Poorly Known Sponges in the Mediterranean with the Detection of Some Taxonomic Inconsistencies

Total Page:16

File Type:pdf, Size:1020Kb

Poorly Known Sponges in the Mediterranean with the Detection of Some Taxonomic Inconsistencies Journal of the Marine Poorly known sponges in the Mediterranean Biological Association of the United Kingdom with the detection of some taxonomic inconsistencies cambridge.org/mbi Julio A. Díaz1,4 , Sergio Ramírez-Amaro1,2, Francesc Ordines1 , Paco Cárdenas3 , Pere Ferriol4, Bàrbara Terrasa2 and Enric Massutí1 Original Article 1Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Moll de Ponent s/n, 07015 Palma, Spain; 2Laboratori de Genètica, Biology Department, University of the Balearic Islands, Carretera de Valldemossa km 7.5, Cite this article: Díaz JA, Ramírez-Amaro S, 07122 Palma de Mallorca, Spain; 3Pharmacognosy, Department of Medicinal Chemistry, BioMedical Centre, Ordines F, Cárdenas P, Ferriol P, Terrasa B, 4 Massutí E (2020). Poorly known sponges in the Husargatan 3. Uppsala University, 751 23 Uppsala, Sweden and Interdisciplinary Ecology Group, Biology Mediterranean with the detection of some Department, University of the Balearic Islands, Carretera de Valldemossa km 7.5, 07122 Palma de Mallorca, Spain taxonomic inconsistencies. Journal of the Marine Biological Association of the United Abstract Kingdom 100, 1247–1260. https://doi.org/ 10.1017/S0025315420001071 The poorly known sponge species Axinella vellerea (Topsent, 1904), Acarnus levii (Vacelet, 1960) and Haliclona poecillastroides (Vacelet, 1969) are reported from bottom-trawl samples Received: 16 July 2020 off the Balearic Islands, Western Mediterranean. A re-description is provided for all three spe- Revised: 7 September 2020 Accepted: 21 October 2020 cies and the Folmer fragment of cytochrome oxidase subunit I (COI) obtained for A. levii and First published online: 10 December 2020 H. poecillastroides. This is the second report of A. vellerea in the Mediterranean, the first time that A. levii is reported outside Corsica and the first time that H. poecillastroides is documented Key words: outside the Gulf of Lion, France. The systematic allocation of A. levii and H. poecillastroides is Acarnidae; Balearic Islands; barcoding; Mediterranean Sea; new records; Petrosiidae; discussed based on a COI phylogenetic analysis and morphology. The poorly understood phyl- Porifera ogeny of the Haplosclerida does not permit us to find a proper allocation for H. poecillastroides, although its current position in the genus Haliclona or the family Chalinidae is not defensible. Author for correspondence: On the other hand, A. levii currently fits best in the family Microcionidae, and seems related to Julio A. Díaz, E-mail: [email protected] some Clathria species with mixed features between Clathria and Acarnus. Considering that the species of the genus Acarnus shares a strong synapomorphy (the possession of Cladotylotes), it is plausible for all Acarnus species to be Microcionids. We conclude that H. poecillastroides needs to be reallocated to a new genus: Xestospongia poecillastroides comb. nov. (Petrosiidae). However, a reallocation of A. levii is not advisable for the moment, as this would imply major systematic changes such as the reallocation of the whole genus Acarnus to Microcionidae, and the redescription of Microcionidae and Acarnidae. Introduction The Mediterranean is considered a hotspot of sponge diversity, with about 680 species reported including ∼265 endemic species (Pansini & Longo, 2003; Voultsiadou, 2009;Van Soest et al., 2012; Xavier & Van Soest, 2012). Moreover, new species and new geographic records are periodically reported in this sea (e.g. Vacelet et al., 2007; Bertolino et al., 2013, 2015; Sitjà & Maldonado, 2014; Corriero et al., 2015; Melis et al., 2016). Knowledge on Mediterranean sponge fauna comes mainly from species living in shallow habitats accessible through scuba diving. Less is known about the circalittoral and bathyal domains (Danovaro et al., 2010), although these deep ecosystems may