Propellant Components Gun Propulsion Cartridge Actuated Devices Propellant Actuated Devices Rockets and Missile Systems Explosives and Warheads
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Explosives Recognition and Awareness in Court Security
10/29/2015 Explosives recognition and awareness in Court Security INTRODUCTION Course Objectives Familiarize court security personnel with explosives and their illicit uses Familiarize court security personnel with methods of prevention and detection of explosive devices in a court security setting. Familiarize court security personnel with methods of dealing with potential or actual explosive devices as first responders. 1 10/29/2015 The FBI Bomb Data Center reports that 70% of all terrorist incidents involve the use of incendiary agents and explosives. We know that there have been attacks carried out against government facilities in the U.S. including court buildings using explosives. This is why it is important for court security personnel to be familiar with explosives and their use. This course is not an “EOD”, “TACTICS”or “BOMB TECH”course. Theintentofthiscourseistoprovidebasic knowledge of the relationship between explosives and court security functions. Officers should always rely on their own training, department policy and common sense when dealing with explosives. HISTORY OF EXPLOSIVES 2 10/29/2015 Beginnings Gunpowder first appeared in China around the 1st century AD and was used for fireworks. The first evidence of use in weapons appeared in Europe around the 13th century when projectiles were propelled through tubes. The first high explosive, “fulminating gold” was first mentioned in writings by German alchemist Sebald Schwaertzer in 1585. Italian chemist Asconio Sobrero discovered nitroglycerin in 1846 but the compound was very unstable and difficult to work with. Alfred Nobel, Sweden Advances Swedish scientist Albert Nobel invents a method of stabilizing nitroglycerin in 1866 and patents dynamite in 1867. -
Types of Propellant
Solid propellant In ballistics and pyrotechnics, a propellant is a generic name for chemicals used for propelling projectiles from guns and other firearms. Propellants are usually made from low explosive materials, but may include high explosive chemical ingredients that are diluted and burned in a controlled way (deflagration) rather than detonation. The controlled burning of the propellant composition usually produces thrust by gas pressure and can accelerate a projectile, rocket, or other vehicle. In this sense, common or well known propellants include, for firearms, artillery and solid propellant rockets: Gun propellants, such as: Gunpowder (black powder) Nitrocellulose-based powders Cordite Ballistite Smokeless powders Composite propellants made from a solid oxidizer such as ammonium perchlorate or ammonium nitrate, a rubber such as HTPB, or PBAN (may be replaced by energetic polymers such as polyglycidyl nitrate or polyvinyl nitrate for extra energy) , optional high explosive fuels (again, for extra energy) such as RDX or nitroglycerin, and usually a powdered metal fuel such as aluminum. Some amateur propellants use potassium nitrate, combined with sugar, epoxy, or other fuels / binder compounds. Potassium perchlorate has been used as an oxidizer, paired with asphalt, epoxy, and other binders. Propellants that explode in operation are of little practical use currently, although there have been experiments with Pulse Detonation Engines. Grain Propellants are used in forms called grains. A grain is any individual particle of propellant regardless of the size or shape. The shape and size of a propellant grain determines the burn time, amount of gas and rate produced from the burning propellant and consequently thrust vs time profile. -
Alfred Nobel: Inventor, Entrepreneur and Industrialist (1833–1896)
