Ordnance Technology

Total Page:16

File Type:pdf, Size:1020Kb

Ordnance Technology Propellant Components Gun Propulsion Cartridge Actuated Devices Propellant Actuated Devices Rockets and Missile Systems Explosives and Warheads PROPELLANT COMPONENTS The major ingredients of modern military propellants are actually few. They consist of fuels, oxidizers and binders (polymers), and are fairly basic in their chemical nature and structure. The minor ingredients, used to assist or tie together the major ingredients, are more numerous and sometimes more complex. The interactions of these major and minor ingredients, when combined into a practical solid propellant, are especially complex. These interactions can take place at all stages of manufacture, storage, and use. Controlling such interactions makes solid-propellant technology difficult, expensive and, therefore, important to understand. The ingredients themselves represent output of the conventional chemical and explosive industries (although a few, like nitroglycerin, are produced locally); however, the combination of these ingredients into a propellant is still thought of by some as a "black art." Making it into a science is what has justified the expenditure of so many millions of dollars over the past 50 years. We will review briefly the development of modern propellants, touch on the basic ingredients that are used in the manufacture of propellants, and then describe the various types of propellants and their comparative properties. BACKGROUND OF PROPELLANT DEVELOPMENT The history of truly efficient military propellants is a fairly short one in this country, dating from 1900 for guns and from 1942 for rockets. However, the chemistry of propellant ingredients, has a long history. For example, the use of black powder dates back more than 700 years in Europe and probably 1000 years in the Orient. These facts emphasize the point that mastering the really difficult science of propellants comes in understanding the complex interactions that take place in their preparation, storage and use. Progress toward developing truly efficient propellants was necessarily slow until these interactions were defined and controlled; the problem is a continuing one as new ingredients are developed and introduced into improved propellants. Solid rocket propellants have considerably greater complexity than most gun propellants and all liquid propellants. This is so because solid rockets are mechanically much simpler in principle than either guns or liquid-fueled rockets. Therefore, a solid rocket propellant must perform by chemical means many of the jobs that are performed by the hardware in guns and liquid rockets. The success of military solid rockets since 1943 attests to the competence of the interdisciplinary teams assigned to their development, more than to any supposed greater simplicity of the task. Certain other components of missile systems, such as guidance and control, are at a lower stage of maturity only partly because of their great technical difficulty. Because weapons propulsion is viewed by top DOD officials as a very mature technology, less money each year is available for its improvement. This is regrettable because a long cycle is still required to bring a new propellant or propulsion concept from the idea phase to full production. Even such a simple device as the 2.75-inch folding-fin aircraft rocket required a five-year cycle of development (1949 to 1954) largely because of propellant problems. Six to eight years is a more realistic time scale for modern rocket propulsion systems, although with plenty of money, technical talent, and highest priority, complete weapon systems, have been developed in a somewhat shorter time. Such a wealth of resources cannot be made available, obviously, for every military development. Thus, plans must be made for an extended cycle of development for any new weapon propulsion system and already established technology must be used as much as possible. The environmental performance requirements for a new weapon system must be defined and limited as much as possible before embarking on the program. PROPELLANT TYPES Nitrocellulose deserves special attention because it has served as the major ingredient of military propellants since about 1900 in the U.S. and a few years longer in Europe. Experiments leading to the development of nitrocellulose began in Europe prior to 1840, but the German, Schoenbein, gets the most credit for developing a reasonably practical process by about 1845. The Englishman, Frederic Abel, a Frenchman named Vieille, and Sweden's Alfred Nobel are credited with later discoveries which made the use of nitrocellulose fully practical by about 1890. This half century span of research and development from 1840 to 1890 is indicative of the many problems encountered. Indian