RESEARCH ARTICLE Stress responsive miR-31 is a major modulator of mouse intestinal stem cells during regeneration and tumorigenesis Yuhua Tian1†, Xianghui Ma1†, Cong Lv1†, Xiaole Sheng1, Xiang Li1, Ran Zhao1, Yongli Song1, Thomas Andl2, Maksim V Plikus3, Jinyue Sun4, Fazheng Ren1, Jianwei Shuai5, Christopher J Lengner6,7, Wei Cui8, Zhengquan Yu1* 1Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China; 2Vanderbilt University Medical Center, Nashville, United States; 3Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, United States; 4Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China; 5Department of Physics and State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, China; 6Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, United States; 7Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, United States; 8Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, United Kingdom *For correspondence: Abstract Intestinal regeneration and tumorigenesis are believed to be driven by intestinal stem
[email protected] cells (ISCs). Elucidating mechanisms underlying ISC activation during regeneration and †These authors contributed tumorigenesis can help uncover the underlying principles of intestinal homeostasis and disease miR-31 equally to this work including colorectal cancer. Here we show that drives ISC proliferation, and protects ISCs against apoptosis, both during homeostasis and regeneration in response to ionizing radiation Competing interests: The injury.