Scientific Diving Techniques in Restricted Overhead Environments

Total Page:16

File Type:pdf, Size:1020Kb

Scientific Diving Techniques in Restricted Overhead Environments doi:10.3723/ut.31.013 International Journal of the Society for Underwater Technology, Vol 31, No 1, pp 13–19, 2012 per Scientific diving techniques in restricted overhead environments *1,2 3 4 1 Giorgio Caramanna , Pirkko Kekäläinen , Jouni Leinikki and Mercedes Maroto-Valer Pa Technical 1Heriot-Watt University, Edinburgh, Scotland, UK 2Italian Association of Scientific Divers (AIOSS), Italy 3University of Helsinki, Finland 4Alleco Ltd, Finland Abstract applications (Auster et al., 1988; Auster, 1997; Scientific diving is an extremely useful tool for supporting Norcross and Mueter, 1999; Sarradin et al., 2002; research in environments with restricted access, where Bovio et al., 2006; Bowen et al., 2007), they cannot remotely operated or autonomous underwater vehicles can- always replace the presence of a scientific diver with not be used. However, these environments tend to be close regard to the quality and reliability of collected data. to the surface and require the application of advanced diving There are also environments, such as caves, under- techniques to ensure that the research is conducted within ice areas, springs or small lakes, in which access can acceptable safety parameters. The two main techniques be restricted and difficult to enter, and where use of discussed are under-ice and cave diving; for each environ- automated systems can be either complex or impos- ment the specific hazards are reviewed and methods for sible to achieve. Some of these restricted environ- mitigating the concomitant risks are detailed. It is concluded ments have related potential hazards for diving that that scientific diving operations in these environments can have to be correctly identified and addressed in be conducted to acceptable risk levels; however, risk man- agement strategies must outline precisely when and where order to guarantee that the underwater research is diving operations are to be prohibited or terminated. undertaken safely. These dangers can be related to environmental conditions such as visibility, the pres- Keywords: scientific diving, diving techniques, hazardous ence of obstructions or polluted waters; or to the spe- environments, restricted overhead environments cific activity performed, such as the use of drilling tools, airlifts or lifting bags. Advisory documents clearly state what kind of tools and methods should 1. Introduction or should not be used by some scientific divers (Euro- Scientific diving has been described as ‘… projects pean Scientific Committee (ESC), 2000). Less clear undertaken in support of scientific research or definitions apply to the environmental limits, which educational instruction” (Health and Safety Exec- are nevertheless of paramount importance for risk utive (HSE), 1997) and/or defined as ‘diving … to identification and management. perform scientific research tasks’ (Occupational Risk management and assessment in diving Safety and Health Administration (OSHA), 1982). requires four main steps: (a) identification of the haz- It can therefore be inferred that, in some cases, div- ard; (b) quantification of its probability;(c) evaluation ing has been accepted by regulating authorities as a of the subsequent possible outcome on the diver; ‘tool’ for scientists that is comparable to any others and (d) identification of a mitigation strategy available to underpin research efforts necessary to (Table 1; Sayer, 2004). For scientific diving, ‘zero’ risk achieve desired scientific targets. procedures will never be realistic as there will always The key advantage of scientific diving is that it be some level of hazard. Therefore, the development allows scientists to study, collect data and conduct of correct assessments and resulting modified proce- experiments in environments which would other- dures that best suit both the environmental condi- wise be out of reach. Even if automated systems, tions and the underwater activities to be performed such as remotely operated vehicles (ROV) or auton- will reduce the identified risks to acceptable levels. omous underwater vehicles (AUV), are widely avail- The present study addresses some environmen- able on the market and can be used for scientific tal conditions that require specific procedures to be applied for scientific diving activities. These * Contact author. E-mail address: [email protected] conditions include, but are not limited to, cold or icy 13 Caramanna et al. Scientific diving techniques in restricted overhead environments Table 1: Example of a risk assessment table for ice diving and cave diving. This is to be considered as an example only and should not be used as a reference Environment Hazard Who or what might Risk control Further risk control be harmed Identify the hazards Identify the individuals or Precautions already Further reasonable actions that could reasonably the groups doing similar taken against the taken in order to mitigate be expected to result work who might be hazard listed the risks that were found in significant harm affected by the activities inadequately controlled Ice diving Cold water Divers (hypothermia) Adequate thermal Stay warm before the dive; (below 5°C) and equipment garments (divers) and limit the dive time; protect (freezing) use of regulators for the regulators from cold water (sealed first contact with ice/snow stage) before the dive Loss of exit direction Divers (potentially fatal) Use of a line connect- Stand-by diver ready for ing the diver with a rescue; use of communi- surface tender cation systems Loss of visibility Divers and instruments Good buoyancy control Avoid being too close to (impossibility of and