Elsevier First Proof

Total Page:16

File Type:pdf, Size:1020Kb

Elsevier First Proof CLGY 00558 a0005 Trophic Structure E Preisser, University of Massachusetts at Amherst, Amherst, MA, USA ª 2007 Elsevier B.V. All rights reserved. Introduction Further Reading Control of Trophic Structure Energy transfer from producers to higher Factors Affecting Control of Trophic Structure trophic levels s0005 Introduction emphasizes the role(s) played by nutrient limitation and energetic inputs to producers and the subsequent effi- p0005 Trophic structure is defined as the partitioning of biomass ciency of energy transfer between trophic levels in between trophic levels (subsets of an ecological commu- determining the biomass accumulation at each trophic nity that gather energy and nutrients in similar ways, that level. The second category, top-down control, empha- is, producers, carnivores). The forces controlling biomass sizes the importance of predation in producing patterns accumulation at each trophic level have been a central of biomass accumulation that are often at odds with those concern of ecology dating from the early twentieth-cen- predicted byPROOF energy inputs alone. While recognizing the tury work of Elton and Lindeman. While interspecific differences between these two factors, it is also important interactions such as omnivory and intraguild predation to emphasize that both bottom-up and top-down factors can make it difficult to assign many organisms to a single represent extremes along a continuum of importance for trophic level, several broadly defined trophic levels are regulatory control. While ecologists debate the extent nonetheless clearly distinguishable. Primary producers, to which bottom-up versus top-down control influence autotrophic organisms (primarily plants and algae) that trophic structure in particular ecosystems, there is a broad convert light or chemical energy into biomass, make up consensus that both need to be considered when consid- the basal trophic level. Primary consumers, generally ering community dynamics. referred to as herbivores, feed on primary producers. Their consumption of individual producers can range anywhere from a small fraction of the totalFIRST producer Bottom-Up Control s0015 biomass (caterpillars feeding on trees) to the entire organ- Bottom-up control of trophic structure means that the p0015 ism (fish feeding on algae). Secondary consumers kill production of biomass at each trophic level is a function and feed on heterotrophic organisms such as herbivores of energy input into the primary producer trophic level. and/or detritivores. Although secondary consumers are Biomass accumulated by producers then passes to higher referred to generally as predators, this trophic level trophic levels as a function of the between-level transfer includes parasites, parasitoids, and pathogens in addition ER efficiency. The resulting biomass pyramids are generally to carnivores. Secondary carnivores, or top predators, are characterized by abundant producer biomass and sharp organisms that eat carnivores. The most common exam- reductions in each higher trophic level. An important ples of this trophic level occur in aquatic systems, where exception to this pattern occurs in aquatic food webs, piscivorous fish such as tuna or pike eat smaller fish that where ‘inverted biomass pyramids’ can occur as a conse- feed on zooplankton (which, in turn, feed on phytoplank- quence of the extremely short generation time of ton). Finally, detritivores derive sustenance from dead unicellular producers relative to resident herbivores and organic matter emerging from each of the above trophic predators (see the section titled ‘Aquatic versus terrestrial levels. While relatively little attention is paid to this ecosystems’). trophic level, decomposers process a large fraction of net primary productivity (hereafter ‘NPP’) and are inte- Energy transfer to producers gral to nutrient cycling and ecosystem-level processes. s0020 ELSEVI Although a large amount of light energy is potentially p0020 available to producers, only a small fraction of the total is actually converted to producer biomass. Net photosyn- s0010 Control of Trophic Structure thetic efficiency (the percentage of available light energy that becomes biomass) in naturally occurring terrestrial p0010 Factors affecting the partitioning of biomass between and aquatic communities falls between 0.01 and 3%, with trophic levels