harbour important communities of filter feeding animals, such as corals or sponges, that can also function as habitat engineers (Maldonado et al., 2015). Improving the scientific knowledge of this fauna contributes to the management of these fragile ecosystems and their protection. The Balearic Promontory, in the Western Mediterranean, is an area of high ecological interest because of the high oligotrophy of its waters, a consequence of the lack of rivers and upwelling zones, the scarcity of rain and the karstic nature of its rocks (Estrada, 1996; Acosta et al., 2002). Moreover, the oceanographic fronts and currents of the Balearic Archipelago and between the Islands and the Iberian Peninsula may act as genetic barriers to the dispersal of sponges and other benthic organisms, contributing to its isolation © Marine Biological Association of the United Kingdom 2020 (Duran et al., 2004; Galarza et al., 2009; Pérez-Portela et al., 2015; Pascual et al., 2016). The first taxonomic studies of the sponge fauna in the Balearic Islands date back to the end of the 19th and the beginning of the 20th centuries and focus on samples collected from Maó in Menorca, Palma Bay in Mallorca and Cabrera Island (Lackschewitz, 1886; Ferrer-Hernández, 1916, 1921). Then, there is a gap in the literature until the 1980s, when sev- eral authors relaunched sponge research, mainly from shallow waters (Bibiloni & Gili, 1892; Bibiloni et al., 1989; Bibiloni, 1990; Vacelet & Uriz, 1991; Martí et al., 2004; Gràcia et al., 2005, 2014; Guzzetti et al., 2019), although with some exceptions from deeper habitats (Uriz & Rosell, 1990; Maldonado et al., 2015). Recently, Santín et al.(2018) have analysed the sponges of the Menorca Channel from a community-level perspective. Within the ecosystem approach to fisheries, the MEDITS surveys programme provides data and samples of benthic and demersal species on the sedimentary bottoms of the continental Downloaded from https://www.cambridge.org/core. University of Athens, on 27 Sep 2021 at 09:23:06, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0025315420001071 1248 Julio A. Díaz et al. shelf and upper slopes along the northern Mediterranean (Spedicato et al., 2019). The aim of this work is to re-describe three poorly known deep-sea sponge species, recorded for the first time from the circalittoral soft bottoms of the Balearic Promontory using an integrative taxonomy approach (combining morphological descriptions and molecular sequences). This is taken as an opportunity to revisit and question the phylogenetic relationships of these species. Material and methods Samples The specimens were collected during the MEDITS surveys devel- oped off the Balearic Islands (western Mediterranean), using the experimental bottom trawl gear GOC-73 (Bertrand et al., 2002) Fig. 1. Map of the studied area showing the stations (numbers) where sponges were (see Figure 1 and Table 1 for sampling station details). collected. Coloured symbols represent the distribution of Axinella vellerea, Haliclona Additional sampling with a Jennings’ type beam trawl (Reiss poecillastroides and Acarnus levii. The small map shows the previous records of the species in the Mediterranean for A. vellerea (Sitjà & Maldonado, 2014; Sitjà et al., et al., 2006) has also been carried out during these surveys in 2019) and A. levii (Vacelet, 1960, 1961), and previous documented records for H. poe- order to improve the sampling of benthic species. Sponges ana- cillastroides (Vacelet, 1969). lysed in this study were collected with both sampling methods during the MEDITS surveys carried out in 2016, 2017 and 2018 around Mallorca and Menorca. μ μ μ 1.75 MgCl2 0.5 l of each primer, 0.5 l BSA, 0.05 l TAQ and Once on deck, sponges were separated from the rest of the 1 μl DNA). The PCR thermal profile applied was: initial stage catch and photographed with a Nikon DSLR D300 digital camera of 94°C for 5 min, then 37 cycles at 94°C for 15 s, 46°C for 15 s on a graph chart. Whole samples were preserved in absolute etha- and 72°C for 15 s, followed by a final