PI3K Catalytic Isoform Alteration Promotes the LIMK1-Related

Total Page:16

File Type:pdf, Size:1020Kb

PI3K Catalytic Isoform Alteration Promotes the LIMK1-Related ANTICANCER RESEARCH 37 : 1805-1818 (2017) doi:10.21873/anticanres.11515 PI3K Catalytic Isoform Alteration Promotes the LIMK1-related Metastasis Through the PAK1 or ROCK1/2 Activation in Cigarette Smoke-exposed Ovarian Cancer Cells GA BIN PARK 1 and DAEJIN KIM 2 1Department of Biochemistry, Kosin University College of Medicine, Busan, Republic of Korea; 2Department of Anatomy, Inje University College of Medicine, Busan, Republic of Korea Abstract. Aim: To investigate the molecular mechanisms Several studies have shown a strong correlation between by which long-term exposure to cigarette smoke extract cigarette smoke (CS) and cancer metastasis through the (CSE) contributes to ovarian cancer metastasis. Materials induction of numerous factors involved in migration activity and Methods: Western blot analysis for diverse p110 (1-3). The exposure to CS induces the epithelial- isoforms of phosphoinositide 3-kinase (PI3K)-related mesenchymal transition (EMT) process and up-regulates the signaling pathway and epithelial-mesenchymal transition expression of EMT markers, including N-cadherin and (EMT) markers was performed to analyze the underlying vimentin (4, 5). Cigarette smoke extract (CSE) treatment mechanisms. Migratory activity of CSE-exposed ovarian significantly induces interleukin-8 (IL-8) and transforming cancer cells was determined by transendothelial migration growth factor-beta 1 (TGF- β1 ) production and profoundly and invasion assay. Results: After exposure to CSE for four suppresses the proliferation and growth of erythroid and weeks, CaOV3 (primary) and SKOV3 (metastatic) ovarian granulocyte-macrophage progenitors (6). Stimulation with cancer cells showed enhanced mesenchymal characteristics CSE in human lung fibroblast cells induces the expression and produced EMT-related cytokines [intwerleukin-8 (IL-8), of phosphorylated Smad3, a main downstream target of the vascular endothelial growth factor (VEGF) and TGF- β1 receptor, which results in the secretion of vascular transforming growth factor-beta 1 (TGF- β1 )]. CSE exposure endothelial growth factor (VEGF) (7). CSE increases the activated the Src-p110 δ- p21 protein-activated kinase 1 migratory and invasive activity of ovarian cancer cells and (PAK1) in CaOV3 cells and the Lyn-p110 β- Rho-associated induces the expression of the EMT-related transcriptional kinases 1/2 (ROCK1/2) in SKOV3 cells, which led to the factors Snail and Slug (8). Nonetheless, the mechanisms stimulation of LIM kinase 1 (LIMK1) phosphorylation and underlying the induction of EMT by CSEs in ovarian cancer TGF- β1 release. LIMK1 knockdown efficiently blocked the remain unclear. migratory activity and suppressed the mesenchymal TGF- β, a well-established EMT mediator, plays a critical phenotypes of CSE-treated ovarian cancer cells. Reactive role in tumor progression (9, 10). TGF- β1 activates the oxygen species (ROS) initiated the CSE-mediated EMT phosphorylation of Akt, which, in turn, induces the processes in ovarian cancer cells. Conclusion: delocalization of E-cadherin and the acquisition of a spindle Characterization of the p110 isotypes of PI3K is critical for cell morphology (11). The activation of the phosphoinositide regulating cancer metastasis; LIMK1 could be a common 3-kinase (PI3K)/Akt pathway increases Twist1 expression and therapeutic target of ovarian cancer metastasis. sequentially up-regulates TGF- β2 secretion and TGF- β- mediated signaling. In addition, enhanced TGF- β receptor signaling maintains hyperactive PI3K/Akt signaling (12). The precise mechanism by which the PI3K/Akt signaling pathway reinforces TGF- β1 production remains controversial. Correspondence to: Daejin Kim, MD, Ph.D., Department of PI3K and Akt have a wide influence on several cellular Anatomy, Inje University College of Medicine, 75, Bokji-ro, processes, such as cell growth, survival, migration and Busanjin-gu, Busan 47392, Republic of Korea. Tel: +82 518906637, metabolic control (13). Class I PI3Ks are the best- Fax: +82 518966634, e-mail: [email protected] characterized enzymes, including class IA (p110 α, p110 β and Key Words: Phosphoinositide 3-kinase, LIM kinase 1, ovarian p110 δ) and class IB (p110 γ), and the aberrant