1/TAF9 Mediates the Transcriptional Output of Notch Signaling In

Total Page:16

File Type:pdf, Size:1020Kb

1/TAF9 Mediates the Transcriptional Output of Notch Signaling In ß 2014. Published by The Company of Biologists Ltd | Journal of Cell Science (2014) 127, 3830–3839 doi:10.1242/jcs.154583 RESEARCH ARTICLE E(y)1/TAF9 mediates the transcriptional output of Notch signaling in Drosophila Gengqiang Xie1, Zhongsheng Yu2, Dongyu Jia1, Renjie Jiao1,* and Wu-Min Deng1,* ABSTRACT cells, interaction between TRF3 and TAF3 is essential for hematopoiesis (Ba´rtfai et al., 2004; Hart et al., 2007; Hart et al., Transcriptional activation of Notch signaling targets requires the 2009). Kalogeropoulou et al. have demonstrated that TAF4b is formation of a ternary complex that involves the intracellular domain specifically associated with c-Jun and other AP-1 family of the Notch receptor (NICD), DNA-binding protein Suppressor of members to regulate the expression of Integrin a6 in the Hairless [Su(H), RPBJ in mammals] and coactivator Mastermind context of cancer progression (Kalogeropoulou et al., 2010). (Mam). Here, we report that E(y)1/TAF9, a component of the Although a recent report has shown that TAF4 interacts with transcription factor TFIID complex, interacts specifically with the Pygopus, a transcriptional activator of Wingless (Wg) signaling, NICD–Su(H)–Mam complex to facilitate the transcriptional output of to induce transcription of naked cuticle in Drosophila (Wright Notch signaling. We identified E(y)1/TAF9 in a large-scale in vivo and Tjian, 2009), how other signaling pathways, such as Notch, RNA interference (RNAi) screen for genes that are involved in a are regulated by specific TAFs is poorly understood. Notch-dependent mitotic-to-endocycle transition in Drosophila Notch signaling is an evolutionally conserved pathway across follicle cells. Knockdown of e(y)1/TAF9 displayed Notch-mutant- species that plays a pivotal role in many different developmental like phenotypes and defects in target gene and activity reporter events, including cell fate determination, control of cell expression in both the follicle cells and wing imaginal discs. proliferation and apoptosis, and the maintenance of stem cells Epistatic analyses in these two tissues indicated that E(y)1/TAF9 (Artavanis-Tsakonas and Muskavitch, 2010; Guruharsha et al., functions downstream of Notch cleavage. Biochemical studies in S2 2012; Tien et al., 2009). Dysregulation of Notch is implicated in a cells demonstrated that E(y)1/TAF9 physically interacts with the number of diseases, including cancer (Louvi and Artavanis- transcriptional effectors of Notch signaling Su(H) and NICD. Taken Tsakonas, 2012; Ntziachristos et al., 2014). Notch signaling together, our data suggest that the association of the NICD–Su(H)– activation is mediated by a direct interaction between the Notch Mastermind complex with E(y)1/TAF9 in response to Notch receptor in one cell and its ligand on the neighboring cell (Diaz- activation recruits the transcription initiation complex to induce Benjumea and Cohen, 1995; Doherty et al., 1996). Such an Notch target genes, coupling Notch signaling with the transcription interaction induces two consecutive proteolytic processes that machinery. result in the release of the Notch intracellular domain (NICD) (Struhl and Adachi, 1998), which is then translocated to the KEY WORDS: E(y)1, TAF9, Notch pathway, Drosophila, TFIID nucleus and activates transcription of its target genes by complex, Transcriptional regulation interacting with the DNA-binding protein Suppressor of Hairless [Su(H)] and the coactivator Mastermind (Mam) to INTRODUCTION form a functional Su(H)–NICD–Mam ternary complex (Bailey The eukaryotic transcription factor IID (TFIID) complex, and Posakony, 1995; Lecourtois and Schweisguth, 1995). comprising the TATA box-binding protein (TBP) and 13 or 14 Although numerous Notch target genes have been identified in TBP-associated factors (TAFs), plays an essential role in the different tissues or organs during different developmental stages, transcriptional regulation of gene expression, and all components how the Su(H)–NICD–Mam ternary complex regulates their of this complex were generally thought