can be divided into two broad categories. values approaching 10% for intensively managed agricul- The first of these categories, bottom-up control, tural systems. The resulting NPP is critically dependent 1 CLGY 00558 2 General Ecology | Trophic Structure on temperature and affected by water availability in ter- Bottom-up Top-down restrial systems and nutrient levels in aquatic systems. control control s0025 Energy transfer from producers to higher trophic levels biomass p0025 The overall transfer efficiency of energy between trophic Top predator levels is a function of three separate processes. The first of these, consumption efficiency, is the percentage of avail- able productivity at a lower trophic level that is eaten by a biomass Predator higher trophic level. Grazers in temperate lakes, for example, remove nearly four times the fraction of primary productivity eaten by terrestrial grazers. The second pro- cess, the consumer’s assimilation efficiency, determines biomass what fraction of the biomass ingested by the consumer is Herbivore converted to energy. Finally, the consumer’s production efficiency determines the percentage of assimilated energy that yields new biomass. Taking all three pro- biomass cesses into account, the overall between-level transfer Producer efficiency ranges from 2 to 24%. PROOFTime Time p0030 System-wide patterns of consumer–resource transfer Figure 1 Left panel: Bottom-up control of a food chain. As f0005 efficiency are also affected by ecological stoichiometry, producer biomass (gray box) increases over time, all other the ‘match’ between the nutrient needs of consumers and trophic levels show correlated increases in biomass. Right panel: the nutrient supply of their resources. Transfer efficien- Top-down control of a food chain. As top predator biomass (gray box) increases over time, biomass in the trophic levels below cies are highest when consumers feed on resources whose either increase (herbivores) or decrease (predators and nutrient ratios are similar to their own, and decrease producers) in response. sharply when they feed on resources with dissimilar ratios. Consumer–resource nutrient ratios in aquatic sys- tems are more closely matched than in terrestrial systems, The ‘green world’ hypothesis s0040 and in predator–herbivore versus herbivore–producer The concept of top-down control first gained widespread p0045 interactions. These facts have been invoked toFIRST explain attention as a result of the ‘green world’ hypothesis devel- why low transfer efficiencies are generally associated with oped by Hairston, Smith, and Slobodkin (hereafter ‘HSS’) in herbivore–producer interactions and occur in terrestrial 1960. In brief, HSS posited that the relative rarity of natural systems, while higher transfer efficiencies are character- disasters and obvious abundance of plant life implied that the istic of predator–prey interactions and occur in aquatic producer trophic level was generally limited by competition systems. for light, nutrients, space, and other resources. HSS further ER reasoned that the ‘green world’ around us is prima facie s0030 Patterns of biomass accumulation evidence that herbivores do not limit plant abundance; if p0035 As NPP and/or transfer efficiency increases, bottom-up they did, herbivores would be far more common and plants control predicts an increasing number of trophic levels as far less. Given that herbivores seem surrounded by more well as an increase in biomass at each trophic level. As food than they can eat, it seems unlikely that resource producer biomass changes over time, the effect ‘trickles competition limits them; HSS argued that predators are up’ to produce correlated changes in each of the higher responsible for suppressing herbivore abundance below the AU2 trophic levels (Figure 1, left panel). level at which they can regulate plant biomass. Predators, in turn, are often territorial and wide-ranging in their search for food; this implies that they are self-limited by competition for their herbivore prey. Finally, the fact that we are not sur- s0035 Top-DownELSEVI Control rounded by masses of decaying matter suggests that p0040 Top-down control means that predation by higher decomposers quickly and effectively exploit virtually all of trophic levels affect the accumulation of biomass at their food resources; as a result, this trophic level is likely lower trophic levels. Top-down control does not negate self-limited as