Head's own Dr. George W. Patterson, was largely responsible in the U.S. for developing fully practical, colloided or gelatinized nitrocellulose propellants for guns, basing his work primarily on the discoveries of Vieille with ether and alcohol solvents. Practical gun propellants, based on uniform mixture of nitrocellulose and nitroglycerin (double- base), a actually older than Vieille's and Patterson's single-base powders. Alfred Nobel deserves much of the credit for such double-base propellants because of his amazing discovery that these two notoriously treacherous materials could be combined even without solvents into a safe substance, which he called Ballistite. The Nobel process of combining them was neither obvious nor very safe for many years; but once intimately combined into a thoroughly colloided or gelatinized mass, nitrocellulose and nitroglycerin became a remarkably tractable, homogeneous material. By far the greatest part of Indian Head's present production of propellants is based on this invention of Alfred Nobel, with additional newer ones. LIQUID PROPELLANTS Although of lesser recent interest militarily compared to solid propellants, liquid propellants were chosen over solids by the U.S. rocket pioneer, Robert Goddard, in his experiments between the two World Wars. Dr. Goddard's explanation was that no suitable solid propellants were available. Currently, solid propellants predominate over liquids in military weapons because of their greater storability and volumetric efficiency. Solid propellants also offer lower life cycle costs and system simplicity. Conversely, liquid propellants, principally oxygen and kerosene-like fuels, have tended to dominate the space propulsion scene until recently. For military applications liquid oxygen is considered unacceptable. Red fuming nitric acid or nitrogen tetroxide tends to be the oxidizer of choice where a military rocket can benefit from a liquid propellant design. Fuels are mixed organic amines or hydrazine and its various alkyl derivatives, such as monomethyl and dimethyl hydrazine (UDMH). Hybrid systems, generally based on nitric acid oxidizer and a low oxidizer-content, rubber-fuel grain, are of some interest, but have not yet reached full operational status. DOUBLE-BASE PROPELLANTS Although Ballistite for guns can (and in Italy for some years did) consist of nothing more than a 50:50 intimate (colloided) mixture of carefully purified nitrocellulose and nitroglycerin, such a combination is not adequately stable for military use and would not perform well in rockets for numerous reasons. Nevertheless, the U.S. rocket propellant in World War II, "JPN" (Jet Propulsion/Navy), did consist mainly of nitrocellulose (51 percent) and nitroglycerin (43 percent) and it was based on long-used gun propellants. A fuel-type plasticizer, a new stabilizer, a wax, a blackening agent, and a potassium salt were used in minor proportions to improve processing, storability, and combustion properties respectively, but all the energy, or specific impulse (Isp), was derived from the nitrocellulose and nitroglycerin. In other words, all the necessary minor ingredients detracted from the basic ballistic performance or Isp. The JPN Ballistite served the U.S. for almost all military rocket needs during World War II in spite of its far-from-ideal internal ballistic properties. Double-base propellants generally require careful application of low flammability inhibitors if one desires to protect the internal motor walls from flame. Such materials represent an important field of study because satisfactory inhibitor materials must absorb a minimum of nitroglycerin, must be fully compatible with the propellant, and must not impose a severe increase in system cost. Ethyl cellulose and cellulose acetate are typical inhibitor materials for free-standing cartridge grains. Satisfactory case bonding liner-inhibitors generally involve a rubber substrate, impervious to nitroglycerin, and an intermediate film with excellent adhesive properties to propellant and liner. Other components of a rocket motor include the case and nozzle, fins, the igniter, mechanical devices to stabilize burning, and rubber seals to prevent leakage of gas or flow of hot gases between inhibitor and motor. COMPOSITE PROPELLANTS A feature of ammonium perchlorate, rubber-based, composite propellants is a natural tendency toward low pressure. True plateau burning is seldom achieved in high performance composite systems, but slopes ("n") of 0.3 or 0.4 are very common and are adequate to ensure operability over a wide range of temperatures. A twenty-year, multimillion-dollar effort on binders for ammonium perchlorate oxidizer, aluminum fuel, and energetic gas producers, such as nitroguanidine and HMX, has produced an array of composite propellants that
Recommended publications