extension at 72°C for 7 nol (EtOH). Sponge specimens were deposited in the Marine min. PCR amplification of A. vellerea did not work, including Fauna Collection (http://www.ma.ieo.es/cfm/; CFM-IEOMA) another set of primers (LCO and Tetract-minibarR1) designed based at the Centro Oceanográfico de Málaga (Instituto Español to amplify the COI mini-barcode (the first 130 bp of the Folmer de Oceanografía) with the following identification reference num- fragment) (Cárdenas & Moore, 2019). PCR products were puri- – bers: CFM-IEOMA-6390 6399. fied using the QIAquickR PCR Purification Kit (QIAGEN). Both heavy and light strands were sequenced on an ABI 3130 Morphological descriptions sequencer using the ABI Prism Terminator BigDyeR Terminator Cycle Sequencing Reaction Kit (Applied Biosystems). External morphology, colour and texture were annotated prior to Sequences were imported into BioEdit 7.0.5.2. (Hall, 1999) and the sample conservation. Spicules preparations and histological checked for quality and accuracy with nucleotide base assignment. sections were made according to the standard methods described Multiple sequence alignments (MSA) were obtained with by Hooper (2003). ClustalW (Thompson et al., 1994). The DNA sequences obtained Spicules were observed with a Nikon S-Ke optical microscope were deposited in the GenBank database (http://www.ncbi.nlm. and photographed with a CMOS digital camera. Images were pro- nih.gov/genbank/) under the following accession numbers: cessed with the Fiji software (Schindelin et al., 2012). For each sam- MN508968, MN508969 and MN508967. Sequences were vali- ple, 30 spicules per spicule class or category were counted. Spicular dated using the BLAST function from the GenBank database sizes are provided as minimum-mean-maximum in chord length (Altschul et al., 1990). The sequences were also used to recon- and minimum-mean-maximum in width and expressed in microns struct the phylogenetic relationships between species, through a (μm). Thick sections of both tangential-surface and transverse- phylogenetic tree based on Bayesian inference (BI) and surface sections were made with a scalpel and, when necessary, Maximum likelihood (ML). To build our alignments, we made dehydrated with alcohol and cleared with xylene.
Recommended publications
  • The MEDITS Trawl Survey Specifications in an Ecosystem Approach to Fishery Management
    SCIENTIA MARINA 83S1 December 2019, S1-S13, Barcelona (Spain) ISSN-L: 0214-8358 The MEDITS trawl survey specifications in an ecosystem approach to fishery management Maria Teresa Spedicato, Enric Massutí, Bastien Mérigot, George Tserpes, Angélique Jadaud, Giulio Relini Supplementary material S2 • M.T. Spedicato et al. tom trawl survey in the Mediterranean. Sci. Mar. 66(Suppl. 2): List of the papers peer reviewed (with or without 169-182. impact factor) published between 2002 and 2017 https://doi.org/10.3989/scimar.2002.66s2169 and based on MEDITS data. Biagi F., Sartor P., Ardizzone G.D., et al. 2002. Analysis of demer- sal fish assemblages of the Tuscany and Latium coasts (north- Abella A., Fiorentino F., Mannini A., et al. 2008. Exploring rela- western Mediterranean). Sci. Mar. 66(Suppl. 2): 233-242. tionships between recruitment of European hake (Merluccius https://doi.org/10.3989/scimar.2002.66s2233 merluccius L. 1758) and environmental factors in the Ligurian Bitetto I., Facchini M.T., Spedicato M.T., et al. 2012. Spatial loca- Sea and the Strait of Sicily (Central Mediterranean). J. Mar. tion of giant red shrimp (Aristaeomorpha foliacea, Risso,1827) Syst. 71: 279-293. in the central-southern Tyrrhenian Sea. Biol. Mar. Mediterr. 19: https://doi.org/10.1016/j.jmarsys.2007.05.010 92-95. Abelló P., Abella A., Adamidou A., et al. 2002. Geographical pat- Bottari T., Busalacchi B., Jereb P., et al. 2004. Preliminary observa- terns in abundance and population structure of Nephrops nor- tion on the relationships between beak and body size in Eledone vegicus and Parapenaeus longirostris (Crustacea: Decapoda) cirrhosa (Lamark, 1798) from the southern Tyrrhenian Sea.
