Large-Scale Water Storage in the Water, Energy and Food Nexus

Total Page:16

File Type:pdf, Size:1020Kb

Large-Scale Water Storage in the Water, Energy and Food Nexus LARGE-SCALE WATER STORAGE IN THE WATER, ENERGY AND FOOD NEXUS PERspECTIVES ON BENEFITS, RISKS AND BEST PRACTICES Andreas Lindström, Jakob Granit Edited by Josh Weinberg PAPER 21 STOCKHOLM, AUGUST 2012 List of Abbreviations ADB Asian Development Bank OECD Organisation for Economic AfDB African Development Bank Co-operation and Development EIRR Economic Internal Rate of Return RE Renewable Energy ENSAP Eastern Nile Subsidary Action RRFP Regional Rusumo Falls Hydroelectric Programme Power Project EU European Union SEA Strategic Environmental Assessment FIRR Financial Internal Rate of Return SSEA Strategic/Sectoral Social and HEP Hydro Electric Power Environmental Assessment HSAF Hydropower Sustainability Assessment TWh Terawatt hour Forum UN United Nations ICOLD International Commission on Large UNDP United Nation Development Dams Programme IEA International Energy Agency UNEP United Nations Environment IFI International Financial Institution Programme IHA International Hydropower Association US United States IWRM Integrated Water Resources USD US dollars Management WB World Bank kV Kilovolt WCD World Commission on Dams LEPA Low Energy Precision Application MW Mega Watt NBI Nile Basin Initiative NELSAP Nile Equatorial Lakes Subsidiary Action Programme How to site: Lindström, A., Granit, J., Weinberg, J. (2012). Large-scale water storage in the water, energy and food nexus: Perspectives on ben- efits, risks and best practices. SIWI Paper 21. SIWI, Stockholm. Acknowledgments The authors would like to thank peer review input from Klas Cederwall, Anton Earle, Anders Jägerskog, Karin Lexén, Rickard Liden and Bernt Rydgren. Disclaimer The analysis and policy recommendations in this report do not necessarily reflect the official view of SIWI. The authors take full responsibility for the content and findings in the report. SIWI Paper 21 Published August 2012 by Stockholm International Water Institute (SIWI) Design by Elin Ingblom, SIWI. Cover photos by Jakob Granit, SIWI. For electronic versions of this and other SIWI publications, visit www.siwi.org. Table of Contents Key Findings 4 1. Introduction 5 2 A Typology of Storage Functions in the Water-Energy-Food Nexus 7 2.1 Irrigation 7 2.2 Hydropower 9 2.2.1 Storage hydropower 10 2.2.2 Run-of-the-river hydropower 10 2.2.3 Pumped storage hydropower 10 2.3 Water supply 11 2.4 Flood control 11 2.5 Multi-purpose use 12 2.6 Tailings storage 13 3 Risks and Trade-Offs from Water Storage Schemes 15 3.1 Environmental impacts 15 3.1.1 Flow regimes 15 3.1.2 Sedimentation 15 3.1.3 Aquatic ecosystems and fisheries 15 3.1.4 Evaporation and greenhouse gas emissions 16 3.2 Social impacts 16 3.2.1 Health 16 3.3 Dam safety and flood risk management 17 4 Lessons Learned and Best Practice in Water Storage Development 18 4.1 Assessing opportunities, options and risks in the initial planning stages 19 4.1.1 Addressing climate change and rainfall variability 20 4.1.2 Strategic multi-sector and environment programme assessment 20 4.2 Stakeholder involvement and project preparation 22 4.3 Resettlement and compensation 23 4.4 Environmental mitigation measures 24 5 Transforming Developing Trends to Opportunities 25 6 Conclusions 27 7 References 28 Key Findings This report provides an overview of the current status of large scale artificial water storage development and its functions in the water, 3. Environmental and social consequences at the local and energy and food security nexus. The objectives of this analysis regional levels need to be addressed up-front when develop- are three-fold. It presents a typology of water storage structures ing water storage. Issues of resettlement, compensation and in order to give an overview of the different storage options, the environmental degradation are critical factors to consider in all benefits they provide and how they can contribute to develop- water storage projects. In many cases, projects will affect people ment. This is followed by an analysis of the risks and trade-offs and ecosystems, often significantly. Consequences can include posed by different storage options that must be evaluated in the livelihood losses, impacts on traditional and cultural values, planning and operational stages. The study then highlights best and degradation of public health. Compensation for individuals practices and lessons learned from past experiences that can help and communities has been inadequate in some cases. Successful guide efficient and sustainable implementation of storage projects. strategies to engage local populations can provide guidance To conclude, it explores emerging opportunities for water storage when planning new projects and help create new and meaningful schemes to enhance water, energy and food security in the future. livelihood opportunities for people that are affected by storage The following five key findings provide perspectives on benefits, construction. risks and best practices of water storage in the water, energy and food nexus. 