Mir-3928V Is Induced by Hbx Via NF-Κb/EGR1 and Contributes To

Total Page:16

File Type:pdf, Size:1020Kb

Mir-3928V Is Induced by Hbx Via NF-Κb/EGR1 and Contributes To Zhang et al. Journal of Experimental & Clinical Cancer Research (2018) 37:14 DOI 10.1186/s13046-018-0681-y RESEARCH Open Access miR-3928v is induced by HBx via NF-κB/ EGR1 and contributes to hepatocellular carcinoma malignancy by down-regulating VDAC3 Qiaoge Zhang1†, Ge Song1†, Lili Yao1, Yankun Liu1,2, Min Liu1, Shengping Li3 and Hua Tang1*† Abstract Background: Hepatitis B virus (HBV) plays a critical role in the tumorigenic behavior of human hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) have been reported to participate in HCC development via the regulation of their target genes. However, HBV-modulated miRNAs involved in tumorigenesis remain to be identified. Here, we found that a novel highly expressed miRNA, TLRC-m0008_3p (miR-3928v), may be an important factor that promotes the malignancy of HBV-related HCC. Methods: Solexa sequencing was applied to profile miRNAs, and RT-qPCR was used to identify and quantitate miRNAs. We studied miR-3928v function in HCC cell lines by MTT, colony formation, migration/invasion, and vascular mimicry (VM) assays in vitro and by a xenograft tumor model in vivo. Finally, we predicted and verified the target gene of miR-3928v by a reporter assay, studied the function of this target gene, and cloned the promoter of miR-3928v and the transcription factor for use in dual-luciferase reporter assays and EMSAs. Results: A variant of miR-3928 (miR-3928v) was identified and found to be highly expressed in HBV (+) HCC tissues. Voltage-dependent anion channel 3 (VDAC3) was validated as a target of miR-3928v and found to mediate the effects of miR-3928v in promoting HCC growth and migration/invasion. Furthermore, HBx protein increased early growth response 1 (EGR1) expression and facilitated its translocation into the nucleus to enhance miR-3928v promoter activity in an NF-κB signaling-dependent manner. Conclusions: miR-3928v is induced by HBx through the NF-κB/EGR1 signaling pathway and down-regulates the tumor suppressor gene VDAC3 to accelerate the progression of HCC. Keywords: miRNA, miR-3928v, HBx, EGR1, VDAC3, Hepatocellular carcinoma Background for the high rate of HCC-related mortality. Therefore, it is HCC is the fifth most common malignant tumor and the important to understand how HBV-related proteins are second leading cause of cancer-related death worldwide involved in the development of HCC. Recent research has [1]. HBV infection is the greatest risk factor for HCC [2]. demonstrated that the hepatitis B virus X (HBx) protein, a Although enormous progress has been made in preventing key HBV regulatory molecule, plays pivotal roles in the ini- HBV infection, diagnosis in the late stages of liver cancer tiation and development of HCC [3, 4]. HBx has been and the highly metastatic nature of HCC are responsible reported to regulate signaling pathways and affect cell cycle progression, apoptosis, DNA repair, and protein degrad- * Correspondence: [email protected]; [email protected] ation [5–7]. Although evidence has indicated that HBx can †Equal contributors contribute to HCC by regulating the expression of several 1 Tianjin Life Science Research Center and Department of Pathogen Biology, miRNAs, the mechanism by which HBx induces HCC Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang-Tai Road, remains unclear. Tianjin 300070, China Full list of author information is available at the end of the article © The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Zhang et al. Journal of Experimental & Clinical Cancer Research (2018) 37:14 Page 2 of 12 miRNAs are a class of conserved small RNAs that can registered by another laboratory while we investigated bind to the 3′UTR of mRNA to modulate the expression the function of miR-3928v in HCC. miR-3928v is in- of target genes [8], which are involved in physiological duced by the HBV-related protein HBx and functions as and pathological processes such as cell proliferation, dif- an oncogene by promoting cell