to be required for RNA- expression is largely unclear. Recent findings in different systems polymerase-II-initiated transcription in all eukaryotic cells have suggested that chromatin-associated epigenetically- (Goodrich and Tjian, 2010; Thomas and Chiang, 2006). regulatory mechanisms are very important for proper expression However, an increasing number of studies suggest that some of Notch target genes (Bray et al., 2005; Domanitskaya and TAFs found in different species are vital in specific events, such Schu¨pbach, 2012; Endo et al., 2011; Kugler and Nagel, 2007; as apoptosis, spermatogenesis and adipogenesis (Goodrich and Mulligan et al., 2011; Yu et al., 2013; Zeng et al., 2013). In flies, Tjian, 2010). For example, mouse TAF7L is specifically required histone chaperones Asf1 and Nap1 are differentially associated for male germ-cell differentiation (Cheng et al., 2007; Pointud with LID-associated factor (LAF) and RPD3-LID-associated et al., 2003), and, in both zebrafish and mouse embryonic stem factor (RLAF) silencing complexes to mediate epigenetic silencing at the Notch target Enhancer of Split [E(spl)] cluster (Moshkin et al., 2009). A SIRT1–LSD1 co-repressor complex 1Department of Biological Science, Florida State University, Tallahassee, FL 32304-4295, USA. 2State Key Laboratory of Brain and Cognitive Science, Institute regulates Notch target gene expression in both mammalian and of Biophysics, the Chinese Academy of Sciences, Datun Road 15, Beijing Drosophila cultured cells (Mulligan et al., 2011). Our very recent 100101, China. study has demonstrated that the histone chaperone CAF-1 *Authors for correspondence ([email protected]; [email protected]) complex epigenetically and positively regulates Notch target gene expression in Drosophila (Yu et al., 2013). But the most Received 4 April 2014; Accepted 23 June 2014 basic questions of how the Su(H)–NICD–Mam complex activates Journal of Cell Science 3830 RESEARCH ARTICLE Journal of Cell Science (2014) 127, 3830–3839 doi:10.1242/jcs.154583 expression of Notch target genes and which cofactor(s) bring it to 2011) (both referred to as RNAi) under the control of the the general transcription machinery are unanswered. upstream activating site (UAS). These lines were crossed to the The Drosophila egg chamber is an ideal system to study flip-out Gal4 driver (Ito et al., 1997; Pignoni and Zipursky, 1997) the regulation of Notch signaling and its developmental to generate random follicle-cell RNAi clones that were marked by consequences (Bastock and St Johnston, 2008; Klusza and Deng, the expression of green and red fluorescent proteins (GFP and 2011). During mid-oogenesis (stages 7–10A), Notch signaling is RFP, respectively). The follicle-cell RNAi clones were then activated in entire follicular epithelia by the germline-expressed screened for defects in the expression pattern of the negative ligand, Delta (Dl) (Deng et al., 2001; Lo´pez-Schier and St Notch target Cut, a homeodomain-containing transcription factor Johnston, 2001). This activation induces the follicle cells from the (Sun and Deng, 2005). Cut is normally expressed in early mitotic cycle into endoreplication, which is mediated by the oogenesis (stages 1–6) and then downregulated at stage 7 upon suppression of Cut and activation of Hindsight (Hnt; also known as Notch activation in follicle cells (Sun and Deng, 2005). Failure to Pebbled) through Notch signaling (Sun and Deng, 2007; Sun and downregulate Cut at stage 7 suggests a defect in Notch signaling. Deng, 2005). As in other processes, this Notch-dependent cell From this screen, we found that knockdown of the gene CG6474 cycle transition also requires Notch protein cleavage, which is [enhancer of yellow 1 (e(y)1)], which encodes a homolog of achieved by c-secretase components Presenilin and Nicastrin. TAF9, a core component of the TFIID transcription initiation In addition, the nuclear effector of Notch signaling Su(H) is complex (Soldatov et al., 1999; Thomas and Chiang, 2006), needed for the switch. The precise timing of Notch signaling resulted in prolonged Cut expression in 74% (n572) of follicle during mid-oogenesis is regulated through multiple mechanisms cell RNAi clones at stages 7–8 (Fig. 