    [Show full text]
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • D13 the Marine Environment Development Consent Order
    ENERGY WORKING FOR BRITAIN FOR WORKING ENERGY Wylfa Newydd Project 6.4.13 ES Volume D - WNDA Development D13 - The marine environment PINS Reference Number: EN010007 Application Reference Number: 6.4.13 June 2018 Revision 1.0 Regulation Number: 5(2)(a) Planning Act 2008 Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 Horizon Internal DCRM Number: WN0902-JAC-PAC-CHT-00045 [This page is intentionally blank] Contents 13 The marine environment .................................................................................. 1 13.1 Introduction ...................................................................................................... 1 13.2 Study area ....................................................................................................... 1 13.3 Wylfa Newydd Development Area baseline environment ................................ 2 Conservation designations .............................................................................. 3 Water quality .................................................................................................... 9 Sediment quality ............................................................................................ 13 Phytoplankton and zooplankton ..................................................................... 15 Marine benthic habitats and species .............................................................. 18 Marine fish ....................................................................................................
    [Show full text]
  • Kortfinnet Fløjfisk, Callionymus Reticulatus
    Atlas over danske saltvandsfisk Kortfinnet fløjfisk Callionymus reticulatus Valenciennes, 1837 Af Henrik Carl Kortfinnet fløjfisk-han på 12,5 cm fanget ved Harboøre, 5. maj 2014. © Henrik Carl. Projektet er finansieret af Aage V. Jensen Naturfond Alle rettigheder forbeholdes. Det er tilladt at gengive korte stykker af teksten med tydelig kilde- henvisning. Teksten bedes citeret således: Carl, H. 2019. Kortfinnet fløjfisk. I: Carl, H. & Møller, P.R. (red.). Atlas over danske saltvandsfisk. Statens Naturhistoriske Museum. Online-udgivelse, december 2019. Systematik og navngivning Siden Carl von Linné navngav slægten Callionymus i 1758, er der beskrevet mere end 200 arter i slægten. Nu anerkendes kun 109 arter (Froese & Pauly 2019), men der menes stadig at være ubeskrevne arter. I danske farvande findes tre arter. Det officielle danske navn for Callionymus reticulatus er kortfinnet fløjfisk – et navn der første gang er brugt i Muus & Nielsen (1998). Da arten først er registreret i danske farvande efter årtusindeskiftet, findes der ingen gamle danske navne. Slægtsnavnet Callionymus kommer af det græske ”Kallionymos”, der stammer fra det antikke Grækenland, hvor det muligvis var navnet på europæisk stjernekigger (Uranoscopus scaber) (Kullander & Delling 2012). Artsnavnet reticulatus betyder netmønstret. Udseende og kendetegn Fortil er kroppen bred og forholdsvis flad, mens den gradvist bliver rund ved den bageste del af haleroden. Bugsiden er flad. Snuden er spids, så hovedet, der er bredere end kroppen, er trekantet set oppefra. Munden er forholdsvis lille, og overkæben kan skydes langt frem og ned. Tænderne er spidse og sidder i tætte rækker i både under- og overkæbe. Øjnene er meget store og sidder højt på hovedet, hvor de rager op.
    [Show full text]
  • A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution
    marine drugs Review A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution Adrian Galitz 1 , Yoichi Nakao 2 , Peter J. Schupp 3,4 , Gert Wörheide 1,5,6 and Dirk Erpenbeck 1,5,* 1 Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany; [email protected] (A.G.); [email protected] (G.W.) 2 Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan; [email protected] 3 Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, 26111 Wilhelmshaven, Germany; [email protected] 4 Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg (HIFMB), 26129 Oldenburg, Germany 5 GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 6 SNSB-Bavarian State Collection of Palaeontology and Geology, 80333 Munich, Germany * Correspondence: [email protected] Abstract: Marine sponges are the most prolific marine sources for discovery of novel bioactive compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical applications, and in the past, they were also used as taxonomic markers alongside the difficult and homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding Citation: Galitz, A.; Nakao, Y.; of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal Schupp, P.J.; Wörheide, G.; pathways and evolution of compound production in sponges. This benefits the discovery rate and Erpenbeck, D. A Soft Spot for yield of bioprospecting for novel marine natural products by identifying lineages with high potential Chemistry–Current Taxonomic and Evolutionary Implications of Sponge of being new sources of valuable sponge compounds.