proliferation, migration/ ferentiation, apoptosis, angiogenesis and metastasis [9]. invasion and vascular mimicry (VM). Furthermore, The dysregulation of miRNAs plays an important role in VDAC3 was confirmed to be a direct target of miR- tumorigenesis in humans, as miRNAs function as tumor 3928v and to mediate the role of miR-3928v in HCC suppressors and oncogenes [8, 10]. With regard to HBV- cells. Importantly, we revealed that HBx induces miR- related HCC, previous reports have demonstrated that 3928v expression in an NF-κB/EGR1-dependent manner. HBx is involved in HCC progression via miRNA regula- Collectively, these data indicate that HBx induces miR- tion. For example, HBx induces miR-21 expression, sig- 3928v expression through the NF-κB/EGR1 signaling nificantly promoting cell proliferation in HCC [11]. In pathway, resulting in the down-regulation of the tumor addition, a previous study from our laboratory showed suppressor gene VDAC3 and the progression of HCC. that miR-1269b is induced by HBx in an NF-κB- dependent manner, thereby up-regulating CDC40 to Methods promote HCC cell proliferation and migration [12]. We Tissue and serum specimens and cell lines therefore wondered whether HBx regulates additional Twenty pairs of human hepatic carcinoma and normal miRNAs involved in the pathogenesis of HCC. adjacent tissues were obtained from the Cancer Center EGR1 belongs to the early growth response (EGR) of Sun Yat-sen University. Sixty serum samples from pa- family of transcription factors that includes four mem- tients with HCC, 30 serum samples from healthy people bers: EGR1, EGR2, EGR3, and EGR4. All four proteins and 10 pairs of slides of human hepatoma tissues and contain DNA-binding zinc finger domains and tend to adjacent non-tumor tissues for immunohistochemistry bind GC-rich elements in the promoter regions of target analysis were obtained from TangShan People’s Hospital. genes [13]. EGR1 reportedly has a paradoxical function Written informed consent was obtained from each pa- in HCC. For instance, EGR1 acts as a tumor suppressor tient included in the study, and the samples were used by promoting the transcription of TGF-β, p53 and PTEN in accordance with the standards of the center’s ethics [14]. Conversely, EGR1 acts as an oncogene, promoting committee. The HCC cell lines are described in HCC cell migration [15, 16] and enhancing the drug re- Additional file 1. sistance of HCC cells, likely through autophagy [17]. However, the interaction between HBx and EGR1 in Plasmid construction HCC cells remains to be identified. The miR-3928v expression vector (pri-miR-3928v), Voltage-dependent anion channels (VDACs) belong to VDAC3 expression vector (pcDNA3-Flag-VDAC3), shR- the mitochondrial porin family, are located in the mito- VDAC3 vector, dual-luciferase reporter plasmids and chondrial outer membrane and serve as gatekeepers pGL3-luciferase-miR-3928v promoter were constructed. controlling the entry and exit of mitochondrial metabo- The details of these constructs are provided in Additional lites [18]. In mammals, the VDAC family has three file 1. The sequences of the primers used to generate the members: VDAC1, VDAC2 and VDAC3 [19]. Recent re- above plasmids are listed in Additional file 2.A2′-O- ports have demonstrated that VDACs can recruit the methyl-modified antisense oligonucleotide of miR- ubiquitin ligase Parkin to defective mitochondria to pro- 3928v (ASO-miR-3928v) was commercially synthesized mote mitochondrial autophagy [20]. VDACs also partici- by Genpharm (Shanghai, China). pate in various cellular processes, including reactive oxygen species (ROS) signaling and apoptosis mediated RNA extraction and real-time PCR by the release of cytochrome c or by interactions with RNA was extracted from serum and tissues using a miR- Bcl-2 family members [21, 22]. Thus, VDACs play a key cute miRNA Isolation Kit (Tiangen Biotech, China) role in mitochondrial dysfunction and pathophysio- according to the manufacturer’s instructions. The rela- logical processes. Although VDAC3 was found to inter- tive mRNA level was examined by RT-qPCR as detailed act with HBx [23, 