1A), suggesting a Notch (Domanitskaya and Schu¨pbach, 2012; Heck et al., 2012; Poulton defect in e(y)1-depleted follicle cells. et al., 2011). Our recent finding demonstrated that the microRNA To confirm that E(y)1 is required for Notch signaling in follicle pathway regulates the temporal pattern of Notch signaling by cells, we examined the expression of zinc-finger protein Hnt, a repressing Delta-mediated inhibition of Notch in Drosophila positive follicle-cell-specific Notch target, which is normally follicle cells (Poulton et al., 2011). Interestingly, transcriptional expressed in the entire follicular epithelium from stages 7–10A cofactors are also involved in precise control of Notch signaling (Sun and Deng, 2007). Downregulation of Hnt in mid-oogenesis (Domanitskaya and Schu¨pbach, 2012; Heck et al., 2012) – the transcriptional co-repressor SMRTER inhibits Notch activity in a temporally restricted manner in follicular epithelium (Heck et al., 2012), whereas the transcriptional cofactor Corepressor for element-1-silencing transcription factor (CoREST) promotes Notch signaling in a spatially restricted manner by affecting histone H3 K27 tri-methylation and histone H4 K16 acetylation in the follicle cells (Domanitskaya and Schu¨pbach, 2012). In a genetic RNA
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Taenia Solium TAF6 and TAF9 Binds to a Putative Downstream Promoter Element
    bioRxiv preprint doi: https://doi.org/10.1101/106997; this version posted February 8, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Taenia solium TAF6 and TAF9 binds to a putative Downstream Promoter Element present in TsTBP1 gene core promoter. Oscar Rodríguez-Lima1, #a, Ponciano García-Gutierrez2, Lucía Jimenez1, Angel Zarain-Herzberg3, Roberto Lazarini4 and Abraham Landa1*. 1Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad de México, México. 2Departamento de Química, Universidad Autónoma Metropolitana–Iztapalapa. Ciudad de México, México. 3Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad de México, México. 4Departamento de Biología Experimental, Universidad Autónoma Metropolitana– Iztapalapa. Ciudad de México, México. #a Current address: Center for Integrative Genomics, Lausanne University, Lausanne, Switzerland. *Corresponding author: Abraham Landa, Ph.D. Universidad Nacional Autónoma de México. Departamento de Microbiología y Parasitología, Facultad de Medicina Edificio A 2do piso. Ciudad Universitaria. CDMX 04510, México Phone: (52 55) 56-23-23-57, Fax: (52 55) 56-23-23-82, Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/106997; this version posted February 8, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Molecular Structure of Promoter-Bound Yeast TFIID
    ARTICLE DOI: 10.1038/s41467-018-07096-y OPEN Molecular structure of promoter-bound yeast TFIID Olga Kolesnikova 1,2,3,4, Adam Ben-Shem1,2,3,4, Jie Luo5, Jeff Ranish 5, Patrick Schultz 1,2,3,4 & Gabor Papai 1,2,3,4 Transcription preinitiation complex assembly on the promoters of protein encoding genes is nucleated in vivo by TFIID composed of the TATA-box Binding Protein (TBP) and 13 TBP- associate factors (Tafs) providing regulatory and chromatin binding functions. Here we present the cryo-electron microscopy structure of promoter-bound yeast TFIID at a resolu- 1234567890():,; tion better than 5 Å, except for a flexible domain. We position the crystal structures of several subunits and, in combination with cross-linking studies, describe the quaternary organization of TFIID. The compact tri lobed architecture is stabilized by a topologically closed Taf5-Taf6 tetramer. We confirm the unique subunit stoichiometry prevailing in TFIID and uncover a hexameric arrangement of Tafs containing a histone fold domain in the Twin lobe. 1 Department of Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France. 2 Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France. 3 Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France. 4 Université de Strasbourg, Illkirch 67404, France. 5 Institute for Systems Biology, Seattle, WA 98109, USA. These authors contributed equally: Olga Kolesnikova, Adam Ben-Shem. Correspondence and requests for materials should be addressed to P.S. (email: [email protected]) or to G.P.