activation of cancer, p21 protein-activated kinase 1, rho-associated kinases 1/2, this pathway has been widely reported in many human epithelial-mesenchymal transition, cigarette smoke extract. cancers, including ovarian cancer (14). Overexpression and 1805 ANTICANCER RESEARCH 37 : 1805-1818 (2017) mutations in the PIK3CA gene encoding the p110 α catalytic Each cigarette contained 0.726 mg of nicotine, 9.4 mg of tar and subunit of PI3K, which is frequently activated, have been 10.9 mg of total particulate matter. CSE was an extract of frequently detected in various cancers, including breast, mainstream cigarette smoke. Briefly, the smoke was bubbled through 25 ml of DMEM and RPMI-1640 medium without FBS for ovarian, colorectal and liver (15-17). In addition, the 2 min and this solution was used as the stock (100%) for further expression of PI3K p110 β isoforms is related to dilutions. After adjusting the pH to 7.2, the obtained CSE was chemoresistance in ovarian cancer cell lines (18). However, filtered through a 0.22 μm pore filter (Millipore, Bedford, MA, the role of the specific isoforms of PI3K is currently unknown USA) for sterilization. CSE was standardized by measuring the in CSE-mediated EMT processes and TGF- β1 production in absorbance at a wavelength of 320 nm and was used within 30 min ovarian cancer cells. Based on these results, targeting the after the preparation (27). particular PI3K isoforms in ovarian cancer may provide experimental information for effective therapeutic treatments. Western blotting. The cells were washed in PBS and lysed in NP- 40 buffer (Elpis Biotech, Daejeon, Korea) supplemented with a The aberrant expression of Rho and downstream targets, protease inhibitor cocktail (Sigma-Aldrich). Protein phosphorylation Rho-associated protein kinase 1 (ROCK1) and ROCK2, is states were preserved through the addition of phosphatase inhibitors commonly observed in human cancers and often associated with (Cocktail II, Sigma-Aldrich) to the NP-40 buffer. The protein more invasive and metastatic phenotypes (19). Rho is one of concentrations were determined using a bicinchoninic acid (BCA) the downstream targets of PI3K and treatment with a PI3K assay kit (Pierce, Rockford, IL, USA). The proteins (10 μg/sample) inhibitor or ROCK inhibitor inhibits the transendothelial were resolved through sodium dodecyl sulfate-polyacrylamide gel migration of mesenchymal stem cells (20, 21). Treatment with electrophoresis (SDS-PAGE) and then transferred to a nitrocellulose membrane (Millipore Corp., Billerica, MA, USA). The membranes inhibitors of RhoA, ROCK1/2 and PI3K attenuates TGF- β1 were blocked with 5% skim milk prior to Western blot analysis. expression (22). LIM kinase 1 (LIMK1), which is activated by Chemiluminescence was detected using an enhanced p21-activated kinase (PAK) and ROCK, also contributes to chemiluminescence (ECL) kit (Advansta Corp., Menlo Park, CA, cancer cell migration and invasion by regulating actin dynamics USA) and the multiple gel documentation (Gel DOC) system (23-25). TGF- β1 activates cytoskeletal actin rearrangement (Fujifilm). The following primary antibodies were used: E-cadherin, through Rho/ROCK-mediated LIMK1 activation causing a N-cadherin, vimentin, ZO-1, snail, β- actin, p110 α, p110 β, p110 γ, 144 474 fibrotic response in retinal pigment epithelial cells (26). p110 δ, phospho-PAK1 (Ser ), PAK1, phospho-PAK4 (Ser ), PAK4, RhoA, Fyn, phospho-Lyn (Tyr 507 ), Lyn, phospho-Src Meanwhile, the regulatory effect of LIMK1 on TGF- β1 (Tyr 416 ) and Src (Cell Signaling Technology, Beverly, MA, USA); production in ovarian cancer cells remains unclear. alpha( α)-smooth muscle actin ( α- SMA) (Bioss, Woburn, MA, In this study, we chose primary (CaOV3) and metastatic USA); ROCK1 and ROCK2 (Abcam, Cambridge, UK); and (SKOV3) epithelial ovarian cancer cell lines to characterize phospho-LIMK1 (Thr 505 ), LIMK1 and phospho-Fyn (Thr 12 ) (Santa the altered expression of the p110 isoforms and define the Cruz Biotechnology, Santa Cruz, CA, USA). target signaling molecules. We investigated the controlling mechanism of PI3K-mediated LIMK1 activation to enhance Small interfering RNA (siRNA) transfection. An experimentally TGF- β1 production and EMT processes in CSE-exposed verified human LIMK1 small interfering RNA (siRNA) duplex and ovarian cancer cells. a negative control siRNA were