  • Rocket Propulsion Fundamentals 2
    https://ntrs.nasa.gov/search.jsp?R=20140002716 2019-08-29T14:36:45+00:00Z Liquid Propulsion Systems – Evolution & Advancements Launch Vehicle Propulsion & Systems LPTC Liquid Propulsion Technical Committee Rick Ballard Liquid Engine Systems Lead SLS Liquid Engines Office NASA / MSFC All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation and to a paid course student, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of AIAA and/or course instructor. Contact the American Institute of Aeronautics and Astronautics, Professional Development Program, Suite 500, 1801 Alexander Bell Drive, Reston, VA 20191-4344 Modules 1. Rocket Propulsion Fundamentals 2. LRE Applications 3. Liquid Propellants 4. Engine Power Cycles 5. Engine Components Module 1: Rocket Propulsion TOPICS Fundamentals • Thrust • Specific Impulse • Mixture Ratio • Isp vs. MR • Density vs. Isp • Propellant Mass vs. Volume Warning: Contents deal with math, • Area Ratio physics and thermodynamics. Be afraid…be very afraid… Terms A Area a Acceleration F Force (thrust) g Gravity constant (32.2 ft/sec2) I Impulse m Mass P Pressure Subscripts t Time a Ambient T Temperature c Chamber e Exit V Velocity o Initial state r Reaction ∆ Delta / Difference s Stagnation sp Specific ε Area Ratio t Throat or Total γ Ratio of specific heats Thrust (1/3) Rocket thrust can be explained using Newton’s 2nd and 3rd laws of motion. 2nd Law: a force applied to a body is equal to the mass of the body and its acceleration in the direction of the force.
    [Show full text]
  • How to Make Gun Powder the Old Fashioned Way in Less Than 30 Minutes - Ask a Prepper
    10/8/2019 How To Make Gun Powder The Old Fashioned Way in Less Than 30 Minutes - Ask a Prepper DIY Terms of Use Privacy Policy Ask a Prepper Search something.. Survival / Prepping Solutions My Instagram Feed Demo Facebook Demo HOME ALL ARTICLES EDITOR’S PICK SURVIVAL KNOWLEDGE HOW TO’S GUEST POSTS CONTACT ABOUT CLAUDE DAVIS Social media How To Make Gun Powder The Old Fashioned Way in Less Than 30 Minutes Share this article By James Walton Print this article Send e-mail December 30, 2016 14:33 FOLLOW US PREPPER RECOMMENDS IF YOU SEE THIS PLANT IN YOUR BACKYARD BURN IT IMMEDIATELY ENGINEERS CALL THIS “THE SOLAR PANEL KILLER” THIS BUG WILL KILL MOST by James Walton AMERICANS DURING THE NEXT CRISIS Would you believe that this powerful propellant, that has changed the world as we know it, was made as far back as 142 AD? 22LBS GONE IN 13 DAYS WITH THIS STRANGE “CARB-PAIRING” With that knowledge, how about the fact that it took nearly 1200 years for us to TRICK figure out how to use this technology in a gun. The history of this astounding 12X MORE EFFICIENT THAN substance is one that is inextricably tied to the human race. Imagine the great SOLAR PANELS? NEW battles and wars tied to this simple mixture of sulfur, carbon and potassium nitrate. INVENTION TAKES Mixed in the right ratios this mix becomes gunpowder. GREEK RITUAL REVERSES In this article, we are going to talk about the process of making gunpowder. DIABETES. DO THIS BEFORE BED! We have just become such a dependent bunch that the process, to most of us, seems like some type of magic that only a Merlin could conjure up.
    [Show full text]
  • Atlas V Cutaway Poster
    ATLAS V Since 2002, Atlas V rockets have delivered vital national security, science and exploration, and commercial missions for customers across the globe including the U.S. Air Force, the National Reconnaissance Oice and NASA. 225 ft The spacecraft is encapsulated in either a 5-m (17.8-ft) or a 4-m (13.8-ft) diameter payload fairing (PLF). The 4-m-diameter PLF is a bisector (two-piece shell) fairing consisting of aluminum skin/stringer construction with vertical split-line longerons. The Atlas V 400 series oers three payload fairing options: the large (LPF, shown at left), the extended (EPF) and the extra extended (XPF). The 5-m PLF is a sandwich composite structure made with a vented aluminum-honeycomb core and graphite-epoxy face sheets. The bisector (two-piece shell) PLF encapsulates both the Centaur upper stage and the spacecraft, which separates using a debris-free pyrotechnic actuating 200 ft system. Payload clearance and vehicle structural stability are enhanced by the all-aluminum forward load reactor (FLR), which centers the PLF around the Centaur upper stage and shares payload shear loading. The Atlas V 500 series oers 1 three payload fairing options: the short (shown at left), medium 18 and long. 1 1 The Centaur upper stage is 3.1 m (10 ft) in diameter and 12.7 m (41.6 ft) long. Its propellant tanks are constructed of pressure-stabilized, corrosion-resistant stainless steel. Centaur is a liquid hydrogen/liquid oxygen-fueled vehicle. It uses a single RL10 engine producing 99.2 kN (22,300 lbf) of thrust.