4. There are several ways to mitigate negative impacts from water storage in the project design, implementation and initial 1. Large-scale water storage supports economic development, planning stages. Environmental and social impacts should be builds water security and buffers against increasing rainfall addressed through proven governance and technical solutions at variability. Several examples from around the world demonstrate the early planning and design stages. Strategic Environmental how water storage has supported rapid socio-economic Assessments (SEA) are, for example, gaining increasing attention development in many regions and countries. Increases in irrigated globally as an instrument to identify environmental and social agriculture land areas have fostered greater food security and issues in major development programmes and incorporate strate- electricity generated from hydropower have contributed to large gies to address them into the planning, project development and scale grid-based electrification to boost industrial outputs and investment finance process. This includes engaging representa- contributed to economic growth and human development. tives of populations that will be affected by storage construction Hydropower plays an expanding role in integrated power systems early in the planning process, and maintaining their involvement and can enable increased use of intermittent renewable energy throughout the detailed project design (pre- and full feasibility) sources such as wind and solar power. Hydraulic infrastructure and implementation stages. Methods and techniques to ensure and water storage also play an important part in protecting people good project planning and stakeholder engagement tools have from the impacts of unpredictable hydrological variability, floods been developed actively since the World Commission on Dams and droughts. produced its industry benchmark report in 2000. 2. Well-designed water storage and hydropower systems 5. Expected benefits from initial stages of storage projects can enhance both climate change adaptation and mitiga- plannings may at times promise too much, but there are also tion, but such systems must also plan for a more extreme and cases where outcomes exceed expectations. Many water stor- variable climate. Integrated regional system planning for water age structures do not reach their expected potential predicted at and energy use can support a transition to decarbonise the en- pre-commissioning stages. Social and environmental trade-offs ergy supply chain and provide solutions to meet growing energy may overtake the economic benefits. Hydropower dams, how- demand. While water storage sites do produce some greenhouse ever, exceed the target set for economic returns and development gases, their emissions are much lower than conventional fossil outcomes more than any type of other water storage. Existing fuel. More research is needed on greenhouse gas emissions from hydropower electricity generation capacity can also be improved reservoirs and possible solutions to reduce them. Hydropower through technical upgrades during the project’s life-cycle. Reasons can be developed to mitigate climate change through wider use for lower than expected outputs for other storage types are often of renewable energy sources. Existing and future dam and storage consequences of gaps between the initial planning assessments assets need to consider the impacts of climate change induced and actual carrying out capabilities in subsequent project stages extreme weather conditions and changes in run-off variability. of water storage projects. This can ultimately lead to chronic Efficient modelling and planning, including reliable forecasting operational problems. Increasing the efficiency of existing stor- of different scenarios, will play a vital part in present and future age schemes provides a major opportunity for increasing output project development. In many places, well designed large scale through improvements in water storage technology. water storage development is a strategic management response to establish water security and adapt to long-term climate change. This requires, however, thorough options and impact analysis to determine if a storage project is a viable choice. 4 1. Introduction Artificial water storage has, and will continue to have, a large role to schemes regulate and deliver water in a timely manner for multi- play in both emerging and mature economies. The ability to treat, ple uses. But they can also disrupt ecological and social systems. store and manage