well. While numerous researchers have sub- the importance of energy input into the basal trophic sequently identified potential flaws, limitations, and level; however, it suggests that biomass accumulation at inconsistencies in the HSS hypothesis, its simplicity, clarity, any one trophic level depends on the intensity of preda- and intuitive logic catalyzed research into the potentially far- tion from the above trophic level. reaching consequences of trophic interactions. CLGY 00558 General Ecology | Trophic Structure 3 A B Predator Top predator – (competition) + Herbivore – Predator Predator Producer (competition) (predation) Figure 3 A trophic cascade. Predators suppress herbivores f0015 (‘À’ arrow), which suppress producers
Recommended publications
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • As an Approach to the Cretaceous–Palaeogene Mass Extinction Event F
    Geobiology (2009), 7, 533–543 DOI: 10.1111/j.1472-4669.2009.00213.x The environmental disaster of Aznalco´llar (southern Spain) as an approach to the Cretaceous–Palaeogene mass extinction event F. J. RODRI´ GUEZ-TOVAR1 ANDF.J.MARTI´ N-PEINADO2 1Departamento de Estratigrafı´a y Paleontologı´a, Universidad de Granada, Granada, Spain 2Departamento de Edafologı´a, Universidad de Granada, Granada, Spain ABSTRACT Biotic recovery after the Cretaceous–Palaeogene (K–Pg) impact is one unsolved question concerning this mass extinction event. To evaluate the incidence of the K–Pg event on biota, and the subsequent recovery, a recent environmental disaster has been analysed. Areas affected by the contamination disaster of Azna´ lcollar (province of Sevilla, southern Spain) in April 1998 were studied and compared with the K–Pg event. Several similarities (the sudden impact, the high levels of toxic components, especially in the upper thin lamina and the incidence on biota) and differences (the time of recovery and the geographical extension) are recognized. An in-depth geochemical analysis of the soils reveals their acidity (between 1.83 and 2.11) and the high concentration ) of pollutant elements, locally higher than in the K–Pg boundary layer: values up to 7.0 mg kg 1 for Hg, ) ) ) ) 2030.7 mg kg 1 for As, 8629.0 mg kg 1 for Pb, 86.8 mg kg 1 for Tl, 1040.7 mg kg 1 for Sb and 93.3– 492.7 p.p.b. for Ir. However, less than 10 years after the phenomenon, a rapid initial recovery in biota colonizing the contaminated, ‘unfavourable’, substrate is registered.
    [Show full text]
  • Regime Shifts Between Macrophytes and Phytoplankton – Concepts Beyond Shallow Lakes, Unravelling Stabilizing Mechanisms and Practical Consequences
    Limnetica, 29 (2): x-xx (2011) Limnetica, 34 (2): 467-480 (2015). DOI: 10.23818/limn.34.35 c Asociación Ibérica de Limnología, Madrid. Spain. ISSN: 0213-8409 Regime shifts between macrophytes and phytoplankton – concepts beyond shallow lakes, unravelling stabilizing mechanisms and practical consequences Sabine Hilt∗ Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany. ∗ Corresponding author: [email protected] 2 Received: 04/11/2014 Accepted: 11/06/2015 ABSTRACT Regime shifts between macrophytes and phytoplankton – concepts beyond shallow lakes, unravelling stabilizing mechanisms and practical consequences Feedback mechanisms between macrophytes and water clarity resulting in the occurrence of alternative stable states have been described in a theoretical concept for shallow lakes. Here, I review recent studies applying the concept to other freshwater systems, unravelling stabilizing mechanisms and discussing consequences of regime shifts. Recent modelling studies predict that abrupt changes between clear and turbid water states can also occur in lowland rivers, both in time and in space. These findings were supported by long-term data from rivers in Spain and Germany. A deep lake model revealed that submerged macrophytes may also significantly reduce phytoplankton biomass by 50-15 % in 100-11 m deep and oligotrophic lakes. Some of the mechanisms stabilizing clear-water conditions are still far from fully understood. Available data suggest that the macrophyte community composition affects number and type of mechanisms stabilizing clear-water conditions. Allelopathic effects of macrophytes on phytoplankton are no longer doubted, however, bacterial colonization of macrophytes and phytoplankton, phytoplankton interactions, local adaptations and strain-specific sensitivities have been found to modulate these interactions.