    [Show full text]
  • Supplementary Table S1. Correlation Between the Mutant P53-Interacting Partners and PTTG3P, PTTG1 and PTTG2, Based on Data from Starbase V3.0 Database
    Supplementary Table S1. Correlation between the mutant p53-interacting partners and PTTG3P, PTTG1 and PTTG2, based on data from StarBase v3.0 database. PTTG3P PTTG1 PTTG2 Gene ID Coefficient-R p-value Coefficient-R p-value Coefficient-R p-value NF-YA ENSG00000001167 −0.077 8.59e-2 −0.210 2.09e-6 −0.122 6.23e-3 NF-YB ENSG00000120837 0.176 7.12e-5 0.227 2.82e-7 0.094 3.59e-2 NF-YC ENSG00000066136 0.124 5.45e-3 0.124 5.40e-3 0.051 2.51e-1 Sp1 ENSG00000185591 −0.014 7.50e-1 −0.201 5.82e-6 −0.072 1.07e-1 Ets-1 ENSG00000134954 −0.096 3.14e-2 −0.257 4.83e-9 0.034 4.46e-1 VDR ENSG00000111424 −0.091 4.10e-2 −0.216 1.03e-6 0.014 7.48e-1 SREBP-2 ENSG00000198911 −0.064 1.53e-1 −0.147 9.27e-4 −0.073 1.01e-1 TopBP1 ENSG00000163781 0.067 1.36e-1 0.051 2.57e-1 −0.020 6.57e-1 Pin1 ENSG00000127445 0.250 1.40e-8 0.571 9.56e-45 0.187 2.52e-5 MRE11 ENSG00000020922 0.063 1.56e-1 −0.007 8.81e-1 −0.024 5.93e-1 PML ENSG00000140464 0.072 1.05e-1 0.217 9.36e-7 0.166 1.85e-4 p63 ENSG00000073282 −0.120 7.04e-3 −0.283 1.08e-10 −0.198 7.71e-6 p73 ENSG00000078900 0.104 2.03e-2 0.258 4.67e-9 0.097 3.02e-2 Supplementary Table S2.
    [Show full text]
  • Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association Between BMI and Adult-Onset Non- Atopic
    Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non- Atopic Asthma Ayoung Jeong 1,2, Medea Imboden 1,2, Akram Ghantous 3, Alexei Novoloaca 3, Anne-Elie Carsin 4,5,6, Manolis Kogevinas 4,5,6, Christian Schindler 1,2, Gianfranco Lovison 7, Zdenko Herceg 3, Cyrille Cuenin 3, Roel Vermeulen 8, Deborah Jarvis 9, André F. S. Amaral 9, Florian Kronenberg 10, Paolo Vineis 11,12 and Nicole Probst-Hensch 1,2,* 1 Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; [email protected] (A.J.); [email protected] (M.I.); [email protected] (C.S.) 2 Department of Public Health, University of Basel, 4001 Basel, Switzerland 3 International Agency for Research on Cancer, 69372 Lyon, France; [email protected] (A.G.); [email protected] (A.N.); [email protected] (Z.H.); [email protected] (C.C.) 4 ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain; [email protected] (A.-E.C.); [email protected] (M.K.) 5 Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain 6 CIBER Epidemiología y Salud Pública (CIBERESP), 08005 Barcelona, Spain 7 Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy; [email protected] 8 Environmental Epidemiology Division, Utrecht University, Institute for Risk Assessment Sciences, 3584CM Utrecht, Netherlands; [email protected] 9 Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College, SW3 6LR London, UK; [email protected] (D.J.); [email protected] (A.F.S.A.) 10 Division of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 11 MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, W2 1PG London, UK; [email protected] 12 Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy * Correspondence: [email protected]; Tel.: +41-61-284-8378 Int.