A TRIBUTE TO THE MEMORY OF ALFRED NOBEL: INVENTOR, ENTREPRENEUR AND INDUSTRIALIST (1833–1896) Cover illustration: It is significant that the only existing portrait of Alfred Nobel was painted posthumously. Nobel, shy and busy as he was, had neither the inclination nor the time to sit for a portrait. Oil painting by Emil Österman 1915. (The Nobel Foundation) BY SVA N T E LINDQVIST ROYAL SWEDISH ACADEMY OF ENGINEERING SCIENCES (IVA) IVA-M 335 • ISSN 1102-8254 • ISBN 91-7082-681-1 A TRIBUTE TO THE MEMORY OF A LFRED NOBEL: INVENTOR, ENTREPRENEUR AND INDUSTRIALIST (1833–1896) 1 PRESENTED AT THE 2001 ANNUAL MEETING OF THE ROYAL SWEDISH ACADEMY OF ENGINEERING SCIENCES BY SVANTE LINDQVIST The Royal Swedish Academy of Engineering Sciences (IVA) is an independent, learned society whose main objectives are to promote the engineering and economic sciences, and to further the development of commerce and industry. In cooperation with the business 2 and academic communities, the Academy initiates and proposes measures that will strengthen Sweden’s industrial skills base and competitiveness. For further information, please visit IVA’s web site: www.iva.se. Published by the Royal Swedish Academy of Engineering Sciences (IVA) and Svante Lindqvist, 2001 IVA, P.O. Box 5073, SE-102 42 Stockholm, Sweden Telephone: Int +46 8 791 29 00 Fax: Int +46 8 611 56 23 E-mail: [email protected] Internet: www.iva.se IVA-M 335 • ISSN 1102-8254 • ISBN 91-7082-681-1 Translation by Bernard Vowles, 2001 Layout and production by Hans Melcherson, Tryckfaktorn AB, Stockholm, Sweden Printed in Sweden by OH-Tryck, Stockholm, Sweden, 2001 P REFACE Each year the Royal Swedish Academy of Engineering Sciences (IVA) produces a book- let commemorating a person whose scientific, engineering, economic or industrial achieve- ments were of significant benefit to the society of his or her day. -
Solid Propellants
SOLID PROPELLANTS 1, 2, B. P. MASON, *C.M.ROLAND * 1 DEPARTMENT OF PHYSICS,NAVAL POSTGRADUATE SCHOOL,MONTEREY, CA 93943-5216 2 CHEMISTRY DIVISION,CODE 6105, NAVAL RESEARCH LABORATORY,WASHINGTON, DC 20375-5342 RUBBER CHEMISTRY AND TECHNOLOGY, Vol. 92, No. 1, pp. 1–24 (2019) ABSTRACT Solid propellants are energetic materials used to launch and propel rockets and missiles. Although their history dates to the use of black powder more than two millennia ago, greater performance demands and the need for ‘‘insensitive munitions’’ that are resistant to accidental ignition have driven much research and development over the past half-century. The focus of this review is the material aspects of propellants, rather than their performance, with an emphasis on the polymers that serve as binders for oxidizer particles and as fuel for composite propellants. The prevalent modern binders are discussed along with a discussion of the limitations of state-of-the-art modeling of composite motors. [doi:10.5254/rct.19.80456] CONTENTS I. Introduction . ......................................... 1 II. Background . ......................................... 3 III. Internal Aerodynamics of SRMs . ........................... 4 IV. Performance of Solid Rocket Propellants ........................... 5 V. Polymeric Binders . ......................................... 7 A. Nitrocellulose . ......................................... 7 B. Asphalt . ......................................... 8 C. Polysulfides . ......................................... 8 D. Plastisols . ........................................ -
EPA Handbook on the Management of Ordnance and Explosives At
Handbook on the Management of Ordnance and Explosives at Closed, Transferring, and Transferred Ranges and Other Sites INTERIM FINAL February 2002 This page intentionally left blank. Disclaimer This handbook provides guidance to EPA staff. The document does not substitute for EPA’s statutes or regulations, nor is it a regulation itself. Thus, it cannot impose legally binding requirements on EPA, States, or the regulated community, and may not apply to a particular situation based upon the circumstances. This handbook is an Interim Final document and allows for future revisions as applicable. This page intentionally left blank. 1 TABLE OF CONTENTS 2 GLOSSARY OF TERMS ...................................................... ix 3 ACRONYMS ............................................................... xix 4 1.0 INTRODUCTION ..................................................... 1-1 5 1.1 Overview...................................................... 1-1 6 1.2 The Common Nomenclature ....................................... 1-2 7 1.3 Organization of This Handbook .................................... 1-4 8 2.0 REGULATORY OVERVIEW ........................................... 2-1 9 2.1 Regulatory Overview............................................. 2-2 10 2.1.1 Defense Environmental Restoration Program .................... 2-2 11 2.1.2 CERCLA ................................................ 2-3 12 2.1.3 CERCLA Section 120 ...................................... 2-6 13 2.1.4 Resource Conservation and Recovery Act (RCRA) ............... 2-6 14 2.1.5 -