24], miRNAs that regulate VDAC3 in in Additional file 1. The primer sequences are provided HCC cells have not been identified. in Additional file 2. In this study, we aimed to identify new miRNAs that may be involved in HCC oncogenic activity by deep se- Dual-luciferase reporter assays quencing. We identified a novel miRNA that is signifi- Huh7, HepG2 and HepG2.2.15 cells were seeded in 48- cantly highly expressed in HCC tissues. This miRNA, well plates and cultured for approximately 20 h after co- miR-3928v, was identified using Solexa sequencing, and transfection with different plasmids. The procedures are it differs by one base from miR-3928, which was described in detail in Additional file 1. Zhang et al. Journal of Experimental & Clinical Cancer Research (2018) 37:14 Page 3 of 12 MTT, colony formation, migration and invasion assays
Recommended publications
  • VDAC1 Selectively Transfers Apoptotic Ca2&Plus; Signals to Mitochondria
    Cell Death and Differentiation (2012) 19, 267–273 & 2012 Macmillan Publishers Limited All rights reserved 1350-9047/12 www.nature.com/cdd VDAC1 selectively transfers apoptotic Ca2 þ signals to mitochondria D De Stefani1, A Bononi2, A Romagnoli1, A Messina3, V De Pinto3, P Pinton2 and R Rizzuto*,1 Voltage-dependent anion channels (VDACs) are expressed in three isoforms, with common channeling properties and different roles in cell survival. We show that VDAC1 silencing potentiates apoptotic challenges, whereas VDAC2 has the opposite effect. Although all three VDAC isoforms are equivalent in allowing mitochondrial Ca2 þ loading upon agonist stimulation, VDAC1 silencing selectively impairs the transfer of the low-amplitude apoptotic Ca2 þ signals. Co-immunoprecipitation experiments show that VDAC1, but not VDAC2 and VDAC3, forms complexes with IP3 receptors, an interaction that is further strengthened by apoptotic stimuli. These data highlight a non-redundant molecular route for transferring Ca2 þ signals to mitochondria in apoptosis. Cell Death and Differentiation (2012) 19, 267–273; doi:10.1038/cdd.2011.92; published online 1 July 2011 Voltage-dependent anion channels (VDACs), the most Mitochondrial [Ca2 þ ] is commonly regarded as an impor- abundant proteins of the outer mitochondrial membrane tant determinant in cell sensitivity to apoptotic stimuli.21 (OMM), mediate the exchange of ions and metabolites Indeed, mitochondrial Ca2 þ accumulation acts as a ‘priming between the cytoplasm and mitochondria, and are key factors signal’ sensitizing the organelle and promoting the release of in many cellular processes, ranging from metabolism regula- caspase cofactors, both in isolated mitochondria as well as in tion to cell death.
    [Show full text]
  • Mitochondrial Function and Dysfunction in Dilated Cardiomyopathy
    fcell-08-624216 January 7, 2021 Time: 12:24 # 1 REVIEW published: 12 January 2021 doi: 10.3389/fcell.2020.624216 Mitochondrial Function and Dysfunction in Dilated Cardiomyopathy Daniela Ramaccini1,2,3, Vanessa Montoya-Uribe1, Femke J. Aan1, Lorenzo Modesti2,3, Yaiza Potes4, Mariusz R. Wieckowski4, Irena Krga5, Marija Glibetic´ 5, Paolo Pinton2,3,6, Carlotta Giorgi2,3 and Michelle L. Matter1* Edited by: 1 University of Hawaii Cancer Center, Honolulu, HI, United States, 2 Department of Medical Sciences, University of Ferrara, Gaetano Santulli, Ferrara, Italy, 3 Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, Ferrara, Italy, 4 Laboratory Columbia University, United States of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, 5 Reviewed by: Poland, Center of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, University of Belgrade, 6 Consolato Sergi, Belgrade, Serbia, Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy University of Alberta Hospital, Canada Atsushi Hoshino, Cardiac tissue requires a persistent production of energy in order to exert its pumping Kyoto Prefectural University of Medicine, Japan function. Therefore, the maintenance of this function relies on mitochondria that Helena Viola, represent the “powerhouse” of all cardiac activities. Mitochondria being one of the key University of Western Australia, Australia players for the proper functioning of the mammalian heart suggests continual regulation Marisol Ruiz-Meana, and organization. Mitochondria adapt to cellular energy demands via fusion-fission Vall d’Hebron Research Institute events and, as a proof-reading ability, undergo mitophagy in cases of abnormalities. (VHIR), Spain Ca2C fluxes play a pivotal role in regulating all mitochondrial functions, including *Correspondence: Michelle L.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Expression Profiling of Ion Channel Genes Predicts Clinical Outcome in Breast Cancer