    [Show full text]
  • TAF10 Complex Provides Evidence for Nuclear Holo&Ndash;TFIID Assembly from Preform
    ARTICLE Received 13 Aug 2014 | Accepted 2 Dec 2014 | Published 14 Jan 2015 DOI: 10.1038/ncomms7011 OPEN Cytoplasmic TAF2–TAF8–TAF10 complex provides evidence for nuclear holo–TFIID assembly from preformed submodules Simon Trowitzsch1,2, Cristina Viola1,2, Elisabeth Scheer3, Sascha Conic3, Virginie Chavant4, Marjorie Fournier3, Gabor Papai5, Ima-Obong Ebong6, Christiane Schaffitzel1,2, Juan Zou7, Matthias Haffke1,2, Juri Rappsilber7,8, Carol V. Robinson6, Patrick Schultz5, Laszlo Tora3 & Imre Berger1,2,9 General transcription factor TFIID is a cornerstone of RNA polymerase II transcription initiation in eukaryotic cells. How human TFIID—a megadalton-sized multiprotein complex composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs)— assembles into a functional transcription factor is poorly understood. Here we describe a heterotrimeric TFIID subcomplex consisting of the TAF2, TAF8 and TAF10 proteins, which assembles in the cytoplasm. Using native mass spectrometry, we define the interactions between the TAFs and uncover a central role for TAF8 in nucleating the complex. X-ray crystallography reveals a non-canonical arrangement of the TAF8–TAF10 histone fold domains. TAF2 binds to multiple motifs within the TAF8 C-terminal region, and these interactions dictate TAF2 incorporation into a core–TFIID complex that exists in the nucleus. Our results provide evidence for a stepwise assembly pathway of nuclear holo–TFIID, regulated by nuclear import of preformed cytoplasmic submodules. 1 European Molecular Biology Laboratory, Grenoble Outstation, 6 rue Jules Horowitz, 38042 Grenoble, France. 2 Unit for Virus Host-Cell Interactions, University Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble, France. 3 Cellular Signaling and Nuclear Dynamics Program, Institut de Ge´ne´tique et de Biologie Mole´culaire et Cellulaire, UMR 7104, INSERM U964, 1 rue Laurent Fries, 67404 Illkirch, France.
    [Show full text]
  • Cancer‑Testis Antigen HCA587/MAGEC2 Interacts with the General Transcription Coactivator TAF9 in Cancer Cells
    3226 MOLECULAR MEDICINE REPORTS 17: 3226-3231, 2018 Cancer‑testis antigen HCA587/MAGEC2 interacts with the general transcription coactivator TAF9 in cancer cells PUMEI ZENG*, YING WANG*, YUTIAN ZHENG, XIAO SONG and YANHUI YIN Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, P.R. China Received June 21, 2017; Accepted October 20, 2017 DOI: 10.3892/mmr.2017.8260 Abstract. Hepatocellular carcinoma-associated antigen Introduction 587/melanoma antigen gene (HCA587/MAGEC2) is a cancer-testis antigen, which is highly expressed in various types Hepatocellular carcinoma-associated antigen 587 (HCA587) of tumors, but not in normal tissues with the exception of male was identified by serological analysis of a recombinant cDNA germ-line cells. HCA587/MAGEC2 has been previously recog- expression library from hepatocellular carcinoma (HCC) in our nized as a tumor‑specific target for immunotherapy; however, previous study (1) and the sequence of the HCA587 gene was its biological functions have been relatively understudied. To identical to that of MAGEC2, a member of melanoma antigen investigate the function of HCA587/MAGEC2, the amino gene (MAGE) family (2). The MAGE family of proteins is acid sequence of HCA587/MAGEC2 was analyzed by bioin- divided into two classes based on their expression pattern, formatics and it was demonstrated that HCA587/MAGEC2 the type I MAGEs include MAGEA, MAGEB and MAGEC contains a 9-amino acid transactivation domain which may protein subfamilies. The type I MAGE proteins are cancer-testis mediate the interaction of most transcription factors with (CT) antigens and their expression is restricted to the undif- TATA-box binding protein associated factor 9 (TAF9), a general ferentiated spermatogenic cells or trophoblast lineage cells; transcription coactivator.
