southwestern Medical Center, Dallas, United States; 3Institut Curie, Paris Sciences et Lettres (PSL) Research University, Inserm U830, Institut Curie, Paris Sciences et Lettres (PSL) Research University, Paris, France; 4Department of Pathology, UT Southwestern Medical Center, Dallas, United States; 5Univ Lyon, Universite´ Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Le´onBe´rard, Lyon, France; 6INSERM U80, Institute Curie Research Center, Paris, France; 7Institut Curie Hospital Group, Unite´ de Ge´ne´tique Somatique, Paris, France; 8Department of Internal Medicine, UT Southwestern Medical Center, Dallas, United States Abstract Alveolar rhabdomyosarcoma is a pediatric soft-tissue sarcoma caused by PAX3/7- FOXO1 fusion oncogenes and is characterized by impaired skeletal muscle development. We developed human PAX3-FOXO1 -driven zebrafish models of tumorigenesis and found that PAX3- FOXO1 exhibits discrete cell lineage susceptibility and transformation. Tumors developed by 1.6– 19 months and were primitive neuroectodermal tumors or rhabdomyosarcoma. We applied this PAX3-FOXO1 transgenic zebrafish model to study how PAX3-FOXO1 leverages early *For correspondence: developmental pathways for oncogenesis and found that her3 is a unique target. Ectopic james.amatruda@utsouthwestern. expression of the her3 human ortholog, HES3, inhibits myogenesis in zebrafish and mammalian edu cells, recapitulating the arrested muscle development characteristic of rhabdomyosarcoma.
    [Show full text]
  • Human Embryonic Stem Cells Facilitate Isolation of in Vitro Derived Insulin-Producing Cells
    Diabetologia (2012) 55:694–706 DOI 10.1007/s00125-011-2379-y ARTICLE INSGFP/w human embryonic stem cells facilitate isolation of in vitro derived insulin-producing cells S. J. Micallef & X. Li & J. V. Schiesser & C. E. Hirst & Q. C. Yu & S. M. Lim & M. C. Nostro & D. A. Elliott & F. Sarangi & L. C. Harrison & G. Keller & A. G. Elefanty & E. G. Stanley Received: 27 July 2011 /Accepted: 20 October 2011 /Published online: 26 November 2011 # The Author(s) 2011. This article is published with open access at Springerlink.com Abstract spin embryoid body (EB) differentiation protocol that used Aims/hypothesis We aimed to generate human embryonic the recombinant protein-based, fully defined medium, stem cell (hESC) reporter lines that would facilitate the APEL. Like INS-GFP+ cells generated with other methods, characterisation of insulin-producing (INS+) cells derived those derived using the spin EB protocol expressed a suite in vitro. of pancreatic-related transcription factor genes including Methods Homologous recombination was used to insert ISL1, PAX6 and NKX2.2. However, in contrast with sequences encoding green fluorescent protein (GFP) into previous methods, the spin EB protocol yielded INS-GFP+ the INS locus, to create reporter cell lines enabling the cells that also co-expressed the beta cell transcription factor prospective isolation of viable INS+ cells. gene, NKX6.1, and comprised a substantial proportion of GFP/w Results Differentiation of INS hESCs using published monohormonal INS+ cells. protocols demonstrated that all GFP+ cells co-produced Conclusions/interpretation INSGFP/w hESCs are a valuable insulin, confirming the fidelity of the reporter gene.
    [Show full text]
  • Coordinated Waves of Gene Expression During Neuronal Differentiation of Embryonic Stem Cells As Basis for Novel Approaches to Developmental Neurotoxicity Testing
    Cell Death and Differentiation (2011) 18, 383–395 & 2011 Macmillan Publishers Limited All rights reserved 1350-9047/11 www.nature.com/cdd Coordinated waves of gene expression during neuronal differentiation of embryonic stem cells as basis for novel approaches to developmental neurotoxicity testing B Zimmer1, PB Kuegler1, B Baudis1, A Genewsky1, V Tanavde2, W Koh2, B Tan2, T Waldmann1, S Kadereit1 and M Leist*,1 As neuronal differentiation of embryonic stem cells (ESCs) recapitulates embryonic neurogenesis, disturbances of this process may model developmental neurotoxicity (DNT). To identify the relevant steps of in vitro neurodevelopment, we implemented a differentiation protocol yielding neurons with desired electrophysiological properties. Results from focussed transcriptional profiling suggested that detection of non-cytotoxic developmental disturbances triggered by toxicants such as retinoic acid (RA) or cyclopamine was possible. Therefore, a broad transcriptional profile of the 20-day differentiation process was obtained. Cluster analysis of expression kinetics, and bioinformatic identification of overrepresented gene ontologies revealed waves of regulation relevant for DNT testing. We further explored the concept of superimposed waves as descriptor of ordered, but overlapping biological processes. The initial wave of transcripts indicated reorganization of chromatin and epigenetic changes. Then, a transient upregulation of genes involved in the formation and patterning of neuronal precursors followed. Simultaneously, a long wave of ongoing neuronal differentiation started. This was again superseded towards the end of the process by shorter waves of neuronal maturation that yielded information on specification, extracellular matrix formation, disease-associated genes and the generation of glia. Short exposure to lead during the final differentiation phase, disturbed neuronal maturation.