obtained from Bioneer Corporation (Daejeon, Korea). The cells were seeded at a concentration of 1×10 5 per well in a 6-well plate and grown overnight. The cells were then Materials and Methods transfected with 200 nM siRNA using LipofectAMINE RNAiMAX Reagent (Invitrogen, Carlsbad, CA, USA) according to the Cell lines and chemicals. The human ovarian cancer cell lines manufacturer’s instructions. The cells were used 48 h after CaOV3 and SKOV3 were purchased from the ATCC (Manassas, transfection for further experiments. VA, USA). CaOV3 cells were maintained in DMEM medium (Corning Incorporated, Corning, NY, USA) supplemented with Quantification of human cytokines by ELISA. The conditioned 10% FBS (RMBIO, Missoula, MT, USA), penicillin, streptomycin media were collected and active TGF- β1, VEGF and IL-8 were and glutamine at 37˚C in 5% CO 2. SKOV3 cells were maintained quantified using a single cytokine ELISA assay kit (R&D Systems, in RPMI-1640 medium (Corning Incorporated) supplemented
Recommended publications
  • The Role of LIM Kinase 1 and Its Substrates in Cell Cycle Progression
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2014 The Role of LIM Kinase 1 and its Substrates in Cell Cycle Progression Lisa Ritchey University of Central Florida Part of the Medical Sciences Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Ritchey, Lisa, "The Role of LIM Kinase 1 and its Substrates in Cell Cycle Progression" (2014). Electronic Theses and Dissertations, 2004-2019. 1300. https://stars.library.ucf.edu/etd/1300 THE ROLE OF LIM KINASE 1 AND ITS SUBSTRATES IN CELL CYCLE PROGRESSION by LISA RITCHEY B.S. Florida State University 2007 M.S. University of Central Florida 2010 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Burnett School of Biomedical Sciences in the College of Graduate Studies at the University of Central Florida Orlando, Florida Summer Term 2014 Major Professor: Ratna Chakrabarti © 2014 Lisa Ritchey ii ABSTRACT LIM Kinase 1 (LIMK1), a modulator of actin and microtubule dynamics, has been shown to be involved in cell cycle progression. In this study we examine the role of LIMK1 in G1 phase and mitosis. We found ectopic expression of LIMK1 resulted in altered expression of p27Kip1, the G1 phase Cyclin D1/Cdk4 inhibitor.
    [Show full text]
  • Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
    Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent
    [Show full text]
  • Deep Learning–Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer Kumardeep Chaudhary1, Olivier B
    Published OnlineFirst October 5, 2017; DOI: 10.1158/1078-0432.CCR-17-0853 Statistics in CCR Clinical Cancer Research Deep Learning–Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer Kumardeep Chaudhary1, Olivier B. Poirion1, Liangqun Lu1,2, and Lana X. Garmire1,2 Abstract Identifying robust survival subgroups of hepatocellular car- index (C-index) ¼ 0.68]. More aggressive subtype is associated cinoma (HCC) will significantly improve patient care. Current- with frequent TP53 inactivation mutations, higher expression ly, endeavor of integrating multi-omicsdatatoexplicitlypredict of stemness markers (KRT19 and EPCAM)andtumormarker HCC survival from multiple patient cohorts is lacking. To fill BIRC5, and activated Wnt and Akt signaling pathways. We this gap, we present a deep learning (DL)–based model on HCC validated this multi-omics model on five external datasets of that robustly differentiates survival subpopulations of patients various omics types: LIRI-JP cohort (n ¼ 230, C-index ¼ 0.75), in six cohorts. We built the DL-based, survival-sensitive model NCI cohort (n ¼ 221, C-index ¼ 0.67), Chinese cohort (n ¼ on 360 HCC patients' data using RNA sequencing (RNA-Seq), 166, C-index ¼ 0.69), E-TABM-36 cohort (n ¼ 40, C-index ¼ miRNA sequencing (miRNA-Seq), and methylation data from 0.77), and Hawaiian cohort (n ¼ 27, C-index ¼ 0.82). This TheCancerGenomeAtlas(TCGA),whichpredictsprognosis is the first study to employ DL to identify multi-omics features as good as an alternative model where genomics and clinical linked to the differential survival of patients with HCC. Given data are both considered. This DL-based model provides two its robustness over multiple cohorts, we expect this workflow to optimal subgroups of patients with significant survival differ- be useful at predicting HCC prognosis prediction.