    [Show full text]
  • Supplemental Material
    Fold Change Symbol Genbank Description UniGene HNS expression Hyper-osmotic regulation Hypo-osmotic regulation 13.67 Giot1 NM_133563 Gonadotropin inducible ovarian transcription factor 1 (Giot1) Rn.107259 Yue et al., 2006 5.223 Fosl1 NM_012953 Fos-like antigen 1, Fra1 Rn.11306 Sharp et al., 1991 Miyata et al., 2001 4.343 c-fos BF415939 c-fos oncogene Rn.103750 Carter and Murphy, 1990 Yue et al., 2006 Sharp et al., 1991 Mutsuga et al., 2005 Luckman et al., 1996 Miyata et al., 2001b Cunningham et al., 2004 Ji et al., 2005; Kawasaki et al., 2005 Penny et al., 2005 Gottlieb et al., 2006 4.155 Creb3l1 BI304123 cAMP responsive element binding protein 3-like 1 Rn.24541 2.588 Cebpb NM_024125 CCAAT/enhancer binding protein (C/EBP), beta Rn.6479 2.282 Nr4a1 NM_024388 Nuclear receptor subfamily 4, group A, member 1 Rn.10000 Xiao et al., 1996 Luckman, 1997 Mutsuga et al., 2005 Kawasaki et al., 2005 2.268 Atf4 NM_024403 Activating transcription factor 4 Rn.2423 Yue et al., 2006 1.999 Crem NM_017334 cAMP responsive element modulator Rn.10251 Kell et al., 2004 Mellstrom et al., 1993 Luckman and Cox, 1995 1.93 Crem AW529408 cAMP responsive element modulator Rn.10251 Kell et al., 2004 Mellstrom et al., 1993 Luckman and Cox, 1995 1.722 Giot2 AB047638 Gonadotropin inducible ovarian transcription factor 2 (Giot2); Zfp347 Rn.127808 1.687 Ddit3 NM_024134 DNA-damage inducible transcript 3 Rn.11183 1.641 Myc NM_012603 c-myc Rn.12072 1.556 Nfe2l1 AI179123 Nuclear factor, erythroid derived 2,-like 1 Rn.167338 Mutsuga et al., 2005 1.553 Atf5 BM391471 Activating
    [Show full text]
  • TAF9 Rabbit Pab
    Leader in Biomolecular Solutions for Life Science TAF9 Rabbit pAb Catalog No.: A2021 Basic Information Background Catalog No. Initiation of transcription by RNA polymerase II requires the activities of more than 70 A2021 polypeptides. The protein that coordinates these activities is transcription factor IID (TFIID), which binds to the core promoter to position the polymerase properly, serves as Observed MW the scaffold for assembly of the remainder of the transcription complex, and acts as a 20kDa channel for regulatory signals. TFIID is composed of the TATA-binding protein (TBP) and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. Calculated MW TAFs may participate in basal transcription, serve as coactivators, function in promoter 28kDa recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. This gene encodes one of the smaller subunits of TFIID that Category binds to the basal transcription factor GTF2B as well as to several transcriptional activators such as p53 and VP16. In human, TAF9 and AK6 (GeneID: 102157402) are two Primary antibody distinct genes that share 5' exons. A similar but distinct gene (TAF9L) has been found on the X chromosome and a pseudogene has been identified on chromosome 19. Applications Alternative splicing results in multiple transcript variants. WB,IHC Cross-Reactivity Human, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 6880 Q16594 IHC 1:50 - 1:200 Immunogen Recombinant fusion protein containing a sequence corresponding to amino acids 1-172 of human TAF9 (NP_057367.1). Synonyms TAF9;MGC:5067;STAF31/32;TAF2G;TAFII-31;TAFII-32;TAFII31;TAFII32;TAFIID32 Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃.
    [Show full text]
  • Granulocyte Colony-Stimulating Factor-Induced TAF9 Modulates P53-TRIAP1-CASP3 Axis to Prevent Retinal Ganglion Cell Death After Optic Nerve Ischemia
    Granulocyte Colony-Stimulating Factor-Induced TAF9 Modulates P53-TRIAP1-CASP3 Axis to Prevent Retinal Ganglion Cell Death after Optic Nerve Ischemia Yao-Tseng Wen Buddhist Tzu Chi General Hospital Hualien: Hualien Tzu Chi Hospital Keh-Liang Lin Chung Shan Medical University Hospital Chin-Te Huang Tzu Chi University Rong Kung Tsai ( [email protected] ) Hualien Tzu Chi Hospital https://orcid.org/0000-0001-8760-5739 Research article Keywords: Granulocyte colony-stimulating factor, Rat anterior ischemic optic neuropathy model, Retinal ganglion cell, TBP associated factor 9, TP53, TRIAP1 Posted Date: January 6th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-138908/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/25 Abstract Background Optic nerve head (ONH) infarct can result in progressive retinal ganglion cell (RGC) death. Some evidences indicated that the granulocyte colony-stimulating factor (GCSF) provides positive effects against ischemic damage on RGCs. However, protective mechanisms of the GCSF after ONH infarct are complex and remain unclear. Methods To investigate the complex mechanisms, the transcriptome proles of the GCSF-treated retinas were examined using microarray technology. The retinal mRNA samples on days 3 and 7 post rat anterior ischemic optic neuropathy model (rAION) were analyzed by microarray and bioinformatics analyses. To evaluate the TAF9 function in RGC apoptosis, GCSF plus TAF9 siRNA-treated rats were evaluated using retrograde labeling with FluoroGold assay, TUNEL assay, and Western blotting in a rAION. Results GCSF treatment inuenced 3101 genes and 3332 genes on days 3 and 7 post rAION, respectively.