    [Show full text]
  • Solid Propellant Rocket Engines - V.M
    THERMAL TO MECHANICAL ENERGY CONVERSION: ENGINES AND REQUIREMENTS – Vol. II - Solid Propellant Rocket Engines - V.M. Polyaev and V.A. Burkaltsev SOLID PROPELLANT ROCKET ENGINES V.M. Polyaev and V.A. Burkaltsev Department of Rocket engines, Bauman Moscow State Technical University, Russia. Keywords: Combustion chamber, solid propellant load, pressure, temperature, nozzle, thrust, control, ignition, cartridge, aspect ratio, regime. Contents 1. Introduction 2. Historical information 3. SPRE scheme and main units 4. SPRE operation 5. Parameter optimization, the approach and results 6. Transient regime 7. Service 8. Development prospects 9. Conclusions Acknowledgments Glossary Bibliography Biographical Sketches 1. Introduction Solid propellant rocket engines (SPRE) are called the direct reaction engines, in which chemical energy of the solid propellant being placed in the combustion chamber is transformed at first to thermal energy, and then to kinetic energy of the combustion products thrown away with high velocity in the environment. The momentum of combustion products discharging through the nozzle is equal to the impulse of reactive force being created by the engine. 2. Historical information First of rocketsUNESCO known to us were rockets – with EOLSS primitive powder rocket engines used in China near 5000 years ago for pleasure and military aims (so-called "fiery arrows", Figure 1). SAMPLE CHAPTERS The first rocket propellant was black smoky powder (potassium saltpetre with charcoal mixture). In Russia, powder rockets appeared in the beginning of XVII century. In 1680, Tsar Peter I founded "rocket institution" in Moscow for firework rockets making. In 1717 lighting signal rockets existed for 200 years without changes. In the beginning of XIX century, Englishman Kongrev improved the "fiery arrows" having been borrowed from Hindus.
    [Show full text]
  • Spacex Propulsion
    SpaceX Propulsion Tom Markusic Space Exploration Technologies 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference July 28, 2010 Friday, August 6, 2010 SpaceX Propulsion Tom Markusic Space Exploration Technologies 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference July 28, 2010 Friday, August 6, 2010 Overview Inverse Hyperbolic Bessel Functions Friday, August 6, 2010 Near-term Propulsion Needs Friday, August 6, 2010 Near-term Propulsion Needs HLLV Propulsion • Merlin 2 uses scaled-up, flight proven Merlin 1 design J-2X • SpaceX can develop and flight qualify the Merlin 2 engine in ~3 years at a cost of ~$1B. Production: ~$50M/engine • J-2X development already in progress under Constellation program Merlin 2 J-2X Propellant LOX/RP LOX/LH2 Merlin 2 Thrust (vac) [klbf] 1,700 292 Isp (vac) [sec] 322 448 T/W [lbf/lbm] 150 55 Friday, August 6, 2010 Near-term Propulsion Needs HLLV Propulsion Solar Electric Propulsion for Cargo Tug • Merlin 2 uses scaled-up, flight • Cluster of ~5 high TRL thrusters proven Merlin 1 design NEXT process 100 kWe solar power J-2X • SpaceX can develop and flight Ion Thruster• Next generation tug uses single qualify the Merlin 2 engine in ~3 high power thruster, such as NASA years at a cost of ~$1B. 457M Production: ~$50M/engine • Third generation tug uses nuclear • J-2X development already in electric propulsion at megawatt progress under Constellation Busek BHT-20K levels NEXT BHT-20 457M Propellant Xenon Xenonk Xenon program Merlin 2 J-2X Hall Thruster Propellant LOX/RP LOX/LH2 Power [kWe] 7 20 96 Thrust (vac) [klbf]
    [Show full text]
  • A Tool for Preliminary Design of Rockets Aerospace Engineering