    [Show full text]
  • Characterization of Gf a Drosophila Trimeric G Protein Alpha Subunit
    Characterization of Gf a Drosophila trimeric G protein alpha subunit Naureen Quibria Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2012 © 2012 Naureen Quibria All rights reserved Abstract Characterization of Gf a Drosophila trimeric G-protein alpha subunit Naureen Quibria In the morphogenesis of tissue development, how coordination of patterning and growth achieve the correct organ size and shape is a principal question in biology. Efficient orchestrating mechanisms are required to achieve this and cells have developed sophisticated systems for reception and interpretation of the multitude of extracellular stimuli to which they are exposed. Plasma membrane receptors play a key role in the transmission of such signals. G-protein coupled receptors (GPCRs) are the largest class of cell surface receptors that respond to an enormous diversity of extracellular stimuli, and are critical mediators of cellular signal transduction in eukaryotic organisms. Signaling through GPCRs has been well characterized in many biological contexts. While they are a major class of signal transducers, there are not many defined instances where GPCRs have been implicated in the process of development to date. The Drosophila wing provides an ideal model system to elucidate and address the role of GPCRs in development, as its growth is regulated by a small number of conserved signaling pathways. In my thesis work, I address the role of a trimeric G alpha protein in Drosophila, Gαf, and what part it may play in development. In particular, I explore the role of Gαf as an alpha subunit of a trimeric complex, to determine what heptahelical receptors might act as its cognate receptor.
    [Show full text]
  • Circular RNA Hsa Circ 0005114‑Mir‑142‑3P/Mir‑590‑5P‑ Adenomatous
    ONCOLOGY LETTERS 21: 58, 2021 Circular RNA hsa_circ_0005114‑miR‑142‑3p/miR‑590‑5p‑ adenomatous polyposis coli protein axis as a potential target for treatment of glioma BO WEI1*, LE WANG2* and JINGWEI ZHAO1 1Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033; 2Department of Ophthalmology, The First Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, P.R. China Received September 12, 2019; Accepted October 22, 2020 DOI: 10.3892/ol.2020.12320 Abstract. Glioma is the most common type of brain tumor APC expression with a good overall survival rate. UALCAN and is associated with a high mortality rate. Despite recent analysis using TCGA data of glioblastoma multiforme and the advances in treatment options, the overall prognosis in patients GSE25632 and GSE103229 microarray datasets showed that with glioma remains poor. Studies have suggested that circular hsa‑miR‑142‑3p/hsa‑miR‑590‑5p was upregulated and APC (circ)RNAs serve important roles in the development and was downregulated. Thus, hsa‑miR‑142‑3p/hsa‑miR‑590‑5p‑ progression of glioma and may have potential as therapeutic APC‑related circ/ceRNA axes may be important in glioma, targets. However, the expression profiles of circRNAs and their and hsa_circ_0005114 interacted with both of these miRNAs. functions in glioma have rarely been studied. The present study Functional analysis showed that hsa_circ_0005114 was aimed to screen differentially expressed circRNAs (DECs) involved in insulin secretion, while APC was associated with between glioma and normal brain tissues using sequencing the Wnt signaling pathway. In conclusion, hsa_circ_0005114‑ data collected from the Gene Expression Omnibus database miR‑142‑3p/miR‑590‑5p‑APC ceRNA axes may be potential (GSE86202 and GSE92322 datasets) and explain their mecha‑ targets for the treatment of glioma.