Alfred Bernhard Nobel the Founder of the Great Global Awards
GENERAL ARTICLE Alfred Bernhard Nobel The Founder of the Great Global Awards Gopalpur Nagendrappa Alfred Nobel was born in Sweden, but lived in many countries in Europe at different points of time. He went through many ups and downs during his life. He invented dynamite, a controllable explosive, which greatly enhanced the pace of industrialization by accelerating the process of construction of roads, railways, canals, bridges, tunnels, dams and other G Nagendrappa was a structures, and the digging of mines. His business swelled and Professor of Organic spread to many parts of the globe. He braved many adverse Chemistry at Bangalore University, and Head of situations including poor health and frequent factory explo- the Department of sions, one of which took the life of his young brother, hostilities Medicinal Chemistry, Sri and criticisms. At the same time he earned a huge fortune. He Ramachandra (Medical) set aside most of his wealth to institute awards, now known as University, Chennai. He is currently in Jain Univer- Nobel Prizes. Nobel was not only a prolific inventor (with 355 sity, Bangalore. He patents), but also was endowed with literary talent. continues to teach and do research. His work is in Every construction work, be it a bridge, building, dam, tunnel or the area of organosilicon canal or digging a mine or quarrying stone, needs blasting of chemistry, synthetic and rocks at some stage. For all these activities dynamite is being used mechanistic organic chemistry, and clay- since a century and a half. Even today it is widely used in mining, catalysed organic reactions quarrying and construction works. -
Modernity, Capitalism, and War: Toward a Sociology of War in the Nineteenth Century, 1815-1914
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2010 Modernity, Capitalism, and War: Toward a Sociology of War in the Nineteenth Century, 1815-1914 Eric Royal Lybeck University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the European History Commons, International Relations Commons, Military History Commons, Politics and Social Change Commons, and the Theory, Knowledge and Science Commons Recommended Citation Lybeck, Eric Royal, "Modernity, Capitalism, and War: Toward a Sociology of War in the Nineteenth Century, 1815-1914. " Master's Thesis, University of Tennessee, 2010. https://trace.tennessee.edu/utk_gradthes/728 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Eric Royal Lybeck entitled "Modernity, Capitalism, and War: Toward a Sociology of War in the Nineteenth Century, 1815-1914." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Arts, with a major in Sociology. Harry F. Dahms, Major Professor We have read this thesis and recommend -
Gunshot Wounds: a Review of Ballistics, Bullets, Weapons, and Myths
REVIEW ARTICLE Gunshot wounds: A review of ballistics, bullets, weapons, and myths Peter M. Rhee, MD, MPH, Ernest E. Moore, MD, Bellal Joseph, MD, Andrew Tang, MD, Viraj Pandit, MD, and Gary Vercruysse, MD, Tucson, Arizona n the United States, someone experiences a gunshot wound in the call for reviving and funding research on gun violence Ievery 4 minutes 44 seconds, and a person dies as a result each and inadequate recognition and treatment of mental illness that 16 minutes. Annually, this means that approximately 111,000 warrants federal and state tax support.7,8 As health care pro- Americans are shot and 33,800 die as a result of these injuries, viders for trauma care, we have witnessed the ravages of gun- which equates to 93 deaths caused by firearms every day.1,2 In related violence and, thus, should become proactive in the contrast, the war in Iraq and Afghanistan has