    A Tool for Preliminary Design of Rockets Diogo Marques Gaspar Thesis to obtain the Master of Science Degree in Aerospace Engineering Supervisor : Professor Paulo Jorge Soares Gil Examination Committee Chairperson: Professor Fernando José Parracho Lau Supervisor: Professor Paulo Jorge Soares Gil Members of the Committee: Professor João Manuel Gonçalves de Sousa Oliveira July 2014 ii Dedicated to my Mother iii iv Acknowledgments To my supervisor Professor Paulo Gil for the opportunity to work on this interesting subject and for all his support and patience. To my family, in particular to my parents and brothers for all the support and affection since ever. To my friends: from IST for all the companionship in all this years and from Coimbra for the fellowship since I remember. To my teammates for all the victories and good moments. v vi Resumo A unica´ forma que a humanidade ate´ agora conseguiu encontrar para explorar o espac¸o e´ atraves´ do uso de rockets, vulgarmente conhecidos como foguetoes,˜ responsaveis´ por transportar cargas da Terra para o Espac¸o. O principal objectivo no design de rockets e´ diminuir o peso na descolagem e maximizar o payload ratio i.e. aumentar a capacidade de carga util´ ao seu alcance. A latitude e o local de lanc¸amento, a orbita´ desejada, as caracter´ısticas de propulsao˜ e estruturais sao˜ constrangimentos ao projecto do foguetao.˜ As trajectorias´ dos foguetoes˜ estao˜ permanentemente a ser optimizadas, devido a necessidade de aumento da carga util´ transportada e reduc¸ao˜ do combust´ıvel consumido. E´ um processo utilizado nas fases iniciais do design de uma missao,˜ que afecta partes cruciais do planeamento, desde a concepc¸ao˜ do ve´ıculo ate´ aos seus objectivos globais.
    [Show full text]
  • Explosives Recognition and Awareness in Court Security
    10/29/2015 Explosives recognition and awareness in Court Security INTRODUCTION Course Objectives Familiarize court security personnel with explosives and their illicit uses Familiarize court security personnel with methods of prevention and detection of explosive devices in a court security setting. Familiarize court security personnel with methods of dealing with potential or actual explosive devices as first responders. 1 10/29/2015 The FBI Bomb Data Center reports that 70% of all terrorist incidents involve the use of incendiary agents and explosives. We know that there have been attacks carried out against government facilities in the U.S. including court buildings using explosives. This is why it is important for court security personnel to be familiar with explosives and their use. This course is not an “EOD”, “TACTICS”or “BOMB TECH”course. Theintentofthiscourseistoprovidebasic knowledge of the relationship between explosives and court security functions. Officers should always rely on their own training, department policy and common sense when dealing with explosives. HISTORY OF EXPLOSIVES 2 10/29/2015 Beginnings Gunpowder first appeared in China around the 1st century AD and was used for fireworks. The first evidence of use in weapons appeared in Europe around the 13th century when projectiles were propelled through tubes. The first high explosive, “fulminating gold” was first mentioned in writings by German alchemist Sebald Schwaertzer in 1585. Italian chemist Asconio Sobrero discovered nitroglycerin in 1846 but the compound was very unstable and difficult to work with. Alfred Nobel, Sweden Advances Swedish scientist Albert Nobel invents a method of stabilizing nitroglycerin in 1866 and patents dynamite in 1867.
    [Show full text]
  • Decomposition Kinetics of the Rocket Propellant Rp-1 and Its Chemical Kinetic Surrogates
    DECOMPOSITION KINETICS OF THE ROCKET PROPELLANT RP-1 AND ITS CHEMICAL KINETIC SURROGATES ADISSERTATION SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Megan Edwards MacDonald January 2012 © 2012 by Megan Edwards MacDonald. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/ng820gf9574 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Ronald Hanson, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Craig Bowman I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Reginald Mitchell Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii iv Abstract High-temperature fuel decomposition is an important aspect of fuel chemistry, and athoroughunderstandingofthisprocess is necessary in order to accurately de- scribe combustion chemistry.