    [Show full text]
  • Oncogenic Activation of Pak1-Dependent Pathway of Macropinocytosis Determines BCG Entry Into Bladder Cancer Cells
    Cancer Molecular and Cellular Pathobiology Research Oncogenic Activation of Pak1-Dependent Pathway of Macropinocytosis Determines BCG Entry into Bladder Cancer Cells Gil Redelman-Sidi1,2, Gopa Iyer3,4, David B. Solit3,4, and Michael S. Glickman1,2 Abstract Bacille Calmette-Guerin (BCG) is an attenuated strain of Mycobacterium bovis that is used widely as a vaccine for tuberculosis and is used as an effective treatment for superficial bladder carcinoma. Despite being the most successful cancer biotherapy, its mechanism of action and response determinants remain obscure. Here, we establish a model system to analyze BCG interaction with bladder cancer cells, using it to show that these cells vary dramatically in their susceptibility to BCG infection. Unexpectedly, the uptake of BCG by bladder cancer cells occurs by macropinocytosis rather than phagocytosis. BCG entry into bladder cancer cells relied upon Rac1, Cdc42, and their effector kinase Pak1. The difference in susceptibility between BCG- permissive and -resistant bladder cancer cells was due to oncogenic activation of signaling pathways that activate macropinocytosis, with phosphoinositide 3-kinase inhibitor activation stimulating BCG uptake independently of Akt. Similarly, activated Ras strongly activated Pak1-dependent uptake of BCG. These results reveal that oncogenic activation of macropinocytosis determines BCG uptake by bladder cancer cells, implying that tumor responsiveness to BCG may be governed by the specific mutations present in the treated cancer cell. Cancer Res; 73(3); 1156–67. Ó2013 AACR. Introduction Despite more than 30 years of clinical experience with Bladder cancer is among the most common tumors diag- intravesical BCG for bladder cancer, its mechanism of antitu- nosed in the United States, with an estimated annual incidence mor effect remains unknown and no markers exist to predict of 70,530 new cases and 14,680 deaths in 2010 (1).
    [Show full text]
  • Role of Rac1-Pak Pathway in Aggressive B-Cell Lymphoma
    University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Spring 5-4-2019 Role of Rac1-Pak pathway in aggressive b-cell lymphoma Tian Tian University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Hemic and Lymphatic Diseases Commons, and the Neoplasms Commons Recommended Citation Tian, Tian, "Role of Rac1-Pak pathway in aggressive b-cell lymphoma" (2019). Theses & Dissertations. 344. https://digitalcommons.unmc.edu/etd/344 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. i Role of Rac1-PAK Pathway in Aggressive B-cell Lymphomas By Tian Tian A DISSERTATION Presented to the Faculty of The University of Nebraska Graduate College in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Pathology & Microbiology Graduate program Under the Supervision of Professor Kai Fu University of Nebraska Medical Center, Omaha, Nebraska Dec, 2018 Supervisory Committee: Ying Yan, Ph.D. John S Davis, Ph.D. Timothy C Greiner, M.D. Javeed Iqbal, Ph.D. ii Role of Rac1-PAK pathway in Aggressive B-cell Lymphomas Tian Tian University of Nebraska Medical Center, 2018 Advisor: Kai Fu, M.D. Ph.D. Aggressive B-cell lymphomas are diverse group of neoplasms that arise at different stages of B-cell development and by various mechanisms of neoplastic transformation. Aggressive B-cell lymphomas include many types, subtypes and variants of diffuse large B-cell lymphoma (DLBCL), Burkitt lymphoma (BL), mantle cell lymphoma (MCL) and B lymphoblastic lymphoma.
    [Show full text]
  • Whole Exome Sequencing of Thymic Neuroendocrine Tumor with Ectopic
    176:2 Y Li, Y Peng and others Sequencing thymic 176:2 187–194 Clinical Study neuroendocrine tumor Whole exome sequencing of thymic neuroendocrine tumor with ectopic ACTH syndrome Yanli Li1,*, Ying Peng1,*, Xiuli Jiang1, Yulong Cheng3, Weiwei Zhou1, Tingwei Su1, Jing Xie2, Xu Zhong1, Dalong Song1, Luming Wu1, Liwen Fan1, Min Li1, Jie Hong1, Weiqing Wang1, Guang Ning1,3 and Yanan Cao1 1Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors and 2Department of Pathology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China, and 3Laboratory of Endocrinology and Metabolism, Institute of Health Correspondence Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & should be addressed Shanghai Jiao-Tong University School of Medicine (SJTUSM), Shanghai, China to Y Cao *(Y Li and Y Peng contributed equally to this work) Email [email protected] Abstract Objective: Thymic neuroendocrine tumor is the second-most prevalent cause of ectopic adrenocorticotropic hormone (ACTH) syndrome (EAS), which is a rare disease characterized by ectopic ACTH oversecretion from nonpituitary tumors. However, the genetic abnormalities of thymic neuroendocrine tumors with EAS remain largely unknown. We aim to elucidate the genetic abnormalities and identify the somatic mutations of potential tumor-related genes of thymic neuroendocrine tumors with EAS by whole exome sequencing. Design and methods: Nine patients with thymic neuroendocrine tumors with EAS who were diagnosed at Shanghai Clinical Center for Endocrine and Metabolic Diseases in Ruijin Hospital between 2002 and 2014 were enrolled. We performed whole exome sequencing on the DNA obtained from thymic neuroendocrine tumors and matched peripheral blood using the Hiseq2000 platform.