resulted in less ongoing national debate as it is our duty. than 200 deaths per year from gunshot wounds during the The numbers of gunshot wounds are increasing in the height of the conflict (Table 1). Gunshot wound injuries are a United States, although the gun-related homicide rates remain preventable epidemic in the United States. This silent epidemic relatively stable.9 Guns are ubiquitous in the United States, and is largely deaf to the American public because we are so ac- it is known that where there are guns, there will be gunshot customed to these injuries that they rarely make the news. Gun wounds.10,11 In other countries, it has been shown that gun law violence leading to homicide may get some attention, but an reforms were associated with a decrease in the numbers of mass even greater toll is placed on the survivors who must live with shootings and firearm deaths.12Y14 Canada, with their strict the loss of loved ones or are burdened by the costs associated handgun control, has one-third fewer gunshot wounds than the with the temporary or permanent disability caused by these United States. -
A Propellant Is a Low Explosive That Because of Its Regularity of Burning Produces a Large Volume of Gas with the Evolution of Heat
A propellant is a low explosive that because of its regularity of burning produces a large volume of gas with the evolution of heat. Shown below are some of the standard propellants used by military systems throughout the world. If you know of any more let me know and I will add them to the table. PROPELLANT CONSTITUENTS ALBANITE (DUPONT) 19.5% DINA 20% NC 55% NITROGUANADINE 4% DIBUTYLPHTHALATE 1% CENTRALITE No. 1 + POT SULPHATE + Pb. ASN SOLVENTLESS 36.25% NG 50% NC 5.75% CARBAMITE 8% DIBUTYLPHTHALATE BALLISTITE (USA) SAA 60% NC (13.25% N) 39% NG 1% DIPHENYLAMINE COATED WITH GRAPHITE BALLISTITE A 39.5% NG 60.5% NC BALLISTITE B16 38% NG 60% NC 1.5% POTASSIUM NITRATE .6% GRAPHITE .5% CARBAMITE BENITE (USA) 40% NC 44.3% POTASSIUM NITRATE 6.3% SULPHUR 9.4% CHARCOAL .5% ETHYL CENTRALITE BULLSEYE (USA) SAA 59.6% NC (13.25% N) 40% NG .4% DIPHENYLAMINE COATED WITH GRAPHITE CARBINE BALL POWDER (USA) 89.3% NC (13.2% N) 9% NG .15% SODIUM SULPHATE .65% CALCIUM CARBONATE .9% DIPHENYLAMINE COMPOSITE PROPELLANT 40.7% AMMONIUM PICRATE (USA) 49.8% POTASSIUM NITRATE ROCKET 4.5% ETHYL CELLULOSE 4.5% CHLORINATED WAX .5% CALCIUM STEARATE CORDITE A 25.5% NG 56.5% NC 4.5% CARBAMITE 3.5% MINERAL JELLY CORDITE AN 25.5% NG 56.5% NC 4.5% CARBAMITE .7% POTASSIUM NITRATE 3.5% MINERAL JELLY CORDITE CDT 30% NG 65% NC .5% CARBAMITE 4.5% MINERAL JELLY CORDITE HSC 47% NG 49.5% NC 3.5% CARBAMITE CORDITE MC 30% NG 65% NC 5% "CRACKED" MINERAL JELLY CORDITE MD 30% NG 65% NC 5% MINERAL JELLY CORDITE MK 1 58% NITROGLYCERENE 17% NITROCELLULOSE 5% MINERAL JELLY CORDITE N (ARMY) -
Chemical Wisdom- Horse Chestnuts and the Fermentation of Powerful Powders
Chemical Wisdom- Horse Chestnuts and the Fermentation of Powerful Powders Nitrocellulose, Guncotton, Cordite, Nitrogylcerine, Ballistite, Smokeless Powder, Acetone, Poudre B, Acetone-butanol-ethanol fermentation, Horse Chestnut. cellulose nitrate , flash paper , flash cotton , flash string is a highly flammable compound formed by nitrating cellulose through exposure to nitric acid or another powerful nitrating agent. When used as a propellant or low-order explosive , it was originally known as guncotton . Nitrocellulose plasticized by camphor was used by Kodak , and other suppliers, from the late 1880s as a film base in photograph, X-ray films and motion picture films; and was known as nitrate film . After numerous fires caused by unstable nitrate films, safety film started to be used from the 1930s in the case of X-ray stock and from 1948 for motion picture film. Guncotton Pure nitrocellulose Various types of smokeless powder, consisting primarily of nitrocellulose Henri Braconnot discovered in 1832 that nitric acid, when combined with starch or wood fibers, would produce a lightweight combustible explosive material, which he named xyloïdine . A few years later in 1838 another French chemist Théophile-Jules Pelouze (teacher of Ascanio Sobrero and Alfred Nobel ) treated paper and cardboard in the same way. He obtained a similar material he called nitramidine . Both of these substances were highly unstable, and were not practical explosives. However, around 1846 Christian Friedrich Schönbein , a German-Swiss chemist, discovered a more practical solution. As he was working in the kitchen of his home in Basel , he spilled a bottle of concentrated nitric acid on the kitchen table. He reached for the nearest cloth, a cotton apron, and wiped it up. -