mastering of the the bottom, or reduce the producing video/ propulsion techniques activity to minimum in photographic records) order to avoid disturbing the sediment Cave diving Failure of the Divers (likely fatal) Use of redundant Mastering of rule of thirds breathing system systems, at least two (or more conservative) in independent gas gas planning and sources experience in the use of stage cylinders Failure in the lighting Divers and scientific Use of at least three Ability to follow the guide system activity independent light line in zero visibility sources Exit direction lost Divers (likely fatal) Mandatory use of guide The safety-reel to be used line with exit direction in case of damage to the and distance from the primary line; knowledge exit marked and of de-tangling techniques recognisable by touch Trapping Divers (potentially fatal) Use of streamlined Proven ability to remove equipment not prone the equipment underwa- to be trapped ter; no metal to metal connections Loss of visibility Divers and instruments Good buoyancy control Avoid being too close to (impossibility of and mastering of the floor and if needed for producing video/ propulsion techniques research needs reduce photographic records) the activity to a minimum to avoid silting-up waters, overhead environments and reduced visibil- scientific diving activities. These cases are not ity. Sometimes more than one of these conditions intended to represent a comprehensive or defini- are present in the same environment, for example, tive overview of all the potentially hazardous situa- in cave or ice diving. This paper addresses specifi- tions for scientific diving in these environments. cally some of the main hazards and mitigation pro- Instead, they relate to some of the specific practices cedures related to scientific endeavours while diving of the authors. under ice or in caves. The discussion is not intended to be exhaustive, nor should it be employed as a 2.1. Cold environments and ice diving form of guidelines or be used in any way as a substi- Extreme cold water and under-ice diving will always tute for specific training and experience. carry levels of risk that are additive to those of basic science-support diving. However, dives in winter conditions are regularly conducted in temperate 2. Case studies and Polar regions for scientific purposes in many The present paper is based on some case studies extreme cold water/weather environments. Cold related to under-ice and cave diving in support of water diving can be executed in a safe manner 14 Vol 31, No 1, 2012 and statistics do not show an increase in incidents accustomed to it), the divers working under ice compared with other forms scientific diving (Sayer should be experienced and have a minimum of et al., 2007). Diving during the ice season may also CMAS 2* (or equivalent qualification) or special have advantages, such as improved visibility and ice diving training. Good buoyancy control is essen- lack of surface vessel traffic. tial for the safe execution of ice dives; tenders should also be competent to properly discharge 2.1.1. Specific hazards their duties. There are two main factors that make ice diving demanding: the cold temperatures and the restricted 2.1.2. Diving methods overhead environment. All cold water diving should be conducted in a dry Cold temperatures alone are a hazard; tempera- suit, and special attention should be paid to the tures below 5°C are an added risk for diving because undergarment, as well as keeping the diver warm of the susceptibility of equipment to freezing and both in and out of the water. It is easy to forget to the risks of hypothermia. Hypothermia per se may drink liquids in a cold environment, but dehydra- not always result in a diver ever approaching a state tion may have a negative influence on non-freezing that could cause fatality. However, mild or moder- cold injuries (Mekjavic et al., 2003), thus keeping
Recommended publications
  • NEWSLETTERS NUMBER 46, Dec
    International Union of Speleology Union Internationale de Speleologie Commission on Volcanic Caves \ \ I \ \ i i I I ; j December 2005 / .- 1 - U.I.S. is affiliated with UNESCO I The Newsletter is send free to members of the Commission, and others who are interested in lava-tube caves. Jt is not possible to subscribe - but news and information is always appreciated .... I 11 Honorary President: Dr. W.R. Halliday bnawrh @webtv .net j I Chairman & editorial address: a.i. '! J.P. van der Pas Vauwerhofweg 3 6333 CB Schimmert Netherlands jpgvanderpas@ hetnet.nl _.._::- .... "'....... 4 ... .."' \ ' ... ..... - 2- ----~~---~ -~ GIUSEPPE LICITRA 1938 - 5 September 2005 We lost again a monument of Vulcanospe/eology. Below the message which arrived from Nicola Barone, with a description of the works of Guiseppe. I think little can be added to this. I think most of us have met him in person, certainly at 'his' last symposium in Catania 1999. Sincere condolences to his relatives and the Centro Speleo/ogico Etneo, the Commission on Vulcanospeleology I regret to inform you that our member and great friend Giuseppe Licitra died Monday 5111 of September . He was 67 years old. The cause was an heart attack during the night, probably while he was sleeping. Volcanospeleology and lava tubes had a special space into both his heart and mind. He spent more than 30 years of his life for their study and published many papers on journals and conference proceedings. Giuseppe licitra formulated also an interesting theory on the formation of lava tubes. According to this theory, lava flowing inside tubes erodes the ground in such a way that the floor of the tube is the surface of the last lava flow during the active phase of the eruption instead that the material left after lava drain and its subsequent cooling.
