Gore Cover.Indd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hoya Carnosa in a Subtropical Rain
UvA-DARE (Digital Academic Repository) Vascular epiphytes in Taiwan and their potential response to climate change Hsu, R.C.C. Publication date 2013 Link to publication Citation for published version (APA): Hsu, R. C. C. (2013). Vascular epiphytes in Taiwan and their potential response to climate change. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:01 Oct 2021 Chapter 4 Canopy CO2 concentrations and crassulacean acid metabolism in Hoya carnosa in a subtropical rain forest in Taiwan: consideration of CO2 availability and the evolution of CAM in epiphytes Fushan is a subtropical rainforest with annual rainfall above 3.5 m. Although here the average daily humidity throughout the year typically approaches 95 %, our study indicated that the likely ecophysiological significance of CAM Hoya carnosa in H. -
Life Cycle Cost of Air Plant Green Roofs in Hot and Humid Climate
I J A B E R, Vol. 14, No. 10 (2016):Life 7167-7182 Cycle Cost of Air Plant Green Roofs in Hot and Humid Climate l 7167 LIFE CYCLE COST OF AIR PLANT GREEN ROOFS IN HOT AND HUMID CLIMATE Tachaya Sangkakool* and Kuaanan Techato2* Abstract: The benefitsof green roofshave beenrecognizedby many researchers worldwide.Green roofs have been wildly implemented in many countries due to the trend of green architecture, sustainable architecture and environmental friendly concept. The computational life cycle cost of air plant green roofs is classified into two parts. One is the initial investment, which compos- es of the cost of materials and installation process. Another is the cost of operation and main- tenance. This paper has investigated in the economics of green roofs by reviewing secondary data of extensive green roof and intensive green roofs and collecting experimental data of air plant green roofs. The investigation of life cycle cost of “Cotton Candy” air plant green roofs is around 140.21$/m2 and “Spanish moss” air plant green roofs is around 125.78 $/m2. Although the digit is lower than other types of green roofs, the benefit is almost the same. It was found from the research that life cycle cost of air plant green roof is less than other types of green roof. However, the benefits are not different from other type of the roof. Another strengthof air plant green roofs is shading to the roof of the building. These will extend the life cycle of the roof. The consideration of life cycle cost of air plant green roofs will be another tool using in making final decision. -
LD5655.V855 1974.H365.Pdf
\INDOOR PL.A..l'rTS IDENTIFICATION AND CULTURE/ by Lacy Clyde \\Harold;;, Thesis submitted to the Graduate Faculty of the Virginia ~olytechnic Institute and State University in partial fu1£illment of the requirements for the degree o~ MASTER OF SCIEITCE in H'orticulture A:PPHOVED: Chairman M.2i~ G. C. wiirtiiiU- December, 1974 Blacksburg, Virginia LD 5b5S V 855 . /9"74 H3IaS. ,~ c. :<. ACKNOVlLEDGElilIDTTS The author wishes to express appreciation to Dr. W.P. Judkins for his help in carrying out, this study. Appreciation is also extended to Dr. R.E. Campbell and Dr. J .R •. Crunkilton for ·their suggestions during the course of this study. Gratitude is extended to my wife, Karen, for her patience and understanding throughout this study. 1:1. TABLE OF CONTENTS Page. INTRODUCTION • • • • • • • • • • • • • • • .. • • • • 1 REVIEW OF LIT ERA.T URE • • • • • • • • • • • • • • • • 2 rliAT:2.:RIALS lurD lllETHODS • • • • • • .. • • • • • • • .' 4 REStTLTS • • • • • • • • • • • • • • • • • • • • • • 6 CONCLUDING DISCUSSION • • • • • • • • • • • • • • • 33 Su:r~lli~T.{Y • • • • • • • • • • • • • .' • • • • • • • e' 35 BIBLIOGRA.:PHY • • • • • • • • • • • • • • • • • • • • 36 l;]? PEND IX • • • • • • • • • • • • • • • • • • • • • • 37 VITA • • • • • • • • • • • •. • • • • • • • • • • • • 43 iii INTRODUCTION With the: introduction and expansion of vocational horticulture courses in the secondary school systems, it has become necessary to teach more specialized work in the area of floricluture and particluarly house plant identification and culture,. The increasing interest of individuals and the grovling need for extension services concerning indoor plant identification and culture have also demanded that educational materials and services be' made .available for use by the average citizen and extension agents, as well as the horticulture instructor. The educational kit that ,will be described in this thesiS has been prepared for the purpose of identifying nlooerous indoor plants, their cultural requirements, and uses. -