    [Show full text]
  • Conservation and Diversity of the Eukaryotic SAGA Coactivator Complex Across Kingdoms Ying‑Jiun C
    Chen and Dent Epigenetics & Chromatin (2021) 14:26 https://doi.org/10.1186/s13072-021-00402-x Epigenetics & Chromatin REVIEW Open Access Conservation and diversity of the eukaryotic SAGA coactivator complex across kingdoms Ying‑Jiun C. Chen1,2 and Sharon Y. R. Dent1,2* Abstract The SAGA complex is an evolutionarily conserved transcriptional coactivator that regulates gene expression through its histone acetyltransferase and deubiquitylase activities, recognition of specifc histone modifcations, and interac‑ tions with transcription factors. Multiple lines of evidence indicate the existence of distinct variants of SAGA among organisms as well as within a species, permitting diverse functions to dynamically regulate cellular pathways. Our co‑expression analysis of genes encoding human SAGA components showed enrichment in reproductive organs, brain tissues and the skeletal muscle, which corresponds to their established roles in developmental programs, emerging roles in neurodegenerative diseases, and understudied functions in specifc cell types. SAGA subunits modulate growth, development and response to various stresses from yeast to plants and metazoans. In metazoans, SAGA further participates in the regulation of diferentiation and maturation of both innate and adaptive immune cells, and is associated with initiation and progression of diseases including a broad range of cancers. The evolutionary conservation of SAGA highlights its indispensable role in eukaryotic life, thus deciphering the mechanisms of action of SAGA is key to understanding fundamental biological processes throughout evolution. To illuminate the diversity and conservation of this essential complex, here we discuss variations in composition, essentiality and co‑expression of component genes, and its prominent functions across Fungi, Plantae and Animalia kingdoms. Keywords: SAGA complex, Transcription, Coactivator, Epigenetics, GCN5, Development, Stress, Disease, Cancer, Evolution Background TATA-binding protein (TBP) [3–6].
    [Show full text]
  • Containing Protein That Replaces TAF6 in Drosophila SAGA Is Required for SAGA-Dependent Gene Expression
    Downloaded from genesdev.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION shown previously that Drosophila SAGA (dSAGA) in- A novel histone fold domain- cludes the orthologs of most components of the yeast containing protein that replaces SAGA (ySAGA) complex (Supplemental Table S1; Kusch et al. 2003; Muratoglu et al. 2003; Guelman et al. 2006; TAF6 in Drosophila SAGA is Kurshakova et al. 2007; Weake et al. 2008). In addition, required for SAGA-dependent dSAGA contains subunits that are unique to the fly com- plex, such as the WD repeat-containing protein WDA gene expression (Guelman et al. 2006). SAGA is essential for development in multicellular Vikki M. Weake,1 Selene K. Swanson,1 organisms, and Gcn5 is required for viability in both Arcady Mushegian,1,2 Laurence Florens,1 mice and Drosophila (Xu et al. 2000; Carre et al. 2005). Michael P. Washburn,1,3 Susan M. Abmayr,1,4 Furthermore, mutations that disrupt the HAT activity of and Jerry L. Workman1,5 dSAGA, such as ada2b and wda, result in lethality in flies (Qi et al. 2004; Pankotai et al. 2005; Guelman et al. 2006). 1Stowers Institute for Medical Research, Kansas City, Missouri Moreover, mutations that specifically affect the ubiquitin 64110, USA; 2Department of Microbiology, Molecular Genetics protease activity of dSAGA are lethal, and result in and Immunology, University of Kansas Medical Center, Kansas defects in axon targeting in the larval eye–brain complex City, Kansas 66160, USA; 3Department of Pathology and (Weake et al. 2008). To characterize dSAGA more fully, Laboratory Medicine, University of Kansas Medical Center, we sought to identify orthologs of all ySAGA compo- Kansas City, Kansas 66160, USA; 4Department of Anatomy and nents, as there are subunits present in the ySAGA and Cell Biology, University of Kansas Medical Center, Kansas City, human SAGA complexes for which orthologs have not Kansas 66160, USA yet been identified in flies (Rodriguez-Navarro 2009).
    [Show full text]