    [Show full text]
  • The Value of Kol River Salmon Refuge's Ecosystem Services
    REPORT The Value of Kol River Salmon Refuge’s Ecosystem Services Research conducted by University of Vermont’s Department of Community Development & Applied Economics and Gund Institute for Ecological Economics Authored by: Charles Kerchner, Roelof Boumans, and William Boykin-Morris Date Report: November 23, 2008 Prepared for and funded by: Wild Salmon Center List of Tables and Figures………………………………………………………………………………...……………….iii Executive Summary….......………………………………………………………………………………..………………….iv Chapter 1: Introduction………………………………………………………………………………………………………1 1.1 Research Objective.……………………………………………………………………………………2 1.2 Background…………………………………………………………………..………..2 Chapter 2: Ecosystem Goods, Ecosystem Services, and Market Failure………………...…………4 2.1 Why Is This Important?…………………………………………….……………………………….5 2.2 Valuation Typology……………………………………………………………………...…………….6 Chapter 3: Methods 3.1 Step 1: Ecosystem Service Quantification in KOL RAV Model……...…...…10 3.1.1 Metadata: GIS Data Used for Land Use Land Cover...…………………....11 3.2 Ecosystem Service Valuatin in KOL RAV Model……………………………...……13 3.2.1 Benefits Transfer………………………………..………………………………………......…13 3.2.2 Benefits Transfer – Meta-analysis………………………………………...…………14 3.2.3 Site Specific Valuation for Water Surface ……………………………….…….18 3.3 Step 3 & 4: Kol Refuge Ecosystem Service Evaluation Model (KRESEM)………………………..………………...23 3.3.1 Step 3: GIS Compnonent of KRESEM…………………………………..……….24 3.3.2 Step 4: Development of SIMILE Interface and Land Cover Change Scenarios………………………………….……...25 Chapter 4: Results………………………………………………………………………………………………………...…..26
    [Show full text]
  • Variation in Environmental Conditions in a Subtidal Prey Refuge: Effects of Salinity Stress, Food Availability and Predation on Mussels in a Fjord System
    Vol. 422: 201–210, 2011 MARINE ECOLOGY PROGRESS SERIES Published January 31 doi: 10.3354/meps08911 Mar Ecol Prog Ser Variation in environmental conditions in a subtidal prey refuge: effects of salinity stress, food availability and predation on mussels in a fjord system Stephen R. Wing1,*, James J. Leichter2 1Department of Marine Science, 310 Castle Street, University of Otago, Dunedin 9054, New Zealand 2Scripps Institution of Oceanography, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA ABSTRACT: Prey refuges are fundamental structural features in communities. We investigated vari- ability in environmental conditions within a subtidal prey refuge for the blue mussel Mytilus edulis galloprovincialis formed by the persistent low-salinity layer (LSL) in Doubtful Sound, New Zealand. Multi-year observations and fine-scale oceanographic surveys along the axis of Doubtful Sound show strong spatial gradients in salinity, temperature, chlorophyll a (chl a) and nitrate concentrations. Mean surface salinity ranged from ~5 in the inner fjord zone to 15 in the mid-fjord, and 25 to 30 in the entrance zone. A marked subsurface maximum in chl a was observed below the LSL at 3 to 7 m depth. Adult blue mussels were confined to the LSL with a sharp decline in abundance from the entrance to the inner regions of the fjord. In contrast, mussel recruitment was observed both within and below the LSL to 10 m depth, with highest recruitment in the mid-fjord zone at 6 m depth. To test whether patterns in growth and survival in the absence of predation were coincident with food sup- ply and salinity stress, we transplanted mussels in predator exclusion cages at depths of 2, 4, 6, and 8 m within inner, mid-, and entrance fjord zones and measured growth over 213 d.