Preliminary Checklist of Hoya (Asclepiadaceae) in the Flora of Cambodia, Laos and Vietnam
Turczaninowia 20 (3): 103–147 (2017) ISSN 1560–7259 (print edition) DOI: 10.14258/turczaninowia.20.3.10 TURCZANINOWIA http://turczaninowia.asu.ru ISSN 1560–7267 (online edition) УДК 582.394:581.4 Preliminary checklist of Hoya (Asclepiadaceae) in the flora of Cambodia, Laos and Vietnam L. V. Averyanov1, Van The Pham2, T. V. Maisak1, Tuan Anh Le3, Van Canh Nguyen4, Hoang Tuan Nguyen5, Phi Tam Nguyen6, Khang Sinh Nguyen2, Vu Khoi Nguyen7, Tien Hiep Nguyen8, M. Rodda9 1 Komarov Botanical Institute, Prof. Popov, 2; St. Petersburg, RF-197376, Russia E-mails: [email protected]; [email protected] 2 Institute of Ecology and Biological Resources, Vietnam Academy of Sciences and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam. E-mail: [email protected] 3Quang Tri Center of Science and Technology, Mientrung Institute for Scientific Research, 121 Ly Thuong Kiet, Dong Ha, Quang Tri, Vietnam. E-mail: [email protected] 4 3/12/3 Vo Van Kiet Street, Buon Ma Thuot City, Dak Lak province, Vietnam. E-mail: [email protected] 5Department of Pharmacognosy, Hanoi University of Pharmacy, 15 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam E-mail: [email protected] 6Viet Nam Post and Telecommunications Group – VNPT, Lam Dong 8 Tran Phu Street, Da Lat City, Lam Dong Province, Vietnam. E-mail: [email protected] 7Wildlife At Risk, 202/10 Nguyen Xi st., ward 26, Binh Thanh, Ho Chi Minh, Vietnam. E-mail: [email protected] 8Center for Plant Conservation, no. 25/32, lane 191, Lac Long Quan, Nghia Do, Cau Giay District, Ha Noi, Vietnam E-mail: [email protected] 9Herbarium, Singapore Botanic Gardens, 1 Cluny Road, Singapore 259569. -
Canopy CO2 Concentrations and Crassulacean Acid Metabolism In
PHOTOSYNTHETICA 44 (1): 130-135, 2006 Canopy CO2 concentrations and Crassulacean acid metabolism in Hoya carnosa in a subtropical rain forest in Taiwan: consideration of CO2 availability and the evolution of CAM in epiphytes C.-C. HSU*, T.-C. LIN**, W.-L. CHIOU*, S.-H. LIN***, K.-C. LIN*, and C.E. MARTIN+,++ Taiwan Forestry Research Institute, 53 Nan-hai Road, Taipei 100, Taiwan, Republic of China* Department of Geography, National Changhua University of Education, 1 Jin-de Road, Changhua 500, Taiwan, Republic of China** Department of Soil and Water Conservation, National Chung-Hsing University, 250 Kuo-kwang Road, Taichung 402, Taiwan, Republic of China*** Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045, U.S.A.+ Abstract The potential importance of CO2 derived from host tree respiration at night as a substrate for night time CO2 uptake during CAM was investigated in the subtropical and tropical epiphytic vine Hoya carnosa in a subtropical rainforest in north-eastern Taiwan. Individuals were examined within the canopies of host trees in open, exposed situations, as well as in dense forests. Although night time CO2 concentrations were higher near the epiphytic vines at night, relative to those measured during the day, presumably the result of CO2 added to the canopy air by the host tree, no evidence for substantial use of this CO2 was found. In particular, stable carbon isotope ratios of H. carnosa were not substantially lower than those of many other CAM plants, as would be expected if host-respired CO2 were an important source of CO2 for these CAM epiphytes. -
Floral Glands in Asclepiads: Structure, Diversity and Evolution