    [Show full text]
  • Supplementary Table S2
    1-high in cerebrotropic Gene P-value patients Definition BCHE 2.00E-04 1 Butyrylcholinesterase PLCB2 2.00E-04 -1 Phospholipase C, beta 2 SF3B1 2.00E-04 -1 Splicing factor 3b, subunit 1 BCHE 0.00022 1 Butyrylcholinesterase ZNF721 0.00028 -1 Zinc finger protein 721 GNAI1 0.00044 1 Guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 1 GNAI1 0.00049 1 Guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 1 PDE1B 0.00069 -1 Phosphodiesterase 1B, calmodulin-dependent MCOLN2 0.00085 -1 Mucolipin 2 PGCP 0.00116 1 Plasma glutamate carboxypeptidase TMX4 0.00116 1 Thioredoxin-related transmembrane protein 4 C10orf11 0.00142 1 Chromosome 10 open reading frame 11 TRIM14 0.00156 -1 Tripartite motif-containing 14 APOBEC3D 0.00173 -1 Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3D ANXA6 0.00185 -1 Annexin A6 NOS3 0.00209 -1 Nitric oxide synthase 3 SELI 0.00209 -1 Selenoprotein I NYNRIN 0.0023 -1 NYN domain and retroviral integrase containing ANKFY1 0.00253 -1 Ankyrin repeat and FYVE domain containing 1 APOBEC3F 0.00278 -1 Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3F EBI2 0.00278 -1 Epstein-Barr virus induced gene 2 ETHE1 0.00278 1 Ethylmalonic encephalopathy 1 PDE7A 0.00278 -1 Phosphodiesterase 7A HLA-DOA 0.00305 -1 Major histocompatibility complex, class II, DO alpha SOX13 0.00305 1 SRY (sex determining region Y)-box 13 ABHD2 3.34E-03 1 Abhydrolase domain containing 2 MOCS2 0.00334 1 Molybdenum cofactor synthesis 2 TTLL6 0.00365 -1 Tubulin tyrosine ligase-like family, member 6 SHANK3 0.00394 -1 SH3 and multiple ankyrin repeat domains 3 ADCY4 0.004 -1 Adenylate cyclase 4 CD3D 0.004 -1 CD3d molecule, delta (CD3-TCR complex) (CD3D), transcript variant 1, mRNA.