    [Show full text]
  • Material Safety Data Sheet for Explosive M6 Propellant
    HERCULES INCORPORATED -- PROPELLANT,EXPLOSIVE,SOLID,M6+2F/76MM -- 1376-00N010938 ===================== Product Identification ===================== Product ID:PROPELLANT,EXPLOSIVE,SOLID,M6+2F/76MM MSDS Date:01/09/1986 FSC:1376 NIIN:00N010938 MSDS Number: BHVKT === Responsible Party === Company Name:HERCULES INCORPORATED Address:RADFORD ARMY AMMUNITION PLANT City:RADFORD State:VA ZIP:24141 Info Phone Num:703-639-7294 Emergency Phone Num:703-639-7294 CAGE:2D295 === Contractor Identification === Company Name:HERCULES INC Address:RADFORD ARMY AMMUNITION PLANT Box:City:RADFORD State:VA ZIP:24141 Country:US Phone:703-639-7294 CAGE:2D881 Company Name:HERCULES INCORPORATED Address:84 5TH AVE City:NEW YORK State:NY ZIP:10011-7603 Country:US CAGE:2D295 ============= Composition/Information on Ingredients ============= Ingred Name:DIBUTYL PHTHALATE (SARA III) CAS:84-74-2 RTECS #:TI0875000 Fraction by Wt: 3.00% Other REC Limits:N/K OSHA PEL:5 MG/M3 ACGIH TLV:5 MG/M3; 9192 EPA Rpt Qty:10 LBS DOT Rpt Qty:10 LBS Ingred Name:DIPHENYLAMINE CAS:122-39-4 RTECS #:JJ7800000 Fraction by Wt: 1.00% Other REC Limits:N/K OSHA PEL:10 MG/M3 ACGIH TLV:10 MG/M3; 9192 Ingred Name:POTASSIUM SULFATE 000412 CAS:7778-80-5 RTECS #:TT5900000 Fraction by Wt: 2.00% Other REC Limits:N/K OSHA PEL:N/K ACGIH TLV:N/K Ingred Name:NITROCELLULOSE (FLAMMABLE SOLID) Fraction by Wt: 87.00% Other REC Limits:N/K OSHA PEL:N/K ACGIH TLV:N/K Ingred Name:DINITROTOLUENE (SARA III) CAS:25321-14-6 RTECS #:XT1300000 Fraction by Wt: 10.00% Other REC Limits:N/K OSHA PEL:S;A2;0.15 MG/M3;9293 ACGIH TLV:S, 1.5 MG/M3 EPA Rpt Qty:10 LBS DOT Rpt Qty:10 LBS ===================== Hazards Identification ===================== LD50 LC50 Mixture:N/K Routes of Entry: Inhalation:YES Skin:YES Ingestion:YES Reports of Carcinogenicity:NTP:NO IARC:NO OSHA:NO Health Hazards Acute and Chronic:SEE SIGNS AND SYMPTOMS OF OVEREXPOSURE.
    [Show full text]
  • Increasing Launch Rate and Payload Capabilities
    Aerial Launch Vehicles: Increasing Launch Rate and Payload Capabilities Yves Tscheuschner1 and Alec B. Devereaux2 University of Colorado, Boulder, Colorado Two of man's greatest achievements have been the first flight at Kitty Hawk and pushing into the final frontier that is space. Air launch systems aim to combine these great achievements into a revolutionary way to deliver satellites, cargo and eventually people into space. Launching from an aircraft has many advantages, including the ability to launch at any inclination and from above bad weather, which could delay ground launches. While many concepts for launching rockets from an airplane have been developed, very few have made it past the drawing board. Only the Pegasus and, to a lesser extent, SpaceShipOne have truly shown the feasibility of such a system. However, a recent push for rapid, small payload to orbit launches by the military and a general need for cheaper, heavy lift options are leading to an increasing interest in air launch methods. In order for the efficiency and flexibility of the system to be realized, however, additional funding and research are necessary. Nomenclature ALASA = airborne launch assist space access ALS = air launch system DARPA = defense advanced research project agency LEO = low Earth orbit LOX = liquid oxygen RP-1 = rocket propellant 1 MAKS = Russian air launch system MECO = main engine cutoff SS1 = space ship one SS2 = space ship two I. Introduction W hat typically comes to mind when considering launching people or satellites to space are the towering rocket poised on the launch pad. These images are engraved in the minds of both the public and scientists alike.