    [Show full text]
  • Examining New Interactors of Notch/Rbpjκ Signalling in Adult
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl Entwicklungsgenetik Examining new interactors of Notch/RBPJ signalling in adult neural stem cells Dissertation von Tobias Johannes Schwarz Helmholtz Zentrum München Institut für Entwicklungsgenetik TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl Entwicklungsgenetik Examining new interactors of Notch/RBPJ signalling in adult neural stem cells Tobias Johannes Schwarz Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzende: Univ.-Prof. A. Schnieke, Ph.D. Prüfer der Dissertation: 1. Univ.-Prof. Dr. W. Wurst 2. Univ.-Prof. Dr. C. Lie, (Friedrich-Alexander Universität Erlangen-Nürnberg) Die Dissertation wurde am 20. 03. 2012 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 25. 07. 2012 angenommen. Table of contents 1 Zusammenfassung......................................................................................... 4 2 Summary .......................................................................................................... 6 3 Introduction ...................................................................................................... 7 3.1 Adult neurogenesis and neural stem cells ..................................................... 7 3.2 Signal integration by adult neural stem cells
    [Show full text]
  • Non-Classical 1P36 Deletion in a Patient
    Yokoyama et al. Mol Cytogenet (2020) 13:42 https://doi.org/10.1186/s13039-020-00510-5 CASE REPORT Open Access Non-classical 1p36 deletion in a patient with Duane retraction syndrome: case report and literature review Emiy Yokoyama1, Camilo E. Villarroel1, Sinhué Diaz2, Victoria Del Castillo1, Patricia Pérez‑Vera3, Consuelo Salas3, Samuel Gómez4, Reneé Barreda1, Bertha Molina5 and Sara Frias5,6* Abstract Background: Monosomy of 1p36 is considered the most common terminal microdeletion syndrome. It is character‑ ized by intellectual disability, growth retardation, seizures, congenital anomalies, and distinctive facial features that are absent when the deletion is proximal, beyond the 1p36.32 region. In patients with proximal deletions, little is known about the associated phenotype, since only a few cases have been reported in the literature. Ocular manifestations in patients with classical 1p36 monosomy are frequent and include strabismus, myopia, hypermetropia, and nystagmus. However, as of today only one patient with 1p36 deletion and Duane retraction syndrome (DRS) has been reported. Case presentation: We describe a patient with intellectual disability, facial dysmorphism, and bilateral Duane retrac‑ tion syndrome (DRS) type 1. Array CGH showed a 7.2 Mb de novo deletion from 1p36.31 to 1p36.21. Discussion: Our patient displayed DRS, which is not part of the classical phenotype and is not a common clinical feature in 1p36 deletion syndrome; we hypothesized that this could be associated with the overlapping deletion between the distal and proximal 1p36 regions. DRS is one of the Congenital Cranial Dysinnervation Disorders, and a genetic basis for the syndrome has been extensively reported.
    [Show full text]
  • JJP Suppl 2006.Fm
    Lectures Lectures L1 (2PA) L3 (1EA) The ins and outs of glutamate receptor Water and ion channels in kidney function trafficking during synaptic plasticity Sasaki, Sei (Dept. Nephrology. Grad. Sch.Tokyo Med Dent Univ. Nicoll, Roger A. (Department of Cellular and Molecular Tokyo, Japan) Pharmacology, University of California at San Francisco, San Kidney is the main organ in the maintenance of water and electrolyte ho- Francisco, California, USA) meostasis of extracellular fluid of the body. Extensive physiological re- Glutamate, the major excitatory neurotransmitter in the brain, acts pri- search has been performed to understand this important kidney function. marily on two types of ionotropic receptors, AMPA receptors and The research has developed from the organ level to molecular level and NMDA receptors. Work over the past decade indicates that the number the development was accompanied by advancement of experimental of synaptic AMPA receptors is tightly regulated and may serve as a technology, i.e., from the clearance method to molecular biology. Molec- mechanism for information storage. Recent studies show that stargazin, ular biological studies have identified a wide variety of channel and the mutated protein in the ataxic and epileptic mouse stargazer, is neces- transporter proteins that exist in renal epithelial cells. Coupled with hu- sary for the expression of surface AMPA receptors in cerebellar granule man genetic studies it has been shown that mutations of the genes encod- cells. Stargazin is a small tetraspanning membrae protein and is a mem- ing renal membrane transport proteins (channels and transporters) cause ber of a family of proteins referred to as transmembrane AMPAR regu- human hereditary diseases such as water and solute loosing or retaining latory proteins (TARPs).
    [Show full text]