    [Show full text]
  • Standard Operating Procedures for Scientific Diving
    Standard Operating Procedures for Scientific Diving The University of Texas at Austin Marine Science Institute 750 Channel View Drive, Port Aransas Texas 78373 Amended January 9, 2020 1 This standard operating procedure is derived in large part from the American Academy of Underwater Sciences standard for scientific diving, published in March of 2019. FOREWORD “Since 1951 the scientific diving community has endeavored to promote safe, effective diving through self-imposed diver training and education programs. Over the years, manuals for diving safety have been circulated between organizations, revised and modified for local implementation, and have resulted in an enviable safety record. This document represents the minimal safety standards for scientific diving at the present day. As diving science progresses so must this standard, and it is the responsibility of every member of the Academy to see that it always reflects state of the art, safe diving practice.” American Academy of Underwater Sciences ACKNOWLEDGEMENTS The Academy thanks the numerous dedicated individual and organizational members for their contributions and editorial comments in the production of these standards. Revision History Approved by AAUS BOD December 2018 Available at www.aaus.org/About/Diving Standards 2 Table of Contents Volume 1 ..................................................................................................................................................... 6 Section 1.00 GENERAL POLICY ........................................................................................................................
    [Show full text]
  • Grade 11 Informational Mini-Assessment Stalagmite Trio This Grade 11 Mini-Assessment Is Based on Two Texts and an Accompanying Video About Cave Formations
    Grade 11 Informational Mini-Assessment Stalagmite Trio This grade 11 mini-assessment is based on two texts and an accompanying video about cave formations. The subject matter, as well as the stimuli, allow for the testing of the Common Core State Standards (CCSS) for Literacy in Science and Technical Subjects and the Reading Standards for Informational Texts. The texts are worthy of students’ time to read, and the video adds a multimedia component to make the task a more complete and authentic representation of research. The texts meet the expectations for text complexity at grade 11. Assessments aligned to the CCSS will employ quality, complex texts such as these, and some assessments will include multimedia stimuli as demonstrated by this mini-assessment. Questions aligned to the CCSS should be worthy of students’ time to answer and therefore do not focus on minor points of the texts. Several standards may be addressed within the same question because complex texts tend to yield rich assessment questions that call for deep analysis. In this mini-assessment there are twelve questions that address the Reading Standards below. There is also one constructed response item that addresses Reading, Writing, and Language standards. We encourage educators to give students the time that they need to read closely and write to sources. Please note that this mini- assessment is likely to take at least two class periods. Note for teachers of English Language Learners (ELLs): This assessment is designed to measure students’ ability to read and write in English. Therefore, educators will not see the level of scaffolding typically used in instructional materials to support ELLs—these would interfere with the ability to understand their mastery of these skills.
    [Show full text]
  • Underwater Speleology Journal of the Cave Diving Section of the National Speleological Society
    Underwater Speleology Journal of the Cave Diving Section of the National Speleological Society INSIDE THIS ISSUE: Possible Explanations For The Lack Of Formations In Underwater Caves In FLA The Challenge At Challenge Cave Diving Science Visit with A Cave: Cannonball Cow Springs Clean Up Volume 41 Number 1 January/February/March 2014 Underwater Speleology NSS-CDS Volume 41 Number 1 BOARD OF DIRECTORS January/February/March 2014 CHAIRMAN contents Joe Citelli (954) 646-5446 [email protected] Featured Articles VICE CHAIRMAN Tony Flaris (904) 210-4550 Possible Explanations For The Lack Of Formations In Underwater Caves In FLA [email protected] By Dr. Jason Gulley and Dr. Jason Polk............................................................................6 TREASURER The Challenge At Challenge Terri Simpson By Jim Wyatt.................................................................................................................8 (954) 275-9787 [email protected] Cave Diving Science SECRETARY By Peter Buzzacott..........................................................................................................10 TJ Muller Visit With A Cave: Cannonball [email protected] By Doug Rorex.................................................................................................................16 PROGRAM DIRECTORS Book Review: Classic Darksite Diving: Cave Diving Sites of Britain and Europe David Jones By Bill Mixon..............................................................................................................24
    [Show full text]
  • Scuba Diving: How High the Risk?