Recommended publications
  • Estimating Aquifer Storage and Recovery (ASR) Regional and Local Suitability: a Case Study in Washington State, USA
    hydrology Case Report Estimating Aquifer Storage and Recovery (ASR) Regional and Local Suitability: A Case Study in Washington State, USA Maria T. Gibson 1,* ID , Michael E. Campana 2 and Dave Nazy 3 1 Water Resources Graduate Program, Oregon State University, Corvallis, OR 97330, USA 2 Hydrogeology and Water Resources, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97330, USA; [email protected] 3 EA Engineering, Science, and Technology, INC., Olympia, WA 98508, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-541-214-5599 Received: 21 December 2017; Accepted: 5 January 2018; Published: 12 January 2018 Abstract: Developing aquifers as underground water supply reservoirs is an advantageous approach applicable to meeting water management objectives. Aquifer storage and recovery (ASR) is a direct injection and subsequent withdrawal technology that is used to increase water supply storage through injection wells. Due to site-specific hydrogeological quantification and evaluation to assess ASR suitability, limited methods have been developed to identify suitability on regional scales that are also applicable at local scales. This paper presents an ASR site scoring system developed to qualitatively assess regional and local suitability of ASR using 9 scored metrics to determine total percent of ASR suitability, partitioned into hydrogeologic properties, operational considerations, and regulatory influences. The development and application of a qualitative water well suitability method was used to assess the potential groundwater response to injection, estimate suitability based on predesignated injection rates, and provide cumulative approximation of statewide and local storage prospects. The two methods allowed for rapid assessment of ASR suitability and its applicability to regional and local water management objectives at over 280 locations within 62 watersheds in Washington, USA.
    [Show full text]
  • Estimation of the Base Flow Recession Constant Under Human Interference Brian F
    WATER RESOURCES RESEARCH, VOL. 49, 7366–7379, doi:10.1002/wrcr.20532, 2013 Estimation of the base flow recession constant under human interference Brian F. Thomas,1 Richard M. Vogel,2 Charles N. Kroll,3 and James S. Famiglietti1,4,5 Received 28 January 2013; revised 27 August 2013; accepted 13 September 2013; published 15 November 2013. [1] The base flow recession constant, Kb, is used to characterize the interaction of groundwater and surface water systems. Estimation of Kb is critical in many studies including rainfall-runoff modeling, estimation of low flow statistics at ungaged locations, and base flow separation methods. The performance of several estimators of Kb are compared, including several new approaches which account for the impact of human withdrawals. A traditional semilog estimation approach adapted to incorporate the influence of human withdrawals was preferred over other derivative-based estimators. Human withdrawals are shown to have a significant impact on the estimation of base flow recessions, even when withdrawals are relatively small. Regional regression models are developed to relate seasonal estimates of Kb to physical, climatic, and anthropogenic characteristics of stream-aquifer systems. Among the factors considered for explaining the behavior of Kb, both drainage density and human withdrawals have significant and similar explanatory power. We document the importance of incorporating human withdrawals into models of the base flow recession response of a watershed and the systemic downward bias associated with estimates of Kb obtained without consideration of human withdrawals. Citation: Thomas, B. F., R. M. Vogel, C. N. Kroll, and J. S. Famiglietti (2013), Estimation of the base flow recession constant under human interference, Water Resour.