    [Show full text]
  • First Record of the Reticulated Dragonet, Callionymus Reticulatus
    ACTA ICHTHYOLOGICA ET PISCATORIA (2017) 47 (2): 163–171 DOI: 10.3750/AIEP/02098 FIRST RECORD OF THE RETICULATED DRAGONET, CALLIONYMUS RETICULATUS VALENCIENNES, 1837 (ACTINOPTERYGII: CALLIONYMIFORMES: CALLIONYMIDAE), FROM THE BALEARIC ISLANDS, WESTERN MEDITERRANEAN Ronald FRICKE1* and Francesc ORDINES2 1Lauda-Königshofen, Germany 2Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Palma de Mallorca, Spain Fricke R., Ordines F. 2017. First record of the reticulated dragonet, Callionymus reticulatus Valenciennes, 1837 (Actinopterygii: Callionymiformes: Callionymidae), from the Balearic Islands, western Mediterranean. Acta Ichthyol. Piscat. 47 (2): 163–171. Background. The reticulated dragonet, Callionymus reticulatus, was originally described based on a single specimen, the holotype from Malaga, Spain, south-western Mediterranean, probably collected before 1831. The holotype is now disintegrated; the specific characteristics are no longer discernible. The species was subsequently recorded from several north-eastern Atlantic localities (Western Sahara to central Norway), but missing in the Mediterranean. Material and methods. Specimens of C. reticulatus were observed and collected during two cruises in 2014 and 2016 in the Balearic Islands off Mallorca and Menorca. The collected specimens (8 females) have been deposited in the collection of the Hebrew University of Jerusalem (HUJ). All individuals of C. reticulatus were collected from beam trawl samples carried out during the DRAGONSAL0914 in September 2014, and during the MEDITS_ES05_16 bottom trawl survey in June 2016, on shelf and slope bottoms around the Balearic Islands. Both surveys used a ‘Jennings’ beam trawl to sample the epi-benthic communities, which was the main objective of the DRAGONSAL0914 and a complementary objective in the MEDITS_ES05_16. The ‘Jennings’ beam trawl has a 2 m horizontal opening, 0.5 m vertical opening and a 5 mm diamond mesh in the codend.
    [Show full text]
  • Proposal for a Revised Classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3*
    Morrow and Cárdenas Frontiers in Zoology (2015) 12:7 DOI 10.1186/s12983-015-0099-8 DEBATE Open Access Proposal for a revised classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3* Abstract Background: Demospongiae is the largest sponge class including 81% of all living sponges with nearly 7,000 species worldwide. Systema Porifera (2002) was the result of a large international collaboration to update the Demospongiae higher taxa classification, essentially based on morphological data. Since then, an increasing number of molecular phylogenetic studies have considerably shaken this taxonomic framework, with numerous polyphyletic groups revealed or confirmed and new clades discovered. And yet, despite a few taxonomical changes, the overall framework of the Systema Porifera classification still stands and is used as it is by the scientific community. This has led to a widening phylogeny/classification gap which creates biases and inconsistencies for the many end-users of this classification and ultimately impedes our understanding of today’s marine ecosystems and evolutionary processes. In an attempt to bridge this phylogeny/classification gap, we propose to officially revise the higher taxa Demospongiae classification. Discussion: We propose a revision of the Demospongiae higher taxa classification, essentially based on molecular data of the last ten years. We recommend the use of three subclasses: Verongimorpha, Keratosa and Heteroscleromorpha. We retain seven (Agelasida, Chondrosiida, Dendroceratida, Dictyoceratida, Haplosclerida, Poecilosclerida, Verongiida) of the 13 orders from Systema Porifera. We recommend the abandonment of five order names (Hadromerida, Halichondrida, Halisarcida, lithistids, Verticillitida) and resurrect or upgrade six order names (Axinellida, Merliida, Spongillida, Sphaerocladina, Suberitida, Tetractinellida). Finally, we create seven new orders (Bubarida, Desmacellida, Polymastiida, Scopalinida, Clionaida, Tethyida, Trachycladida).