    [Show full text]
  • Zooplankton Diel Vertical Migration During Antarctic Summer
    Deep–Sea Research I 162 (2020) 103324 Contents lists available at ScienceDirect Deep-Sea Research Part I journal homepage: http://www.elsevier.com/locate/dsri Zooplankton diel vertical migration during Antarctic summer John A. Conroy a,*, Deborah K. Steinberg a, Patricia S. Thibodeau a,1, Oscar Schofield b a Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, 23062, USA b Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, 08901, USA ARTICLE INFO ABSTRACT Keywords: Zooplankton diel vertical migration (DVM) during summer in the polar oceans is presumed to be dampened due Southern Ocean to near continuous daylight. We analyzed zooplankton diel vertical distribution patterns in a wide range of taxa Mesopelagic zone along the Western Antarctic Peninsula (WAP) to assess if DVM occurs, and if so, what environmental controls Copepod modulate DVM in the austral summer. Zooplankton were collected during January and February in paired day- Krill night, depth-stratifiedtows through the mesopelagic zone along the WAP from 2009-2017, as well as in day and Salp Pteropod night epipelagic net tows from 1993-2017. The copepod Metridia gerlachei, salp Salpa thompsoni, pteropod Limacina helicina antarctica, and ostracods consistently conducted DVM between the mesopelagic and epipelagic zones. Migration distance for M. gerlachei and ostracods decreased as photoperiod increased from 17 to 22 h daylight. The copepods Calanoides acutus and Rhincalanus gigas, as well as euphausiids Thysanoessa macrura and Euphausia crystallorophias, conducted shallow (mostly within the epipelagic zone) DVMs into the upper 50 m at night.
    [Show full text]
  • Diel Horizontal Migration of Zooplankton: Costs and Benefits Of
    Freshwater Biology (2002) 47, 343–365 FRESHWATER BIOLOGY SPECIAL REVIEW Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral R. L. BURKS,* D. M. LODGE,* E. JEPPESEN† and T. L. LAURIDSEN† *Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, U.S.A. †Department of Lake and Estuarine Ecology, National Environmental Research Institute, Vejlsøvej, Silkeborg, Denmark SUMMARY 1. In some shallow lakes, Daphnia and other important pelagic consumers of phyto- plankton undergo diel horizontal migration (DHM) into macrophytes or other structures in the littoral zone. Some authors have suggested that DHM reduces predation by fishes on Daphnia and other cladocerans, resulting in a lower phytoplankton biomass in shallow lakes than would occur without DHM. The costs and benefits of DHM, and its potential implications in biomanipulation, are relatively unknown, however. 2. In this review, we compare studies on diel vertical migration (DVM) to assess factors potentially influencing DHM (e.g. predators, food, light, temperature, dissolved oxygen, pH). We first provide examples of DHM and examine avoidance by Daphnia of both planktivorous (PL) fishes and predacious invertebrates. 3. We argue that DHM should be favoured when the abundance of macrophytes is high (which reduces planktivory) and the abundance of piscivores in the littoral is sufficient to reduce planktivores. Food in the littoral zone may favour DHM by daphnids, but the quality of these resources relative to pelagic phytoplankton is largely unknown. 4. We suggest that abiotic conditions, such as light, temperature, dissolved oxygen and pH, are less likely to influence DHM than DVM because weaker gradients of these conditions occur horizontally in shallow lakes relative to vertical gradients in deep lakes.