    [Show full text]
  • Module III - Water, Ecosystem Services, and Biodiversity
    Environmental Review Guide - Water, Ecosystem Services, and Biodiversity Module III - Water, Ecosystem Services, and Biodiversity The purpose of this module is to link the Regional Environmental Review Program to the goals of the Division of Ecological and Water Resources. The Division of Ecological and Water Resources works with others to: • Protect, restore, and sustain watershed functions (land-water connections, surface water resources) • Protect, restore, and sustain biodiversity and its adaptive potential • Protect, restore, and sustain groundwater resources • Provide and support excellent outdoor recreation opportunities • Minimize the negative economic and ecological impacts of invasive species • Support sustainable natural resource economies • Help achieve other DNR core objectives • Create and maintain a learning organization that implements the division’s guiding principles The Environmental Review Program is a key component in the Department of Natural Resources’ efforts to improve Minnesota’s water, ecosystem services, and biodiversity. DNR staff members involved in evaluating the effects of land- and water-use plans and economic development projects must take an integrated, systems-based, collaborative, and community- based approach to improving the habitat base and providing technical advice on actions that have the potential to adversely affect the environment. Staff must be ever mindful of the need to sustain (1) quantities and qualities of water that will ensure that Minnesota’s people and other biota can survive and thrive in the midst of changing trends in energy, climate, and demographics; (2) levels of diversity that will provide native Minnesota species and biomes with the resilience and adaptive capacities they need to evolve and thrive in the midst of changing conditions; and (3) economically vital ecosystem services that will provide Minnesota with economic and ecological security into the future.
    [Show full text]
  • Technical Note 15-04 Aquifer Storage and Recovery in Texas: 2015
    Technical Note 15-04 AQUIFER STORAGE AND RECOVERY IN TEXAS: 2015 by Matthew Webb Texas Water Development Board Technical Note 15-04 Table of Contents Executive Summary ......................................................................................................................... 1 Introduction ..................................................................................................................................... 2 Background ...................................................................................................................................... 2 Methods and Terms .................................................................................................................... 2 Definitions ................................................................................................................................... 4 Benefits and Challenges .............................................................................................................. 4 2011 Aquifer Storage and Recovery Assessment Report ........................................................... 5 Regulatory ....................................................................................................................................... 7 Source Water Permitting Requirements ..................................................................................... 7 Underground Injection Wells ...................................................................................................... 8 Groundwater Conservation Districts
    [Show full text]
  • WATER SECURITY STATUS REPORT December 2020
    WATER SECURITY STATUS REPORT December 2020 SEQ Water Grid capacity Average daily residential consumption Grid operations and overall water security position (L/Person) Despite receiving rainfall in parts of the northern and southern areas The Southern Regional Water Pipeline is still operating in a northerly 100% 250 2019 December average of South East Queensland (SEQ), the region continues to be in Drought direction. The Northern Pipeline Interconnectors (NPI 1 and 2) have been 90% 200 Response conditions with combined Water Grid storages at 57.8%. operating in a bidirectional mode, with NPI 1 flowing north while NPI 80% 150 2 flows south. The grid flow operations help to distribute water in SEQ Wivenhoe Dam remains below 50% capacity for the seventh 70% 100 where it is needed most. SEQ Drought Readiness 50 consecutive month. There was minimal rainfall in the catchment 60% average Drought Response 0 surrounding Lake Wivenhoe, our largest drinking water storage. The average residential water usage remains high at 172 litres per 50% person, per day (LPD). While this is less than the same period last year 40% 172 184 165 196 177 164 Although the December rain provided welcome relief for many of the (195 LPD), it is still 22 litres above the recommended 150 LPD average % region’s off-grid communities, Boonah-Kalbar and Dayboro are still under 57.8 30% *Data range is 03/12/2020 to 30/12/2020 and 05/12/2019 to 01/01/2020 according to the SEQ Drought Response Plan. drought response monitoring (see below for additional details). 20% See map below and legend at the bottom of the page for water service provider information The Bureau of Meteorology (BOM) outlook for January to March is likely 10% The Gold Coast Desalination Plant (GCDP) had been maximising to be wetter than average for much of Australia, particularly in the east.