    JOURNAL OF INSURANCE MEDICINE VOLUME 27, NO. 1, SUMMER 1995 SCUBA DIVING: HOW HIGH THE RISK? Nina Smith, MD Introduction growing sports. Agencies reported training as many as 300,000 new divers each year. Not all divers remain active; and even if as For most scuba divers, the excess mortality risk is fairly low. The many as 100,000 divers drop out of the sport each year, it would best estimates suggest that the risk is four deaths per 100,000 mean there are between three million and four million divers, divers. The least risk for diving accidents is in those experienced not one million or two million. If the higher numbers are more divers who are porticipating in only non-technical dives, are accurate, the incidence of injuries is closer to 0.04 percent to 0.05 reasonably fit with no serious health problems, and do not have percent. a history of being risk takers. In 1993, the ratio of deaths to accidents was 1:10.2 This means Underwriting scuba diving risk has been. a challenge for most that the best estimates available give a ratio of four deaths per insurance companies. Although there may be as many as three 100,000 divers per year. A group in New Zealand estimated a simi- million recreational divers in this country, there is limited classi- lar rate of injury? They considered 10 as the average number of cal medical research on the mortality and morbidity of diving. In dives per diver. If this number is reasonable for active US divers, addition, there is no national register to supply reliable data on the mortality risk for scuba diving is 4-5 per 1,000,000 dives.
    [Show full text]
  • Speleothem Paleoclimatology for the Caribbean, Central America, and North America
    quaternary Review Speleothem Paleoclimatology for the Caribbean, Central America, and North America Jessica L. Oster 1,* , Sophie F. Warken 2,3 , Natasha Sekhon 4, Monica M. Arienzo 5 and Matthew Lachniet 6 1 Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37240, USA 2 Department of Geosciences, University of Heidelberg, 69120 Heidelberg, Germany; [email protected] 3 Institute of Environmental Physics, University of Heidelberg, 69120 Heidelberg, Germany 4 Department of Geological Sciences, Jackson School of Geosciences, University of Texas, Austin, TX 78712, USA; [email protected] 5 Desert Research Institute, Reno, NV 89512, USA; [email protected] 6 Department of Geoscience, University of Nevada, Las Vegas, NV 89154, USA; [email protected] * Correspondence: [email protected] Received: 27 December 2018; Accepted: 21 January 2019; Published: 28 January 2019 Abstract: Speleothem oxygen isotope records from the Caribbean, Central, and North America reveal climatic controls that include orbital variation, deglacial forcing related to ocean circulation and ice sheet retreat, and the influence of local and remote sea surface temperature variations. Here, we review these records and the global climate teleconnections they suggest following the recent publication of the Speleothem Isotopes Synthesis and Analysis (SISAL) database. We find that low-latitude records generally reflect changes in precipitation, whereas higher latitude records are sensitive to temperature and moisture source variability. Tropical records suggest precipitation variability is forced by orbital precession and North Atlantic Ocean circulation driven changes in atmospheric convection on long timescales, and tropical sea surface temperature variations on short timescales. On millennial timescales, precipitation seasonality in southwestern North America is related to North Atlantic climate variability.