Background Reading on Explosives
EXPLOSIVES 8/15/05 HISTORY Roger Bacon described the preparation of the first explosive, black gunpowder, in 1249. By 1300, it was known and used throughout Europe. Written descriptions and drawings of guns appeared in documents as early as 1325, but the active period of gunpowder warfare was not initiated until the English used guns in the battle of Cressy in 1346. In 1788, Berthollet, a student of Lavoisier, prepared a chlorate gunpowder but abandoned its use following a disastrous explosion. In 1800, Edward Howard described the preparation and properties of mercury fulminate (the preparation has not changed essentially to this day), but it was not until 1864 that Alfred Nobel adopted it for use in percussion caps. The discovery by Nobel that an explosive wave from the firing of a percussion cap could initiate the explosion of another explosive has been called the most important discovery and invention in the history of the explosive art. The history of modern explosives dates from the discovery of nitrocellulose (more correctly named cellulose nitrate) independently by Schonbein and Bottger in 1845. They soon perceived the military possibilities of their product and cooperated with each other to exploit a form of nitrocellulose called guncotton. Many disastrous explosions followed, both in the preparation and use of the explosive. These produced such unfavorable impressions that the manufacture of guncotton was discontinued in England, France, and Austria for many years. Glyceryl trinitrate, or nitroglycerine as it is commonly called, was first prepared by Sobrero, an Italian physician and chemist in 1846 or early 1847. He noted that the material was a powerful vasodilator - "a trace of nitroglycerine placed upon the tongue -- gives rise to a most violent pulsating headache" - and prescribed it medicinally in the treatment of angina pectoris (a common heart disease), a use that has continued to this day. -
Forensic Chemistry and Explosives MODULE No.34: Specific Approach to Scene of Explosion
Weblinks • http://inventors.about.com/od/estartinventions/a/explosives.htm • http://www.ch.ic.ac.uk/vchemlib/mim/bristol/tnt/tnt_text.htm • http://www.funtrivia.com/en/subtopics/The-**EXPLOSIVE**-Quiz-266249.html • http://chemsee.com/explosives-detection/resources/test-results/ • http://www.nij.gov/topics/law-enforcement/investigations/crime- scene/guides/explosion-bombing/Pages/process.aspx Suggested Readings q Forensic Science in Criminal Investigation & Trials by Dr. B. R. Sharma q Explosives by Samuel Delvin q Criminalistics: An Introduction to Forensic Science by Richard Saferstein FORENSIC SCIENCE PAPER No.5: Forensic Chemistry and Explosives MODULE No.34: Specific approach to scene of explosion q Practical Bomb Scene Investigation by James T.Thurman q Aspects of Explosives Detection by Maurice Marshall and Jimmie C.Oxley q Explosives by Rudolf Meyer, Josef Kohler and Axel Homburg FORENSIC SCIENCE PAPER No.5: Forensic Chemistry and Explosives MODULE No.34: Specific approach to scene of explosion Interesting Facts q In 1888, Albert Nobel invented a dense smokeless powder explosive called ballistite and in1889, Sir James Dewar and Sir Frederick Abel invented another smokeless gunpowder called cordite. q Cordite was made of nitroglycerin, guncotton, and a petroleum substance gelatinized by addition of acetone. q TNT is relatively unstable and can detonate when dropped or when a vehicle carrying it is hit by an IED or a bullet. q A detection/sniffer dog is trained to and works at using its senses specially sense of smell to detect substances such as explosives, illegal drugs, wildlife scat, blood etc. q The bomb disposal suit is capable of deflecting or stopping projectiles that may come from an exploded device.