    UCSF UC San Francisco Previously Published Works Title Expression profiling of ion channel genes predicts clinical outcome in breast cancer Permalink https://escholarship.org/uc/item/1zq9j4nw Journal Molecular Cancer, 12(1) ISSN 1476-4598 Authors Ko, Jae-Hong Ko, Eun A Gu, Wanjun et al. Publication Date 2013-09-22 DOI http://dx.doi.org/10.1186/1476-4598-12-106 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Ko et al. Molecular Cancer 2013, 12:106 http://www.molecular-cancer.com/content/12/1/106 RESEARCH Open Access Expression profiling of ion channel genes predicts clinical outcome in breast cancer Jae-Hong Ko1, Eun A Ko2, Wanjun Gu3, Inja Lim1, Hyoweon Bang1* and Tong Zhou4,5* Abstract Background: Ion channels play a critical role in a wide variety of biological processes, including the development of human cancer. However, the overall impact of ion channels on tumorigenicity in breast cancer remains controversial. Methods: We conduct microarray meta-analysis on 280 ion channel genes. We identify candidate ion channels that are implicated in breast cancer based on gene expression profiling. We test the relationship between the expression of ion channel genes and p53 mutation status, ER status, and histological tumor grade in the discovery cohort. A molecular signature consisting of ion channel genes (IC30) is identified by Spearman’s rank correlation test conducted between tumor grade and gene expression. A risk scoring system is developed based on IC30. We test the prognostic power of IC30 in the discovery and seven validation cohorts by both Cox proportional hazard regression and log-rank test.
    [Show full text]
  • Is VDAC a Regulated Gatekeeper of Mitochondrial Calcium Uptake?
    International Journal of Molecular Sciences Review A Calcium Guard in the Outer Membrane: Is VDAC a Regulated Gatekeeper of Mitochondrial Calcium Uptake? Paulina Sander 1 , Thomas Gudermann 1,2 and Johann Schredelseker 1,2,* 1 Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany; [email protected] (P.S.); [email protected] (T.G.) 2 Deutsches Zentrum für Herz-Kreislauf-Forschung, Partner Site Munich Heart Alliance, Munich, Germany * Correspondence: [email protected]; Tel.: +49-(0)89-2180-73831 Abstract: Already in the early 1960s, researchers noted the potential of mitochondria to take up large amounts of Ca2+. However, the physiological role and the molecular identity of the mitochondrial Ca2+ uptake mechanisms remained elusive for a long time. The identification of the individual components of the mitochondrial calcium uniporter complex (MCUC) in the inner mitochondrial membrane in 2011 started a new era of research on mitochondrial Ca2+ uptake. Today, many studies investigate mitochondrial Ca2+ uptake with a strong focus on function, regulation, and localization of the MCUC. However, on its way into mitochondria Ca2+ has to pass two membranes, and the first barrier before even reaching the MCUC is the outer mitochondrial membrane (OMM). The common opinion is that the OMM is freely permeable to Ca2+. This idea is supported by the presence of a high density of voltage-dependent anion channels (VDACs) in the OMM, forming large Ca2+ permeable pores. However, several reports challenge this idea and describe VDAC as a regulated Ca2+ channel. 2+ In line with this idea is the notion that its Ca selectivity depends on the open state of the channel, and its gating behavior can be modified by interaction with partner proteins, metabolites, or small 2+ Citation: Sander, P.; Gudermann, T.; synthetic molecules.