Acta Botanica Brasilica - 31(3): 477-502. July-September 2017. doi: 10.1590/0102-33062016abb0432 Review Floral glands in asclepiads: structure, diversity and evolution Diego Demarco1 Received: December 7, 2016 Accepted: February 24, 2017 . ABSTRACT Species of Apocynaceae stand out among angiosperms in having very complex fl owers, especially those of asclepiads, which belong to the most derived subfamily (Asclepiadoideae). Th ese fl owers are known to represent the highest degree of fl oral synorganization of the eudicots, and are comparable only to orchids. Th is morphological complexity may also be understood by observing their glands. Asclepiads have several protective and nuptial secretory structures. Th eir highly specifi c and specialized pollination systems are associated with the great diversity of glands found in their fl owers. Th is review gathers data regarding all types of fl oral glands described for asclepiads and adds three new types (glandular trichome, secretory idioblast and obturator), for a total of 13 types of glands. Some of the species reported here may have dozens of glands of up to 11 types on a single fl ower, corresponding to the largest diversity of glands recorded to date for a single structure. Keywords: anatomy, Apocynaceae, Asclepiadoideae, diversity, evolution, fl ower, secretory structures considering its most derived subfamily Asclepiadoideae. Introduction Th e close relationship between the former families Apocynaceae and Asclepiadaceae has always been recognized Apocynaceae is an extremely diverse family in since its establishment as “Apocineae” by Jussieu (1789). morphological terms, represented by trees, shrubs, herbs and climbers, with single leaves usually opposite, rarely Although Brown (1810) divided it into two families and alternate or whorled, with stipules modifi ed in colleters in this separation had been maintained in the subsequent several species (Endress & Bruyns 2000; Capelli et al. -
Flowering Indoor Plants
GARDENING WITH PHS FLOWERING INDOOR PLANTS You can enjoy the beauty of flowers in bloom inside your house just about all year-round. These 10 plants will flower indoors without the need for grow lights or other special equipment. They are generally inexpensive to buy and thrive with only moderate amount of attention. They all fare well in normal home temperatures, though some may need to have the humidity level raised around them. All of them are sure to delight you and others with their vibrant natural colors. African Violets moist and the roots will grow into it. When a clump of new These old-time favorites bloom continuously with petite roots has formed, cut off the stem at soil level and put the blossoms that come in shades of purple, pink, and white, new roots into their own pot. solid and patterned. In the right conditions, African violets can live for many years. Cape Primrose An evergreen perennial known botanically as streptocarpus, Light: Give them bright, but indirect light, like in a north- or cape primrose has tall stems that carry clusters of trumpet- east-facing window. Rotate the pots once a week so all of shaped blooms in shades of purple, violet-blue, pink, the leaves get plenty of light. African violets bloom more red, lavender, white and bicolors. The foliage is long and vigorously in winter if you give them supplemental light. drooping, and velvety to touch. The roots grow outward more than downward, Container: Light: Cape primrose blooms best when it gets bright, so wide, shallow pots work best. -
Ecophysiology of Crassulacean Acid Metabolism (CAM)
Annals of Botany 93: 629±652, 2004 doi:10.1093/aob/mch087, available online at www.aob.oupjournals.org INVITED REVIEW Ecophysiology of Crassulacean Acid Metabolism (CAM) ULRICH LUÈ TTGE* Institute of Botany, Technical University of Darmstadt, Schnittspahnstrasse 3±5, D-64287 Darmstadt, Germany Received: 3 October 2003 Returned for revision: 17 December 2003 Accepted: 20 January 2004 d Background and Scope Crassulacean Acid Metabolism (CAM) as an ecophysiological modi®cation of photo- synthetic carbon acquisition has been reviewed extensively before. Cell biology, enzymology and the ¯ow of carbon along various pathways and through various cellular compartments have been well documented and dis- cussed. The present