    [Show full text]
  • Lava Caves of the Republic of Mauritius, Indian Ocean
    87 Inl. J. Spcleol .. 2713 (1/4), (1998): 87-93. LAVA CAVES OF THE REPUBLIC OF MAURITIUS, INDIAN OCEAN Gregory J. Middleton' ABSTRACT In their Unde/growlll Atlas. MIDDLETON &. WALTHAM (1986) dismissed Mauritius as: "very old vol- canic islands with no speleological interest". Recent investigations indicate this judgement is inaccurate; there arc over 50 significant caves. including lava tube caves up to 687 m long (one 665 m long was surveyed as early as 1769) and 35 m wide. Plaine des Roches contains the most extensive system of lava tube caves with underground drainage rising at the seashore. Notable fauna includes an insectivorous bat and a cave swiftlet (Col/ocalia Fancica), the nests of which are unfortunately prized for "soup". The caves are generally not valued by the people and are frequently used for rubbish disposal or tilled in for agricultural development. Keywords: vulcanospeleology. lava luhcs, Mauritius RESUME Bien que les iles Maurice ne soient pas connues pour leur interet spelt'ologique, de recentes recherches indiquent qu'il y a plus de cinquante cavernes importantes. comprenant des tunncls de lave allant jusqu'a de 687 m de long et 35 m de large, I'un d'entre eux, de 665 m de long a ete decouvert des 1769. La Plaine des Roches contient Ie systeme Ie plus etendu de tunnels de lave avec un ecoulement souterrain qui s'clcve au niveau du rivagc. La t~lUnc importantc de ces caves comprend de chauvcs-souris insectivores et de petites hirondelles (Col/ocalia fnlllcica), les nids desquelles sont malheureusement recherches pour soupes de gourmets.
    [Show full text]
  • Diving Safety Manual Revision 3.2
    Diving Safety Manual Revision 3.2 Original Document: June 22, 1983 Revision 1: January 1, 1991 Revision 2: May 15, 2002 Revision 3: September 1, 2010 Revision 3.1: September 15, 2014 Revision 3.2: February 8, 2018 WOODS HOLE OCEANOGRAPHIC INSTITUTION i WHOI Diving Safety Manual DIVING SAFETY MANUAL, REVISION 3.2 Revision 3.2 of the Woods Hole Oceanographic Institution Diving Safety Manual has been reviewed and is approved for implementation. It replaces and supersedes all previous versions and diving-related Institution Memoranda. Dr. George P. Lohmann Edward F. O’Brien Chair, Diving Control Board Diving Safety Officer MS#23 MS#28 [email protected] [email protected] Ronald Reif David Fisichella Institution Safety Officer Diving Control Board MS#48 MS#17 [email protected] [email protected] Dr. Laurence P. Madin John D. Sisson Diving Control Board Diving Control Board MS#39 MS#18 [email protected] [email protected] Christopher Land Dr. Steve Elgar Diving Control Board Diving Control Board MS# 33 MS #11 [email protected] [email protected] Martin McCafferty EMT-P, DMT, EMD-A Diving Control Board DAN Medical Information Specialist [email protected] ii WHOI Diving Safety Manual WOODS HOLE OCEANOGRAPHIC INSTITUTION DIVING SAFETY MANUAL REVISION 3.2, September 5, 2017 INTRODUCTION Scuba diving was first used at the Institution in the summer of 1952. At first, formal instruction and proper information was unavailable, but in early 1953 training was obtained at the Naval Submarine Escape Training Tank in New London, Connecticut and also with the Navy Underwater Demolition Team in St.
    [Show full text]
  • Dive Theory Guide
    DIVE THEORY STUDY GUIDE by Rod Abbotson CD69259 © 2010 Dive Aqaba Guidelines for studying: Study each area in order as the theory from one subject is used to build upon the theory in the next subject. When you have completed a subject, take tests and exams in that subject to make sure you understand everything before moving on. If you try to jump around or don’t completely understand something; this can lead to gaps in your knowledge. You need to apply the knowledge in earlier sections to understand the concepts in later sections... If you study this way you will retain all of the information and you will have no problems with any PADI dive theory exams you may take in the future. Before completing the section on decompression theory and the RDP make sure you are thoroughly familiar with the RDP, both Wheel and table versions. Use the appropriate instructions for use guides which come with the product. Contents Section One PHYSICS ………………………………………………page 2 Section Two PHYSIOLOGY………………………………………….page 11 Section Three DECOMPRESSION THEORY & THE RDP….……..page 21 Section Four EQUIPMENT……………………………………………page 27 Section Five SKILLS & ENVIRONMENT…………………………...page 36 PHYSICS SECTION ONE Light: The speed of light changes as it passes through different things such as air, glass and water. This affects the way we see things underwater with a diving mask. As the light passes through the glass of the mask and the air space, the difference in speed causes the light rays to bend; this is called refraction. To the diver wearing a normal diving mask objects appear to be larger and closer than they actually are.