    [Show full text]
  • Heuristic Continuous Base Flow Separation
    Heuristic Continuous Base Flow Separation Jozsef Szilagyi1 Abstract: A digital filtering algorithm for continuous base flow separation is compared to physically based simulations of base flow. It is shown that the digital filter gives comparable results to model simulations in terms of the multiyear base flow index when a filter coefficient is used that replicates the watershed-specific time delay of model simulations. This way, the application of the heuristic digital filter for practical continuous base flow separation can be justified when auxiliary hydrometeorological data ͑such as precipitation and air temperature͒ typically required for physically based base flow separation techniques are not available or not representative of the watershed. The filter coefficient can then be optimized upon an empirical estimate of the watershed-specific time delay, requiring only the drainage area of the watershed. DOI: 10.1061/͑ASCE͒1084-0699͑2004͒9:4͑311͒ CE Database subject headings: Base flow; Digital filters; Runoff; Streamflow; Algorithms. Introduction needed to obtain a good estimate on the amount of water available to runoff. Many times the precipitation record has discontinuities Detailed knowledge of groundwater contribution to streams, i.e., that can easily thwart efforts to perform continuous base flow base flow, is important in many water management areas: water separation using physically based techniques. Clearly, there is a supply, wastewater dilution, navigation, hydropower generation practical need for a technique that uses the most basic information ͑Dingman 1994͒ and aquifer characterization ͑Brutsaert and Nie- available: streamflow and the corresponding drainage area. The ber 1977; Troch et al. 1993; Szilagyi et al. 1998; Brutsaert and digital filtering technique of Nathan and McMahon ͑1990͒ is such Lopez 1998͒.
    [Show full text]
  • Ageing Water Storage Infrastructure: an Emerging Global Risk
    UNU-INWEH REPORT SERIES 11 Ageing Water Storage Infrastructure: An Emerging Global Risk Duminda Perera, Vladimir Smakhtin, Spencer Williams, Taylor North, Allen Curry www.inweh.unu.edu About UNU-INWEH UNU-INWEH’s mission is to help resolve pressing water challenges that are of concern to the United Nations, its Member States, and their people, through critical analysis and synthesis of existing bodies of scientific discovery; targeted research that identifies emerging policy issues; application of on-the-ground scalable science-based solutions to water issues; and global outreach. UNU-INWEH carries out its work in cooperation with the network of other research institutions, international organisations and individual scholars throughout the world. UNU-INWEH is an integral part of the United Nations University (UNU) – an academic arm of the UN, which includes 13 institutes and programmes located in 12 countries around the world, and dealing with various issues of development. UNU-INWEH was established, as a public service agency and a subsidiary body of the UNU, in 1996. Its operations are secured through long-term host-country and core-funding agreements with the Government of Canada. The Institute is located in Hamilton, Canada, and its facilities are supported by McMaster University. About UNU-INWEH Report Series UNU-INWEH Reports normally address global water issues, gaps and challenges, and range from original research on specific subject to synthesis or critical review and analysis of a problem of global nature and significance. Reports are published by UNU-INWEH staff, in collaboration with partners, as / when applicable. Each report is internally and externally peer-reviewed.
    [Show full text]
  • Ecosystem Service Benefits Generated by Improved Water Quality from Conservation Practices
    March, 2017 Chapter 2 Ecosystem Service Benefits Generated by Improved Water Quality from Conservation Practices Authors Synthesis Chapter - The Valuation of Ecosystem Services from Farms and Forests: Informing a systematic approach to quantifying benefits of conservation programs Project Co-Chair: L. Wainger, University of Maryland Center for Environmental Science, Solomons, MD, [email protected] Project Co-Chair: D. Ervin, Portland State University, Portland, OR, [email protected] Chapter 1: Assessing Pollinator Habitat Services to Optimize Conservation Programs R. Iovanna, United States Department of Agriculture – Farm Service Agency, Washington, DC, [email protected] A. Ando, University of Illinois, Urbana, IL, [email protected] S. Swinton, Michigan State University, East Lansing, MI, [email protected] J. Kagan, Oregon State/Portland State, Portland, OR, [email protected] D. Hellerstein, United States Department of Agriculture - Economic Research Agriculture, Washington, DC, [email protected] D. Mushet, U.S. Geological Survey, Jamestown, ND, [email protected] C. Otto, U.S. Geological Survey, Jamestown, ND, [email protected] Chapter 2: Ecosystem Service Benefits Generated by Improved Water Quality from Conservation Practices L. Wainger, University of Maryland Center for Environmental Science, Solomons, MD, [email protected] J. Loomis, Colorado State University, Fort Collins, CO, [email protected] R. Johnston, Clark University, Worcester, MA, [email protected] L. Hansen, USDA ERS, United States Department of Agriculture - Economic Research Agriculture, Washington, DC, [email protected] D. Carlisle, United States Geological Survey, Reston, VA, [email protected] D. Lawrence, Blackwooods Group, Washington, DC, [email protected] N. Gollehon, United States Department of Agriculture - Natural Resources Conservation Service, Beltsville, MD, [email protected] L.