    [Show full text]
  • Loss of Primary Cilia Promotes Mitochondria-Dependent Apoptosis in Thyroid Cancer
    www.nature.com/scientificreports OPEN Loss of primary cilia promotes mitochondria‑dependent apoptosis in thyroid cancer Junguee Lee1*, Ki Cheol Park2, Hae Joung Sul1, Hyun Jung Hong3, Kun‑Ho Kim4, Jukka Kero5 & Minho Shong6* The primary cilium is well‑preserved in human diferentiated thyroid cancers such as papillary and follicular carcinoma. Specifc thyroid cancers such as Hürthle cell carcinoma, oncocytic variant of papillary thyroid carcinoma (PTC), and PTC with Hashimoto’s thyroiditis show reduced biogenesis of primary cilia; these cancers are often associated the abnormalities in mitochondrial function. Here, we examined the association between primary cilia and the mitochondria‑dependent apoptosis pathway. Tg-Cre;Ift88fox/fox mice (in which thyroid follicles lacked primary cilia) showed irregularly dilated follicles and increased apoptosis of thyrocytes. Defective ciliogenesis caused by deleting the IFT88 and KIF3A genes from thyroid cancer cell lines increased VDAC1 oligomerization following VDAC1 overexpression, thereby facilitating upregulation of mitochondria‑dependent apoptosis. Furthermore, VDAC1 localized with the basal bodies of primary cilia in thyroid cancer cells. These results demonstrate that loss‑of‑function of primary cilia results in apoptogenic stimuli, which are responsible for mitochondrial‑dependent apoptotic cell death in diferentiated thyroid cancers. Therefore, regulating primary ciliogenesis might be a therapeutic approach to targeting diferentiated thyroid cancers. Te primary cilium is a non-motile, microtubule-based sensory organelle that receives mechanical and chemi- cal stimuli from the environment and transduces external signals into the cell 1. Te tips of primary cilia, which are present in the apical membrane of thyroid follicular cells (thyrocytes), face into the follicular lumen 2. Te primary cilia of murine thyroid follicular cells play a role in maintaining globular follicle structures by acting on cell polarity3.
    [Show full text]
  • The Relevance of Aquaporins for the Physiology, Pathology, and Aging of the Female Reproductive System in Mammals
    cells Review The Relevance of Aquaporins for the Physiology, Pathology, and Aging of the Female Reproductive System in Mammals Paweł Kordowitzki 1,2 , Wiesława Kranc 3, Rut Bryl 3, Bartosz Kempisty 3,4,5, Agnieszka Skowronska 6 and Mariusz T. Skowronski 1,* 1 Department of Basic and Preclinical Sciences, Institute for Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland; [email protected] 2 Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-243 Olsztyn, Poland 3 Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland; [email protected] (W.K.); [email protected] (R.B.); [email protected] (B.K.) 4 Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland 5 Department of Veterinary Surgery, Institute for Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland 6 Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Warszawska Street 30, 10-082 Olsztyn, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-56-611-2231 Received: 27 October 2020; Accepted: 29 November 2020; Published: 1 December 2020 Abstract: Aquaporins constitute a group of water channel proteins located in numerous cell types. These are pore-forming transmembrane proteins, which mediate the specific passage of water molecules through membranes. It is well-known that water homeostasis plays a crucial role in different reproductive processes, e.g., oocyte transport, hormonal secretion, completion of successful fertilization, blastocyst formation, pregnancy, and birth. Further, aquaporins are involved in the process of spermatogenesis, and they have been reported to be involved during the storage of spermatozoa.
    [Show full text]
  • Ciliary Genes in Renal Cystic Diseases
    cells Review Ciliary Genes in Renal Cystic Diseases Anna Adamiok-Ostrowska * and Agnieszka Piekiełko-Witkowska * Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland * Correspondence: [email protected] (A.A.-O.); [email protected] (A.P.-W.); Tel.: +48-22-569-3810 (A.P.-W.) Received: 3 March 2020; Accepted: 5 April 2020; Published: 8 April 2020 Abstract: Cilia are microtubule-based organelles, protruding from the apical cell surface and anchoring to the cytoskeleton. Primary (nonmotile) cilia of the kidney act as mechanosensors of nephron cells, responding to fluid movements by triggering signal transduction. The impaired functioning of primary cilia leads to formation of cysts which in turn contribute to development of diverse renal diseases, including kidney ciliopathies and renal cancer. Here, we review current knowledge on the role of ciliary genes in kidney ciliopathies and renal cell carcinoma (RCC). Special focus is given on the impact of mutations and altered expression of ciliary genes (e.g., encoding polycystins, nephrocystins, Bardet-Biedl syndrome (BBS) proteins, ALS1, Oral-facial-digital syndrome 1 (OFD1) and others) in polycystic kidney disease and nephronophthisis, as well as rare genetic disorders, including syndromes of Joubert, Meckel-Gruber, Bardet-Biedl, Senior-Loken, Alström, Orofaciodigital syndrome type I and cranioectodermal dysplasia. We also show that RCC and classic kidney ciliopathies share commonly disturbed genes affecting cilia function, including VHL (von Hippel-Lindau tumor suppressor), PKD1 (polycystin 1, transient receptor potential channel interacting) and PKD2 (polycystin 2, transient receptor potential cation channel). Finally, we discuss the significance of ciliary genes as diagnostic and prognostic markers, as well as therapeutic targets in ciliopathies and cancer.