    [Show full text]
  • Acarnidae (Porifera: Demospongiae: Poecilosclerida) from the Mexican Pacific Ocean with the Description of Six New Species
    SCIENTIA MARINA 77(4) December 2013, 677-696, Barcelona (Spain) ISSN: 0214-8358 doi: 10.3989/scimar.03800.06A Acarnidae (Porifera: Demospongiae: Poecilosclerida) from the Mexican Pacific Ocean with the description of six new species JOSE MARIA AGUILAR-CAMACHO, JOSE LUIS CARBALLO and JOSE ANTONIO CRUZ-BARRAZA Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (Estación Mazatlán). Avenida Joel Montes Camarena s/n, Mazatlán, México C.P.82000, PO Box 811. E-mail: [email protected] SUMMARY: The family Acarnidae is characterized by sponges with ectosomal diactinal spicules and choanosomal monac- tinal spicules. Microscleres include palmate isochelae, toxas and echinating acanthostyles. We described ten species from the Mexican Pacific Ocean. Six of them are new to science: Acarnus michoacanensis n. sp., Acarnus oaxaquensis n. sp., Acarnus sabulum n. sp., Acheliderma fulvum n. sp., Megaciella toxispinosa n. sp. and Iophon bipocillum n. sp. Four are known in Eastern Pacific waters: Acarnus erithacus, Acarnus peruanus, Megaciella microtoxa and Iophon indentatum. Keywords: Porifera, Acarnidae, Mexican Pacific, taxonomy, new species. RESUMEN: Acarnidae (Porifera: Demospongiae: Poecilosclerida) del Pacifico mexicano con la descripción de seis nuevas especies. – La familia Acarnidae se caracteriza por esponjas con espículas diactinas ectosómicas y espículas monactinas coanosómicas. Microscleras incluyen isoquelas palmadas, toxas y acantostilos. Se describen diez especies de distintas localidades del Pacífico mexicano. Seis de ellas son nuevas para la ciencia: Acarnus michoacanensis n. sp., Acarnus oaxaquensis n. sp., Acarnus sabulum n. sp., Acheliderma fulvum n. sp., Megaciella toxispinosa n. sp. y Iophon bipocillum n. sp. Cuatro son conocidas para aguas del Pacífico Este: Acarnus erithacus, Acarnus peruanus, Megaciella microtoxa y Iophon indentatum.
    [Show full text]
  • Appendix 13.2 Marine Ecology and Biodiversity Baseline Conditions
    THE LONDON RESORT PRELIMINARY ENVIRONMENTAL INFORMATION REPORT Appendix 13.2 Marine Ecology and Biodiversity Baseline Conditions WATER QUALITY 13.2.1. The principal water quality data sources that have been used to inform this study are: • Environment Agency (EA) WFD classification status and reporting (e.g. EA 2015); and • EA long-term water quality monitoring data for the tidal Thames. Environment Agency WFD Classification Status 13.2.2. The tidal River Thames is divided into three transitional water bodies as part of the Thames River Basin Management Plan (EA 2015) (Thames Upper [ID GB530603911403], Thames Middle [ID GB53060391140] and Thames Lower [ID GB530603911401]. Each of these waterbodies are classified as heavily modified waterbodies (HMWBs). The most recent EA assessment carried out in 2016, confirms that all three of these water bodies are classified as being at Moderate ecological potential (EA 2018). 13.2.3. The Thames Estuary at the London Resort Project Site is located within the Thames Middle Transitional water body, which is a heavily modified water body on account of the following designated uses (Cycle 2 2015-2021): • Coastal protection; • Flood protection; and • Navigation. 13.2.4. The downstream extent of the Thames Middle transitional water body is located approximately 12 km downstream of the Kent Project Site and 8 km downstream of the Essex Project Site near Lower Hope Point. Downstream of this location is the Thames Lower water body which extends to the outer Thames Estuary. 13.2.5. A summary of the current Thames Middle water body WFD status is presented in Table A13.2.1, together with those supporting elements that do not currently meet at least Good status and their associated objectives.