    [Show full text]
  • Characterization of the Groundwater Storage Systems of South-Central Chile: an Approach Based on Recession Flow Analysis
    water Article Characterization of the Groundwater Storage Systems of South-Central Chile: An Approach Based on Recession Flow Analysis Víctor Parra 1,2,*, José Luis Arumí 1,2 , Enrique Muñoz 3,4 and Jerónimo Paredes 1 1 Department of Water Resources, Universidad de Concepción, Chillán 3812120, Chile; [email protected] (J.L.A.); [email protected] (J.P.) 2 Centro Fondap CRHIAM, Concepción 4070411, Chile 3 Department of Civil Engineering, Universidad Católica de la Santísima Concepción 4090541, Chile; [email protected] 4 Centro de Investigación en Biodiversidad y Ambientes Sustentables CIBAS, Concepción 4090541, Chile * Correspondence: [email protected]; Tel.: +56-41-234-5355 Received: 16 September 2019; Accepted: 1 November 2019; Published: 7 November 2019 Abstract: Groundwater storage and discharge are important processes that have not yet been sufficiently studied in some parts of Chile. Additionally, in watersheds without snow cover or glaciers, groundwater storage and release are the main sources of minimum flow generation; therefore, improvements are required to characterize this process. This study aimed to use recession flow analysis to link groundwater storage depletion to the predominant geological characteristics of each watershed in order to improve our understanding of the groundwater storage-release process in 24 watersheds in south-central Chile. The results allowed different groundwater storage behaviors associated with different geological characteristics to be identified, making recession flow analysis a valuable tool for improving the representation and conceptualization of this process in order to advance toward better minimum flow predictions. Keywords: geology; recession flow analysis; groundwater storage 1. Introduction Mountain watersheds tend to be dominated by snowmelt or occasionally glacier melt, which are often the main sources of water in adjacent low-lying areas [1].
    [Show full text]
  • Economic Evaluation of Hydrological Ecosystem Services in Mediterranean River Basins Applied to a Case Study in Southern Italy
    water Article Economic Evaluation of Hydrological Ecosystem Services in Mediterranean River Basins Applied to a Case Study in Southern Italy Marcello Mastrorilli 1, Gianfranco Rana 1, Giuseppe Verdiani 2,*, Giuseppe Tedeschi 2, Antonio Fumai 3 and Giovanni Russo 4 ID 1 Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), 70125 Bari, Italy; [email protected] (M.M.); [email protected] (G.R.) 2 Basin Authority of Apulia, 70010 Valenzano, Italy; [email protected] 3 MANZONI Learning (Fire Protection), 70125 Bari, Italy; [email protected] 4 Department of Disaat, University of Bari, 70125 Bari, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-340-461-9902 Received: 21 December 2017; Accepted: 22 February 2018; Published: 26 February 2018 Abstract: Land use affects eco-hydrological processes with consequences for floods and droughts. Changes in land use affect ecosystems and hydrological services. The objective of this study is the analysis of hydrological services through the quantification of water resources, pollutant loads, land retention capacity and soil erosion. On the basis of a quantitative evaluation, the economic values of the ecosystem services are estimated. By assigning an economic value to the natural resources and to the hydraulic system, the hydrological services can be computed at the scale of catchment ecosystem. The proposed methodology was applied to the basin “Bonis” (Calabria Region, Italy). The study analyses four land use scenarios: (i) forest cover with good vegetative status (baseline scenario); (ii) modification of the forest canopy; (iii) variation in forest and cultivated surfaces; (iv) insertion of impermeable areas.