    [Show full text]
  • Robles JTO Supplemental Digital Content 1
    Supplementary Materials An Integrated Prognostic Classifier for Stage I Lung Adenocarcinoma based on mRNA, microRNA and DNA Methylation Biomarkers Ana I. Robles1, Eri Arai2, Ewy A. Mathé1, Hirokazu Okayama1, Aaron Schetter1, Derek Brown1, David Petersen3, Elise D. Bowman1, Rintaro Noro1, Judith A. Welsh1, Daniel C. Edelman3, Holly S. Stevenson3, Yonghong Wang3, Naoto Tsuchiya4, Takashi Kohno4, Vidar Skaug5, Steen Mollerup5, Aage Haugen5, Paul S. Meltzer3, Jun Yokota6, Yae Kanai2 and Curtis C. Harris1 Affiliations: 1Laboratory of Human Carcinogenesis, NCI-CCR, National Institutes of Health, Bethesda, MD 20892, USA. 2Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan. 3Genetics Branch, NCI-CCR, National Institutes of Health, Bethesda, MD 20892, USA. 4Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan. 5Department of Chemical and Biological Working Environment, National Institute of Occupational Health, NO-0033 Oslo, Norway. 6Genomics and Epigenomics of Cancer Prediction Program, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), 08916 Badalona (Barcelona), Spain. List of Supplementary Materials Supplementary Materials and Methods Fig. S1. Hierarchical clustering of based on CpG sites differentially-methylated in Stage I ADC compared to non-tumor adjacent tissues. Fig. S2. Confirmatory pyrosequencing analysis of DNA methylation at the HOXA9 locus in Stage I ADC from a subset of the NCI microarray cohort. 1 Fig. S3. Methylation Beta-values for HOXA9 probe cg26521404 in Stage I ADC samples from Japan. Fig. S4. Kaplan-Meier analysis of HOXA9 promoter methylation in a published cohort of Stage I lung ADC (J Clin Oncol 2013;31(32):4140-7). Fig. S5. Kaplan-Meier analysis of a combined prognostic biomarker in Stage I lung ADC.
    [Show full text]
  • Ischemic Postconditioning Confers Cerebroprotection by Stabilizing
    Yao et al. Cell Death and Disease (2018) 9:1033 DOI 10.1038/s41419-018-1089-5 Cell Death & Disease ARTICLE Open Access Ischemic postconditioning confers cerebroprotection by stabilizing VDACs after brain ischemia Gui-Ying Yao1,2, Qian Zhu1,2, Jing Xia1,2, Feng-Jiao Chen1,2,MingHuang1,2, Jing Liu1,2, Ting-Ting Zhou1,2, Jian-Feng Wei1,3, Gui-Yun Cui1,4, Kui-Yang Zheng3 and Xiao-Yu Hou1,2 Abstract Ischemic postconditioning provides robust neuroprotection, therefore, determining the molecular events may provide promising targets for stroke treatment. Here, we showed that the expression of functional mitochondrial voltage- dependent anion channel proteins (VDAC1, VDAC2, and VDAC3) reduced in rat vulnerable hippocampal CA1 subfield after global ischemia. Ischemic postconditioning restored VDACs to physiological levels. Stabilized VDACs contributed to the benefits of postconditioning. VDAC1 was required for maintaining neuronal Ca2+ buffering capacity. We found that microRNA-7 (miR-7) was responsible for postischemic decline of VDAC1 and VDAC3. Notably, miR-7 was more highly expressed in the peripheral blood of patients with acute ischemic stroke compared to healthy controls. Inhibition of miR-7 attenuated neuronal loss and ATP decline after global ischemia, but also diminished the infarct volume with improved neurological functions after focal ischemia. Thus, ischemic postconditioning protects against mitochondrial damage by stabilizing VDACs. MiR-7 may be a potential therapeutic target for ischemic stroke. 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; – Introduction delayed neuronal loss after brain ischemia5 9. Thus far, Stroke is one of the leading causes of adult disability and the molecular mechanisms underlying the endogenous mortality worldwide1. Acute ischemic stroke (AIS), neuroprotective effects remain to be defined.