    [Show full text]
  • HCC and Cancer Mutated Genes Summarized in the Literature Gene Symbol Gene Name References*
    HCC and cancer mutated genes summarized in the literature Gene symbol Gene name References* A2M Alpha-2-macroglobulin (4) ABL1 c-abl oncogene 1, receptor tyrosine kinase (4,5,22) ACBD7 Acyl-Coenzyme A binding domain containing 7 (23) ACTL6A Actin-like 6A (4,5) ACTL6B Actin-like 6B (4) ACVR1B Activin A receptor, type IB (21,22) ACVR2A Activin A receptor, type IIA (4,21) ADAM10 ADAM metallopeptidase domain 10 (5) ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9 (4) ADCY2 Adenylate cyclase 2 (brain) (26) AJUBA Ajuba LIM protein (21) AKAP9 A kinase (PRKA) anchor protein (yotiao) 9 (4) Akt AKT serine/threonine kinase (28) AKT1 v-akt murine thymoma viral oncogene homolog 1 (5,21,22) AKT2 v-akt murine thymoma viral oncogene homolog 2 (4) ALB Albumin (4) ALK Anaplastic lymphoma receptor tyrosine kinase (22) AMPH Amphiphysin (24) ANK3 Ankyrin 3, node of Ranvier (ankyrin G) (4) ANKRD12 Ankyrin repeat domain 12 (4) ANO1 Anoctamin 1, calcium activated chloride channel (4) APC Adenomatous polyposis coli (4,5,21,22,25,28) APOB Apolipoprotein B [including Ag(x) antigen] (4) AR Androgen receptor (5,21-23) ARAP1 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1 (4) ARHGAP35 Rho GTPase activating protein 35 (21) ARID1A AT rich interactive domain 1A (SWI-like) (4,5,21,22,24,25,27,28) ARID1B AT rich interactive domain 1B (SWI1-like) (4,5,22) ARID2 AT rich interactive domain 2 (ARID, RFX-like) (4,5,22,24,25,27,28) ARID4A AT rich interactive domain 4A (RBP1-like) (28) ARID5B AT rich interactive domain 5B (MRF1-like) (21) ASPM Asp (abnormal
    [Show full text]
  • 4 Understanding the Role of GNA13 Deregulation in Lymphomagenesis
    Integrative Genomics Reveals a Role for GNA13 in Lymphomagenesis by Adrienne Greenough University Program in Genetics and Genomics Duke University Approved: ___________________________ Sandeep Dave, Supervisor ___________________________ Fred Dietrich ___________________________ Jack Keene ___________________________ Yuan Zhuang Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Genetics and Genomics in the Graduate School of Duke University 2014 i v ABSTRACT Integrative Genomics Reveals a Role for GNA13 in Lymphomagenesis by Adrienne Greenough University Program in Genetics and Genomics Duke University Approved: ___________________________ Sandeep Dave, Supervisor ___________________________ Fred Dietrich ___________________________ Jack Keene ___________________________ Yuan Zhuang An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Genetics and Genomics in the Graduate School of Duke University 2014 Copyright by Adrienne Greenough 2014 Abstract Lymphomas comprise a diverse group of malignancies derived from immune cells. High throughput sequencing has recently emerged as a powerful and versatile method for analysis of the cancer genome and transcriptome. As these data continue to emerge, the crucial work lies in sorting through the wealth of information to hone in on the critical aspects that will give us a better understanding of biology and new insight for how to treat disease. Finding the important signals within these large data sets is one of the major challenges of next generation sequencing. In this dissertation, I have developed several complementary strategies to describe the genetic underpinnings of lymphomas. I begin with developing a better method for RNA sequencing that enables strand-specific total RNA sequencing and alternative splicing profiling in the same analysis.
    [Show full text]
  • Characterization of the Macrophage Transcriptome in Glomerulonephritis-Susceptible and -Resistant Rat Strains
    Genes and Immunity (2011) 12, 78–89 & 2011 Macmillan Publishers Limited All rights reserved 1466-4879/11 www.nature.com/gene ORIGINAL ARTICLE Characterization of the macrophage transcriptome in glomerulonephritis-susceptible and -resistant rat strains K Maratou1, J Behmoaras2, C Fewings1, P Srivastava1, Z D’Souza1, J Smith3, L Game4, T Cook2 and T Aitman1 1Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Imperial College London, London, UK; 2Centre for Complement and Inflammation Research, Imperial College London, London, UK; 3Renal Section, Imperial College London, London, UK and 4Genomics Laboratory, MRC Clinical Sciences Centre, London, UK Crescentic glomerulonephritis (CRGN) is a major cause of rapidly progressive renal failure for which the underlying genetic basis is unknown. Wistar–Kyoto (WKY) rats show marked susceptibility to CRGN, whereas Lewis rats are resistant. Glomerular injury and crescent formation are macrophage dependent and mainly explained by seven quantitative trait loci (Crgn1–7). Here, we used microarray analysis in basal and lipopolysaccharide (LPS)-stimulated macrophages to identify genes that reside on pathways predisposing WKY rats to CRGN. We detected 97 novel positional candidates for the uncharacterized Crgn3–7. We identified 10 additional secondary effector genes with profound differences in expression between the two strains (45-fold change, o1% false discovery rate) for basal and LPS-stimulated macrophages. Moreover, we identified eight genes with differentially expressed alternatively spliced isoforms, by using an in-depth analysis at the probe level that allowed us to discard false positives owing to polymorphisms between the two rat strains. Pathway analysis identified several common linked pathways, enriched for differentially expressed genes, which affect macrophage activation.
    [Show full text]