    [Show full text]
  • Quantitative Assessment of Surface Runoff and Base Flow Response to Multiple Factors in Pengchongjian Small Watershed
    Article Quantitative Assessment of Surface Runoff and Base Flow Response to Multiple Factors in Pengchongjian Small Watershed Lei Ouyang 1,2 , Shiyu Liu 1,2,*, Jingping Ye 1,2, Zheng Liu 1,2, Fei Sheng 1,2, Rong Wang 1 and Zhihong Lu 1 1 School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China; [email protected] (L.O.); [email protected] (J.Y.); [email protected] (Z.L.); [email protected] (F.S.); [email protected] (R.W.); [email protected] (Z.L.) 2 Key Laboratory of Poyang Lake Watershed Agricultural Resources and Ecology of Jiangxi Province, Nanchang 330045, China * Correspondence: [email protected]; Tel.: +86-158-7061-1238 Received: 22 July 2018; Accepted: 6 September 2018; Published: 10 September 2018 Abstract: Quantifying the impacts of multiple factors on surface runoff and base flow is essential for understanding the mechanism of hydrological response and local water resources management as well as preventing floods and droughts. Despite previous studies on quantitative impacts of multiple factors on runoff, there is still a need for assessment of the influence of these factors on both surface runoff and base flow in different temporal scales at the watershed level. The main objective of this paper was to quantify the influence of precipitation variation, evapotranspiration (ET) and vegetation restoration on surface runoff and base flow using empirical statistics and slope change ratio of cumulative quantities (SCRCQ) methods in Pengchongjian small watershed (116◦25048”–116◦2707” E, 29◦31044”–29◦32056” N, 2.9 km2), China. The results indicated that, the contribution rates of precipitation variation, ET and vegetation restoration to surface runoff were 42.1%, 28.5%, 29.4% in spring; 45.0%, 37.1%, 17.9% in summer; 30.1%, 29.4%, 40.5% in autumn; 16.7%, 35.1%, 48.2% in winter; and 35.0%, 38.7%, 26.3% in annual scale, respectively.
    [Show full text]
  • EIS Executive Summary
    CONTENTS 1 PROJECT AND PROCESSES — OVERVIEW 1 1.1 The Project 1 1.2 The Proponent 2 1.3 Background to the Project 2 1.4 Project Objectives 3 1.5 EIS Process 4 1.6 Project Approvals 5 1.7 Submissions 6 1.8 Consultation Process 7 1.8.1 Objectives 7 1.8.2 Scope of Community Consultation 8 1.8.3 Consultation Phases and Activities 8 1.8.4 Reporting and evaluation 8 1.8.5 Consultation Results to Date 8 1.9 Sustainability 9 1.9.1 Vision for the Logan River Catchment 9 1.9.2 Goals for Sustainability 10 1.10 Alternative Options Considered 10 1.10.1 Surface Water Supply Alternatives 10 1.10.2 Economic Assessment of Alternatives 11 1.10.3 Cost and Benefits of the Project 11 1.10.4 Do Nothing Option 13 1.11 Project Description 14 1.11.1 Pre-Storage Activities 18 1.11.2 Construction/Materials 18 1.11.3 Construction Timetable/Hours of Operation 19 1.11.4 Workforce and Accommodation 19 1.11.5 Operations 20 1.11.6 Management of Extractions and Releases 20 2 IMPACT ASSESSMENT 21 2.1 Methodology 21 2.2 Environmental Overview 21 2.3 State and Local Government Requirements 21 2.4 Land Use and Tenure 21 2.4.1 Land Tenure 21 Wyaralong Dam – Environmental Impact Statement Executive Summary Page i 2.4.2 Land Use 22 2.4.3 Land Use Controls in Buffer Area 22 2.4.4 Environmental Land Use Changes 22 2.5 Infrastructure 23 2.6 Topography and Geomorphology 23 2.7 Soils and Geology 24 2.8 Landscape Character and Visual Amenity 24 2.9 Land Contamination 24 2.10 Hydrology 25 2.11 Groundwater 25 2.12 Surface Water Quality 26 2.13 Climate, Natural Hazards and Extreme Weather
    [Show full text]