    [Show full text]
  • Global Gene Expression Changes in Rat Retinal Ganglion Cells in Experimental Glaucoma
    Glaucoma Global Gene Expression Changes in Rat Retinal Ganglion Cells in Experimental Glaucoma Dan Yi Wang,1 Arjun Ray,1 Kathryn Rodgers,1 Ceren Ergorul,1 Bradley T. Hyman,2 Wei Huang,1 and Cynthia L. Grosskreutz1 PURPOSE. Intraocular pressure (IOP) is an important risk factor laucoma is the second leading cause of blindness world- in glaucoma. Gene expression changes were studied in glau- Gwide.1 It is a neurodegenerative disease that is character- comatous rat retinal ganglion cells (RGCs) to elucidate altered ized by the slow and progressive degeneration of retinal gan- transcriptional pathways. glion cells (RGCs) and their axons, leading to atrophy of the optic nerve and loss of vision. Elevated intraocular pressure METHODS. RGCs were back-labeled with Fluorogold. Unilateral (IOP) is the leading risk factor for loss of RGCs and develop- IOP elevation was produced by injection of hypertonic saline ment of optic nerve atrophy. It is now clear that RGCs die by into the episcleral veins. Laser capture microdissection (LCM) apoptosis in glaucoma.2–5 However, the trigger of the apopto- was used to capture an equal number of RGCs from normal and sis is still unknown. To successfully target the mechanisms, we glaucomatous retinal sections. RNA was extracted and ampli- must to understand the molecular signaling networks in RGC fied, labeled, and hybridized to rat genome microarrays, and death. We used laser capture microdissection (LCM) to specif- data analysis was performed. After selected microarray data ically capture RGCs, and microarray technology, an accepted were confirmed by RT-qPCR and immunohistochemistry, bio- and powerful tool for large-scale gene expression profiling, to logical pathway analyses were performed.
    [Show full text]
  • Is the Secret of VDAC Isoforms in Their Gene Regulation? Characterization of Human VDAC Genes Expression Profile, Promoter Activity, and Transcriptional Regulators
    International Journal of Molecular Sciences Article Is the Secret of VDAC Isoforms in Their Gene Regulation? Characterization of Human VDAC Genes Expression Profile, Promoter Activity, and Transcriptional Regulators Federica Zinghirino 1 , Xena Giada Pappalardo 1, Angela Messina 2,3,4, Francesca Guarino 1,3,4,* and Vito De Pinto 1,3,4 1 Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy; [email protected] (F.Z.); [email protected] (X.G.P.); [email protected] (V.D.P.) 2 Department of Biological, Geological and Environmental Sciences, Section of Molecular Biology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; [email protected] 3 National Institute for Biostructures and Biosystems, Section of Catania, 00136 Rome, Italy 4 We.MitoBiotech S.R.L., c.so Italia 172, 95129 Catania, Italy * Correspondence: [email protected]; Tel.: +39-095-738-4231 Received: 8 September 2020; Accepted: 3 October 2020; Published: 7 October 2020 Abstract: VDACs (voltage-dependent anion-selective channels) are pore-forming proteins of the outer mitochondrial membrane, whose permeability is primarily due to VDACs’ presence. In higher eukaryotes, three isoforms are raised during the evolution: they have the same exon–intron organization, and the proteins show the same channel-forming activity. We provide a comprehensive analysis of the three human VDAC genes (VDAC1–3), their expression profiles, promoter activity, and potential transcriptional regulators. VDAC isoforms are broadly but also specifically expressed in various human tissues at different levels, with a predominance of VDAC1 and VDAC2 over VDAC3.
    [Show full text]