    [Show full text]
  • Propellant Geometry Type Descriptions Smokeless Propellant Has Three Basic Chemistry Types; Single Base, Double Base, and Triple Base
    Propellant Geometry Type Descriptions Smokeless propellant has three basic chemistry types; single base, double base, and triple base. Single base propellant uses only nitrocellulose as the primary energetic. Double base propellant uses nitrocellulose and nitroglycerine, while triple base uses the double base formulation, and adds an additional energetic, typically nitroguanidine. A propellant characteristic known as “progressivity” is important because it causes increasing gas generation as the propellant burns. Progressivity can be achieved either by chemical means (via a deterrent coating on the exterior grain) or by geometry (shapes selected because their surface area increases as the grain burns). Figure 1 shows the relative surface area as a fraction of propellant depth burned for typical propellant geometries. Figure 1: Normalized Propellant Surface Area vs. Depth Burnt & Propellant Geometry Since the sphere, cord, and flake geometries have decidedly digressive area vs. depth burnt characteristics, those propellants have to use surface deterrent coatings to enable any “progressivity” to be exhibited. The tubular (single perforation) grain is ever-so-slightly digressive in geometry; the inside surface increases in area as the outside surface decreases in area, the end faces can only lose area during propellant burn. Application of deterrent coatings (sometimes called combustion moderators) mean that when simulating the interior ballistic behavior of such propellants, the initial burn rate coefficient will be smaller than the final burn rate coefficient. When no deterrent coatings are applied, the initial and final burn rate coefficients are equal to one another. Ammunition engineers should be aware that, best efforts of the propellant manufacturer to the contrary, there will be minor variations in propellants lot-to-lot.
    [Show full text]
  • Lesson 2: YOU're LAUNCHING a ROCKET!
    Adventures in Aerospace: Lesson 2 Volunteer’s Guide Key to Curriculum Formatting: ► Volunteer Directions ■ Volunteer Notes ♦ Volunteer-led Classroom Experiments Lesson 2: YOU’RE LAUNCHING A ROCKET! ► Begin the presentation by telling the class that this is “Lesson 2: You’re Launching a Rocket!” If this is your second visit, reintroduce yourself and the program. Briefly review key concepts from the first lesson, “You’re Piloting a Plane!” If this is your first visit, here is a suggested personal introduction: “Hello, my name is _____________, and I am a _________________ (position title) at Aerojet. I or another Aerojet volunteer will be visiting your class once over the next few months to speak to you about space exploration and space travel. We will learn about the basics of aerodynamics, rocket propulsion, and spaceflight to the space station, the moon, and future missions to Mars!” ► Answer any questions left over from the previous visit. MATERIALS NEEDED • AiA Multimedia Presentation (AMP) • DVD-ROM Page 1 of 11 Adventures in Aerospace: Lesson 2 Volunteer’s Guide • TV or projection screen • Handouts • Index cards ► See lesson to assess total equipment needs. LESSON OUTLINE Introduction Lesson Concepts Vocabulary Rockets vs. Airplanes Newton’s Laws • First Law • Second Law • Third Law What Type of Rocket Are You Launching? • Types of Engines Comparing and Contrasting Liquid Engines and Solid Motors Other Types of Rocket Engines Applying What We’ve Learned Experiment INTRODUCTION Rocket launches have mesmerized audiences, often entire nations, for centuries. What kind of power does it take to propel spacecraft out of the atmosphere and into the vacuum of space? This unit introduces you to rocket propulsion systems.
    [Show full text]