    [Show full text]
  • Shallow Water As a Refuge Habitat for Fish and Crustaceans in Non-Vegetated Estuaries: an Example from Chesapeake Bay
    MARINE ECOLOGY PROGRESS SERIES Vol. 99: 1-16, 1993 Published September 2 Mar. Ecol. Prog. Ser. l Shallow water as a refuge habitat for fish and crustaceans in non-vegetated estuaries: an example from Chesapeake Bay Gregory M. Ruiz l, Anson H. Hines l, Martin H. posey2 'Smithsonian Environmental Research Center, PO Box 28, Edgewater, Maryland 21037, USA 'Department of Biological Sciences, University of North Carolina at Wilmington, Wilmington, North Carolina 28403. USA ABSTRACT. Abundances and size-frequency distributions of common epibenth~cflsh and crustaceans were compared among 3 depth zones (1-35, 35-70, 71-95 cm) of the Rhode River, a subestuary of Chesapeake Bay, USA. In the absence of submerged aquatic vegetation (SAV),inter- and intraspccific size segregation occurred by depth from May to October, 1989-1992. Small species (Palaemonetes pugjo, Crangon septernspjnosa, Fundulus heteroclitus, F majaljs, Rhithropanope~lsharrisii, Apeltes quadracus, Gobiosorna boscj) were most abundant at water depths <70 cm. Furthermore, the propor- tion of small individuals decreased significantly with depth for 7 of 8 species, with C. septemsp~nosa being the exception, exhibiting no size change with increasing depth. These distributional patterns were related to depth-dependent predalion risk. Large species (Callinectes sap~dus,Leiostomus xan- thurus, and Micropogonias undulatus), known predators of some of the small species, were often most abundant in deep water (>70 cm). In field experiments, mortality of tethered P pugio (30 to 35 mm), small E heteroclitus (40 to 50 mm), and small C. sapjdus (30 to 70 mm) increased significantly with depth. Wc hypothesize that predation risk was size-dependent, creating the observed intra- and inter- specific size differences among depth zones.
    [Show full text]
  • Articles and Detrital Matter
    Biogeosciences, 7, 2851–2899, 2010 www.biogeosciences.net/7/2851/2010/ Biogeosciences doi:10.5194/bg-7-2851-2010 © Author(s) 2010. CC Attribution 3.0 License. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem E. Ramirez-Llodra1, A. Brandt2, R. Danovaro3, B. De Mol4, E. Escobar5, C. R. German6, L. A. Levin7, P. Martinez Arbizu8, L. Menot9, P. Buhl-Mortensen10, B. E. Narayanaswamy11, C. R. Smith12, D. P. Tittensor13, P. A. Tyler14, A. Vanreusel15, and M. Vecchione16 1Institut de Ciencies` del Mar, CSIC. Passeig Mar´ıtim de la Barceloneta 37-49, 08003 Barcelona, Spain 2Biocentrum Grindel and Zoological Museum, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany 3Department of Marine Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy 4GRC Geociencies` Marines, Parc Cient´ıfic de Barcelona, Universitat de Barcelona, Adolf Florensa 8, 08028 Barcelona, Spain 5Universidad Nacional Autonoma´ de Mexico,´ Instituto de Ciencias del Mar y Limnolog´ıa, A.P. 70-305 Ciudad Universitaria, 04510 Mexico,` Mexico´ 6Woods Hole Oceanographic Institution, MS #24, Woods Hole, MA 02543, USA 7Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA 8Deutsches Zentrum fur¨ Marine Biodiversitatsforschung,¨ Sudstrand¨ 44, 26382 Wilhelmshaven, Germany 9Ifremer Brest, DEEP/LEP, BP 70, 29280 Plouzane, France 10Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway 11Scottish Association for Marine Science, Scottish Marine Institute, Oban,
    [Show full text]
  • We Would Like to Thank the Reviewer for the Strongly Supportive Comments Towards Our Study As Well As the Thoughtful and Constructive Points
    We would like to thank the reviewer for the strongly supportive comments towards our study as well as the thoughtful and constructive points. The latter helped us to improve the description of our model in the method section and Appendix of our manuscript. Please find below our reply to each reviewer’s comments (highlighted in blue). 5 Referee 1 The authors present an impressive effort in developing and analysing the first trait-based model of planktonic foraminifera based on an existing size-based plankton model. As observations on 10 foraminifera traits and trade-offs related to calcification are scarce, they use their model results to estimate costs and benefits by selecting plausible simulations from a large range of sensitivity simulations. They employ two different model trophic structures and reveal distinct effects of temperature and resource competition on prolocular and adult stages. While the results are relevant, interesting and stimulate further research, the presentation of the model and the methods needs to 15 be clarified to allow the reader to better assess the predictive capability of the model and the generality of the model results. In particular, I would appreciate more details and clarification about the implications and effects of the grazing parameterisation described in Appendix B (see the following questions): 20 1. Could you please supply a plot of the different functional responses (with and without prey refuge) employed? We have added in the Appendix A a plot showing the different grazing rate with and without a prey refuge (Figure A1, also shown below as Figure 1) as well as including a better description of the prey 25 refuge term (l945-979).