attempt at reviewing CAM once again tries to use a different approach, considering a wide range of inputs, receivers and outputs. d Input Input is given by a network of environmental parameters. Six major ones, CO2,H2O, light, temperature, nutrients and salinity, are considered in detail, which allows discussion of the effects of these factors, and combinations thereof, at the individual plant level (`physiological aut-ecology'). d Receivers Receivers of the environmental cues are the plant types genotypes and phenotypes, the latter includ- ing morphotypes and physiotypes. CAM genotypes largely remain `black boxes', and research endeavours of genomics, producing mutants and following molecular phylogeny, are just beginning. There is no special development of CAM morphotypes except for a strong tendency for leaf or stem succulence with large cells with big vacuoles and often, but not always, special water storage tissues. Various CAM physiotypes with differing degrees of CAM expression are well characterized. d Output Output is the shaping of habitats, ecosystems and communities by CAM. -
J\V1ERICANI Iorticulturisf DECEMBER 1981
j\V1ERICANI IORTICULTURISf DECEMBER 1981 / lOmatoes in OCtober, November, and December? f course.. .and in January and February too with nutrients too. Your plants gradually absorb wnat they require Windowsill Gardens Nutriponics® Kits. If you simply and easily, eliminating the main causes of house O nave a sunny window you can grow tomatoes, plant failure; inadequate moisture and overwatering. peppers, geraniums, sunflowers, or whatever you wish in Nutriponics is a fully tested system. Over 65% of our our Gro-thru N Pots combined with our handsome planters customers reorder equipmemt and supplies, and kits are shown above. You can even grow your Nutriponic plants immediately available to get you started. Each includes our from seed. beautifully illustrated 50-page book on Nutriponics, to The lower container in this new system acts as a reservoir gether with Liqui-Soil, N Gro-thru Pots, and planting which enables the plant to take moisture as it needs it..and medium. Fill out the order coupon today. Windowsill Gardens, Grafton, N.H. 03240, Dept. AH D Senti Information Name, ___________~ =~_ D Send $4.95 kit Street'--______________ D Send $9.95 kit City State: _____Zip __ Include $2.00 for shipping WINDOWSILL GARDENS Grafton, New Hampshire 03240 #1ERICAN HORfICULTURIST DECEMBER 1981 FEATURES COLUMNS Camellias in Containers 16 Guest Editorial: Lessons We Can Learn Text and Photography by Anthony DeBlasi from Chelsea 2 A. St. Clair Wright Book Reviews 4 Gilbert S. Daniels Pronunciation Guide 8 Strange Relatives: The Cashew Family 9 Jane Steffey The Herb Garden: Thyme 13 Betty Ann Laws The Gotelli Dwarf Conifer Collection 20 Text by Steve Bender Photography by Barbara W. -
Echter's 2007 Indoor Plant List
Echter's Indoor Plant List ABUTILON ASSORTED ABUTILON ASSORTED PATIO TREE ACALYPHA CHENILLE BASKET ACALYPHA CHENILLE HB ACALYPHA FIRE DRAGON ACALYPHA TRICOLOR ADENIUM OBESUM ADENIUM OBESUM DESERT ROSE AEONIUM BLACK ROSE AEONIUM VARIEGATED AESCHYNANTHUS LIPSTICK AFRICAN VIOLET AGAPANTHUS ALBUS AGAPANTHUS MIDNIGHT BLUE AGAPANTHUS PETER PAN AGAPANTHUS QUEEN ANNE AGAPANTHUS STORM CLOUD AGAPANTHUS STREAMLINE AGAPANTHUS SUMMER GOLD AGLAONEMA ABIDJAN AGLAONEMA ASSORTED AGLAONEMA BAY ASSORTED AGLAONEMA CECILIA AGLAONEMA COSMOS AGLAONEMA CRISTINA AGLAONEMA DIAMOND BAY AGLAONEMA EMERALD BAY AGLAONEMA EMERALD BEAUTY AGLAONEMA GOLDEN MADONNA AGLAONEMA HYBRID AGLAONEMA JEWEL OF INDIA AGLAONEMA JUBILEE AGLAONEMA MARIA CHRISTINE AGLAONEMA MARY LOU AGLAONEMA PAINTED PRINCESS Call for daily availability or to special order a particular variety not on this list. Echter's Indoor Plant List AGLAONEMA SAN REMO AGLAONEMA SILVER BAY AGLAONEMA SILVER MOON AGLAONEMA SILVER QUEEN AGLAONEMA SILVERADO AGLAONEMA STARS AGLAONEMA STRIPES ALLAMANDA BROWN BUD TRELLIS ALLAMANDA CHERRY JUBILEE TRELLIS ALLAMANDA YELLOW ALOCASIA BLACK VELVET ALOCASIA POLLY ALOE VERA ALSTROEMERIA ASSORTED ALYOGYNE PURPLE DELIGHT TREE AMARANTH HOPI RED DYE AMARYLLIS ASST. ANGELICA ASSORTED ANIGOZANTHUS