    [Show full text]
  • Underwater Speleology
    ... _.__ ._._ ........ _- ..... _---------------. UNDERWATER SPELEOLOGY OFFICIAL NEWSLmER OF THE CAVE DIVING SECTION OF THE NATIONAL SPELEOLOGICAL SOCIETY VOLUME 8 NUMBER 1 Underwater Speleology, vol.8, N9.1 UNDERWATER SPELEOLOGY ON THE COVER ............... Published Bimonthly Beginning in February Sheck Exley (NSS 13146) begins an extensive by exploration of one of the many clear first The Cave Diving Section of magnitude springs in Florida. These springs The National Speleological Society include nine of the ten longest caves in Florida. Photo by John Zumrick (NSS 187B8). c/o Stephen Maegeriein, P. O. Box 60 Williams, Indiana 47470 CALENDAR Deadline for publication is the second Friday of the preceeding month. Send exchange publications and editorial correspondence to the editor: July 12-18 5th International Cave Diving John Zumrick Camp. Contact Sheck Exley, 10259 120 Rusty Gans Dr. Panama City Beach, Florida 32407 Crystal Sprgs Rd., Jacksonvil Ie, Florida 32221 Section membership, including a subscription to un· derwater speleology is open to all members in good stan· July 18-24 8th International Congress of ding of the National Speleological Society at $3.00 per Speleology, Bowling Green, Ky. year. Subscription to non-members is $5.00 per year. Make checks payabie to the NSS Cave Diving Section in For information write Eighth care of the Treasurer. Opinions expresSed in Underwater International Congress of Speleology are not necessarily those of the section or the Speleology, Secretariat, Dept of NSS. Geography and Geology, Western Kentucky Unlv., Bowling Green, Kentucky 42101. EXECUTIVE COMMITTEE ***************RENEWAL TIME?****************** CHAIRPERSON VICE-CHAI RPERSON Dennis Williams (N55 182&11 Karen E.
    [Show full text]
  • 7. Ice Diving Ops
    ERDI Standards and Procedures Part 3: ERDI OPS Component Standards 7. Ice Diving Ops 7.1 Introduction Diving under ice presents hazards not common to the emergency response diver and special training is required. The purpose of this course is to acquaint the diver with many of the hazards associated with ice diving and how to plan and execute an ice dive. 7.2 Who May Teach An active ERDI Instructor that has been certified to teach this ops component 7.3 Student to Instructor Ratio Academic 1. Unlimited, so long as adequate facility, supplies and time are provided to ensure comprehensive and complete training of subject matter Open Water 1. A maximum of 2 students per ERDI Instructor; it is the instructor’s discretion to reduce this number as conditions dictate 7.4 Student Prerequisites 1. ERD I or equivalent 2. Minimum age 18 7.5 Course Structure and Duration Course Structure 1. ERDI allows instructors to structure courses according to the number of students participating and their skill level Duration 1. Classroom and briefing: Approximately 3 hours 2. Open water dives (required): Two dives are required with complete briefs and debriefs by the instructor. Dive plan must include surface interval, max no-decompression time, etc. to be figured out and logged Version 0221 45 ERDI Standards and Procedures Part 3: ERDI OPS Component Standards 7.6 Administrative Requirements 1. Have the students complete the: a. ERDI Liability Release and Express Assumption of Risk Form b. ERDI Medical Statement Form 2. Communicate the schedule of the course to the students 3.
    [Show full text]
  • Final EIS Responses to Comments 1-40
    Table 1-2. Responses to Comments Comment Response Comment/Response Number Number 1.1 The lakes in question are in our main camp area. We have operated in this area for thirty years and probably know more about the fish in these lakes than anyone associated with this ridiculous plan. These lakes have provided unequalled fishing to our guests and all others that have fished them. 1.1 This project is designed to preserve this stronghold for native westslope cutthroat trout. This project proposes to re-establish WCT populations in all treated lakes, which will maintain angling opportunities. 1.2 We feel that his plan goes against all that is held sacred in a wilderness area. … We believe the "Wilderness Act" should be respected and these areas should not be tampered with. 1.2 Native westslope cutthroat trout are considered a wilderness value. This project is designed to maintain and conserve that value. 1.3 Why should anyone be allowed to tamper with these healthy fish in order to obtain a genetically pure strain of fish? 1.3 It is the responsibility of MFWP to ensure that this species is conserved and maintained so the public of Montana can continue to use and enjoy it. The species has been at risk of hybridization for some time. MFWP has taken measures to reduce and eliminate the threats (see Section 1.2 of the DEIS). The species has been proposed for ESA listing (see Section 1.4.1 and Appendix B of the DEIS). MFWP is mandated to keep this from happening so the public does not lose the opportunity to use and enjoy WCT (see page 1-8 of the DEIS).
    [Show full text]