    [Show full text]
  • DEEP SEA CORALS: out of Sight, but No Longer out of Mind “At Fifteen Fathoms Depth
    protecting the world’s oceans DEEP SEA CORALS: out of sight, but no longer out of mind “At fifteen fathoms depth... ... It was the coral kingdom. The light produced a thousand charming varieties, playing in the midst of the branches that were so vividly coloured. I seemed to see the membraneous and cylindrical tubes tremble beneath the undulation of the waters. I was tempted to gather their fresh petals, ornamented with delicate tentacles, some just blown, the others budding, while a small fi sh, swimming swiftly, touched them slightly, like fl ights of birds.” - Jules Verne, 20,000 Leagues Under the Sea (1870) OUT OF SIGHT, BUT NO LONGER OUT OF MIND discovery: deep sea corals Fact, not fi ction—corals really do exist, and fl our- aged deep sea corals are not likely to recover for ish, hundreds and even thousands of feet below hundreds of years, if at all. 10, 11 the ocean’s surface. In the last few decades, cam- While many activities can harm deep sea cor- eras have recorded beautiful gardens of deep sea als, including oil exploration and seabed mining, coral off the coasts of North America, Europe, the biggest human threat is destructive fi shing. Australia and New Zealand—even deeper than Bottom trawling in particular has pulverized Jules Verne imagined, and every bit as breath- these communities and ripped many of them taking. Unlike shallow water coral communities, from the seabed.10, 13, 38 Some forty percent of which are the subject of many nature fi lms, deep the world’s trawling grounds are now deeper sea corals are unfamiliar to the public and even than the edge of the continental shelf14—on the to many marine scientists.
    [Show full text]
  • Diel Vertical Migration and Spatial Overlap Between Fish Larvae And
    http://dx.doi.org/10.1590/1519-6984.13213 Original Article Diel vertical migration and spatial overlap between fish larvae and zooplankton in two tropical lakes, Brazil Picapedra, PHS.a*, Lansac-Tôha, FA.a,b and Bialetzki, A.b aPrograma de Pós-Graduação em Biologia Comparada, Universidade Estadual de Maringá – UEM, Av. Colombo, 5790, CEP 87020-900, Maringá, PR, Brazil bPrograma de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Núcleo de Pesquisas em Limnologia Ictiologia e Aquicultura, Departamento de Biologia, Universidade Estadual de Maringá– UEM, Av. Colombo, 5790, CEP 87020-900, Maringá, PR, Brazil *e-mail: [email protected] Received: July 25, 2013 – Accepted: February 6, 2014 – Distributed: May 31, 2015 (With 6 figures) Abstract The effect of fish larvae on the diel vertical migration of the zooplankton community was investigated in two tropical lakes, Finado Raimundo and Pintado lakes, Mato Grosso do Sul State, Brazil. Nocturnal and diurnal samplings were conducted in the limnetic region of each lake for 10 consecutive months from April 2008 to January 2009. The zooplankton community presented a wide range of responses to the predation pressure exerted by fish larvae in both environments, while fish larvae showed a typical pattern of normal diel vertical migration. Our results also demonstrated that the diel vertical migration is an important behaviour to avoid predation, since it reduces the spatial overlap between prey and potential predator, thus supporting the hypothesis that vertical migration is a defence mechanism against predation. Keywords: diel vertical migration, spatial overlap, fish larvae, zooplankton, ecological interactions. Migração vertical diária e sobreposição espacial entre larvas de peixes e zooplâncton em dois lagos tropicais, Brasil Resumo O efeito de larvas de peixes sobre a distribuição vertical dia-noite da comunidade zooplanctônica foi investigada em duas lagoas tropicais, lagoa Finado Raimundo e Pintado, Mato Grosso do Sul, Brasil.
    [Show full text]