KANGAROO PAW ANISE HYSSOP ANISODONTIA ELEGANT LADY ANNUAL ASSORTED ANNUAL RED HOT POT ANTHURIUM ASSORTED APHELANDRA WHITE CLOUD APHELANDRA ZEBRA APHELANDRA ZEBRA PLANT APPLE GOLDEN SENTINEL APPLE SCARLET SENTINEL ARABICA COFFEE PLANT ARABICA COFFEE TREE ARALIA ASSORTED ARALIA BALFOUR ARALIA BALFOURIANA ARALIA BIANCA Call for daily availability or to special order a particular variety not on this list. Echter's Indoor Plant List ARALIA BLACK ARALIA CASTOR ARALIA CELERY LEAF ARALIA CHICKEN GIZZARD ARALIA CHINENSIS ARALIA ELEGANTISSIMA ARALIA FABIAN ARALIA FALSE ARALIA LEMON ARALIA MING ARALIA MING CANE ARALIA ROBIE ARAUCARIA NORFOLK ISL. -
A Journal on Taxonomic Botany, Plant Sociology and Ecology Reinwardtia
A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY REINWARDTIA A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY Vol. 13(4): 317 —389, December 20, 2012 Chief Editor Kartini Kramadibrata (Herbarium Bogoriense, Indonesia) Editors Dedy Darnaedi (Herbarium Bogoriense, Indonesia) Tukirin Partomihardjo (Herbarium Bogoriense, Indonesia) Joeni Setijo Rahajoe (Herbarium Bogoriense, Indonesia) Teguh Triono (Herbarium Bogoriense, Indonesia) Marlina Ardiyani (Herbarium Bogoriense, Indonesia) Eizi Suzuki (Kagoshima University, Japan) Jun Wen (Smithsonian Natural History Museum, USA) Managing editor Himmah Rustiami (Herbarium Bogoriense, Indonesia) Secretary Endang Tri Utami Lay out editor Deden Sumirat Hidayat Illustrators Subari Wahyudi Santoso Anne Kusumawaty Reviewers Ed de Vogel (Netherlands), Henk van der Werff (USA), Irawati (Indonesia), Jan F. Veldkamp (Netherlands), Jens G. Rohwer (Denmark), Lauren M. Gardiner (UK), Masahiro Kato (Japan), Marshall D. Sunberg (USA), Martin Callmander (USA), Rugayah (Indonesia), Paul Forster (Australia), Peter Hovenkamp (Netherlands), Ulrich Meve (Germany). Correspondence on editorial matters and subscriptions for Reinwardtia should be addressed to: HERBARIUM BOGORIENSE, BOTANY DIVISION, RESEARCH CENTER FOR BIOLOGY-LIPI, CIBINONG 16911, INDONESIA E-mail: [email protected] REINWARDTIA Vol 13, No 4, pp: 331-339 HOYA (APOCYNACEAE: ASCLEPIADOIDEAE) DIVERSITY IN GUNUNG GEDE PANGRANGO NATIONAL PARK, WEST JAVA, INDONESIA Received December 1, 2011; accepted September 3, 2012 SRI RAHAYU Centre -
Selection of Plants for Vertical Gardening and Green Roof Farming
International Research Journal of Plant and Crop Sciences ISSN: 1711-3490 Vol. 4 (3),), pp. 132-153, June, 2018. Available online at www.advancedscholarsjournals.org © Advanced Scholars Journals Review Paper SELECTION OF PLANTS FOR VERTICAL GARDENING AND GREEN ROOF FARMING Dr. A.N.Sarkar Ex-Senior Professor (International Business) & Dean (Research), Asia-Pacific Institute of Management, 3& 4 Institutional Areas, Jasola (Sarita Vihar), New Delhi E.mail: [email protected] Accepted 28 May, 2018. The choice of plant species for vertical gardens is strictly dependent on climate conditions and exposure of the wall. The plants should be light, their root system must be spreading and not of the pile form. It is also important to choose evergreen plants, so that a vertical garden will fulfill its role throughout the whole year. Life expectancy is an important factor while calculating the cost of green wall exploitation. It is recommended to choose mosses, ornamental grasses, perennials, shrubs which live a few to dozens of years with a high tolerance to environmental pollution. Aging and withered plants should be replaced during a garden maintaining process of minimum every half year. The use of different plant species including herbs, grasses, perennials and trees help to make the roof-scape a natural environment. Other factors that should be considered when selecting plants include: the rate of plant growth, nutrient needs, and sensitivity to pollution. The type of plant species and their location on the roofs also depend on the geographical location, the rate of air pollution, rooftop height, shade, growing medium depth and composition, accessibility of roof, run-off water management purposes, irrigation method, thermal insulation purposes, installation techniques and maintenance.