    [Show full text]
  • Fish and Fish Populations
    Intended for Energinet Document type Report Date March 2021 THOR OWF TECHNICAL REPORT – FISH AND FISH POPULATIONS THOR OWF TECHNICAL REPORT – FISH AND FISH POPULATIONS Project name Thor OWF environmental investigations Ramboll Project no. 1100040575 Hannemanns Allé 53 Recipient Margot Møller Nielsen, Signe Dons (Energinet) DK-2300 Copenhagen S Document no 1100040575-1246582228-4 Denmark Version 5.0 (final) T +45 5161 1000 Date 05/03/2021 F +45 5161 1001 Prepared by Louise Dahl Kristensen, Sanne Kjellerup, Danni J. Jensen, Morten Warnick https://ramboll.com Stæhr Checked by Anna Schriver Approved by Lea Bjerre Schmidt Description Technical report on fish and fish populations. Rambøll Danmark A/S DK reg.no. 35128417 Member of FRI Ramboll - THOR oWF TABLE OF CONTENTS 1. Summary 4 2. Introduction 6 2.1 Background 6 3. Project Plan 7 3.1 Turbines 8 3.2 Foundations 8 3.3 Export cables 8 4. Methods And Materials 9 4.1 Geophysical survey 9 4.1.1 Depth 10 4.1.2 Seabed sediment type characterization 10 4.2 Fish survey 11 4.2.1 Sampling method 12 4.2.2 Analysis of catches 13 5. Baseline Situation 15 5.1 Description of gross area of Thor OWF 15 5.1.1 Water depth 15 5.1.2 Seabed sediment 17 5.1.3 Protected species and marine habitat types 17 5.2 Key species 19 5.2.1 Cod (Gadus morhua L.) 20 5.2.2 European plaice (Pleuronectes platessa L.) 20 5.2.3 Sole (Solea solea L.) 21 5.2.4 Turbot (Psetta maxima L.) 21 5.2.5 Dab (Limanda limanda) 22 5.2.6 Solenette (Buglossidium luteum) 22 5.2.7 Herring (Clupea harengus) 22 5.2.8 Sand goby (Pomatoschistus minutus) 22 5.2.9 Sprat (Sprattus sprattus L.) 23 5.2.10 Sandeel (Ammodytes marinus R.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Maurício Alves De Campos
    Maurício Alves de Campos Riqueza de espécies de poríferos (Porifera, Demospongiae) coletados pelo Programa Antártico Brasileiro – PROANTAR (1983–1991) Dissertação de Mestrado apresentada ao Programa de Pós- Graduação em Biologia Animal, Instituto de Biociências da Universidade Federal do Rio Grande do Sul, como requisito à obtenção do Título de Mestre em Biologia Animal. Área de Concentração: Biodiversidade Orientadora: Prof. Dra. Inga Ludmila Veitenheimer-Mendes Co-orientadora: Dra. Beatriz Mothes Universidade Federal do Rio Grande do Sul Porto Alegre 2007 Riqueza de espécies de poríferos (Porifera, Demospongiae) coletados pelo Programa Antártico Brasileiro – PROANTAR (1983–1991) Maurício Alves de Campos Aprovada em ________/_________/________ Banca examinadora: ___________________________________________________________________ Dr. Edmundo Ferraz Nonnato ___________________________________________________________________ Dra. Cléa Beatriz Lerner ___________________________________________________________________ Dra. Norma Würdig ii AGRADECIMENTOS Aos meus pais, por terem estimulado, apoiado e acreditado em meu trabalho desde o início, em especial ao meu pai por ter, com sua paixão pela Agronomia, inspirado meu caminho através da Biologia. À minha família por ter compreendido as ausências e valorizado os momentos de folga, com carinho e constante suporte. À minha namorada Mariane Leonardo dos Santos, por dividir o fascínio pela Biologia e talvez por essa razão compreender o que uma pesquisa demanda. Aos meus amigos pelo incentivo diário. À Dra. Beatriz Mothes por ter sido a incansável orientadora, mas principalmente agradeço por ter sido muito mais que isso: a amiga de todas as horas, a professora paciente, a incentivadora vigorosa, a colega entusiasta e a mestra inesquecível. À Dra. Inga Ludmila Veitenheimer Mendes pela gentil acolhida e pela honra de ter aceitado orientar-me; sinto-me eternamente grato pela amizade, carinho, apoio e pelos ensinamentos que levarei para a vida toda.
    [Show full text]