The Comet/Asteroid Impact Hazard: a Systems Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cross-References ASTEROID IMPACT Definition and Introduction History of Impact Cratering Studies
18 ASTEROID IMPACT Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D., 2002. The identification and confirmation of impact structures on supplemental IRAS minor planet survey. The Astronomical Earth were developed: (a) crater morphology, (b) geo- 123 – Journal, , 1056 1085. physical anomalies, (c) evidence for shock metamor- Tholen, D. J., and Barucci, M. A., 1989. Asteroid taxonomy. In Binzel, R. P., Gehrels, T., and Matthews, M. S. (eds.), phism, and (d) the presence of meteorites or geochemical Asteroids II. Tucson: University of Arizona Press, pp. 298–315. evidence for traces of the meteoritic projectile – of which Yeomans, D., and Baalke, R., 2009. Near Earth Object Program. only (c) and (d) can provide confirming evidence. Remote Available from World Wide Web: http://neo.jpl.nasa.gov/ sensing, including morphological observations, as well programs. as geophysical studies, cannot provide confirming evi- dence – which requires the study of actual rock samples. Cross-references Impacts influenced the geological and biological evolu- tion of our own planet; the best known example is the link Albedo between the 200-km-diameter Chicxulub impact structure Asteroid Impact Asteroid Impact Mitigation in Mexico and the Cretaceous-Tertiary boundary. Under- Asteroid Impact Prediction standing impact structures, their formation processes, Torino Scale and their consequences should be of interest not only to Earth and planetary scientists, but also to society in general. ASTEROID IMPACT History of impact cratering studies In the geological sciences, it has only recently been recog- Christian Koeberl nized how important the process of impact cratering is on Natural History Museum, Vienna, Austria a planetary scale. -
Geological Timeline
Geological Timeline In this pack you will find information and activities to help your class grasp the concept of geological time, just how old our planet is, and just how young we, as a species, are. Planet Earth is 4,600 million years old. We all know this is very old indeed, but big numbers like this are always difficult to get your head around. The activities in this pack will help your class to make visual representations of the age of the Earth to help them get to grips with the timescales involved. Important EvEnts In thE Earth’s hIstory 4600 mya (million years ago) – Planet Earth formed. Dust left over from the birth of the sun clumped together to form planet Earth. The other planets in our solar system were also formed in this way at about the same time. 4500 mya – Earth’s core and crust formed. Dense metals sank to the centre of the Earth and formed the core, while the outside layer cooled and solidified to form the Earth’s crust. 4400 mya – The Earth’s first oceans formed. Water vapour was released into the Earth’s atmosphere by volcanism. It then cooled, fell back down as rain, and formed the Earth’s first oceans. Some water may also have been brought to Earth by comets and asteroids. 3850 mya – The first life appeared on Earth. It was very simple single-celled organisms. Exactly how life first arose is a mystery. 1500 mya – Oxygen began to accumulate in the Earth’s atmosphere. Oxygen is made by cyanobacteria (blue-green algae) as a product of photosynthesis. -
Asteroid Impact, Not Volcanism, Caused the End-Cretaceous Dinosaur Extinction
Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction Alfio Alessandro Chiarenzaa,b,1,2, Alexander Farnsworthc,1, Philip D. Mannionb, Daniel J. Luntc, Paul J. Valdesc, Joanna V. Morgana, and Peter A. Allisona aDepartment of Earth Science and Engineering, Imperial College London, South Kensington, SW7 2AZ London, United Kingdom; bDepartment of Earth Sciences, University College London, WC1E 6BT London, United Kingdom; and cSchool of Geographical Sciences, University of Bristol, BS8 1TH Bristol, United Kingdom Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved May 21, 2020 (received for review April 1, 2020) The Cretaceous/Paleogene mass extinction, 66 Ma, included the (17). However, the timing and size of each eruptive event are demise of non-avian dinosaurs. Intense debate has focused on the highly contentious in relation to the mass extinction event (8–10). relative roles of Deccan volcanism and the Chicxulub asteroid im- An asteroid, ∼10 km in diameter, impacted at Chicxulub, in pact as kill mechanisms for this event. Here, we combine fossil- the present-day Gulf of Mexico, 66 Ma (4, 18, 19), leaving a crater occurrence data with paleoclimate and habitat suitability models ∼180 to 200 km in diameter (Fig. 1A). This impactor struck car- to evaluate dinosaur habitability in the wake of various asteroid bonate and sulfate-rich sediments, leading to the ejection and impact and Deccan volcanism scenarios. Asteroid impact models global dispersal of large quantities of dust, ash, sulfur, and other generate a prolonged cold winter that suppresses potential global aerosols into the atmosphere (4, 18–20). These atmospheric dinosaur habitats. -
Asteroid Retrieval Feasibility Study
Publications 4-2-2012 Asteroid Retrieval Feasibility Study John Brophy California Institute of Technology Fred Culick California Institute of Technology Louis Friedman The Planetary Society Pedro Llanos Embry-Riddle Aeronautical University - Daytona Beach, [email protected] et al. Follow this and additional works at: https://commons.erau.edu/publication Part of the Astrodynamics Commons, Space Vehicles Commons, and the The Sun and the Solar System Commons Scholarly Commons Citation Brophy, J., Culick, F., Friedman, L., Llanos, P., & al., e. (2012). Asteroid Retrieval Feasibility Study. , (). Retrieved from https://commons.erau.edu/publication/893 This Report is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Publications by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Asteroid Retrieval Feasibility Study 2 April 2012 Prepared for the: Keck Institute for Space Studies California Institute of Technology Jet Propulsion Laboratory Pasadena, California 1 2 Authors and Study Participants NAME Organization E-Mail Signature John Brophy Co-Leader / NASA JPL / Caltech [email protected] Fred Culick Co-Leader / Caltech [email protected] Co -Leader / The Planetary Louis Friedman [email protected] Society Carlton Allen NASA JSC [email protected] David Baughman Naval Postgraduate School [email protected] NASA ARC/Carnegie Mellon Julie Bellerose [email protected] University Bruce Betts The Planetary Society -
An Ongoing Effort to Identify Near-Earth Asteroid Destination
The Near-Earth Object Human Space Flight Accessible Targets Study: An Ongoing Effort to Identify Near-Earth Asteroid Destinations for Human Explorers Presented to the 2013 IAA Planetary Defense Conference Brent W. Barbee∗, Paul A. Abelly, Daniel R. Adamoz, Cassandra M. Alberding∗, Daniel D. Mazanekx, Lindley N. Johnsonk, Donald K. Yeomans#, Paul W. Chodas#, Alan B. Chamberlin#, Victoria P. Friedensenk NASA/GSFC∗ / NASA/JSCy / Aerospace Consultantz NASA/LaRCx / NASA/HQk / NASA/JPL# April 16th, 2013 Introduction I Near-Earth Objects (NEOs) are asteroids and comets with perihelion distance < 1.3 AU I Small, usually rocky bodies (occasionally metallic) I Sizes range from a few meters to ≈ 35 kilometers I Near-Earth Asteroids (NEAs) are currently candidate destinations for human space flight missions in the mid-2020s th I As of April 4 , 2013, a total of 9736 NEAs have been discovered, and more are being discovered on a continual basis 2 Motivations for NEA Exploration I Solar system science I NEAs are largely unchanged in composition since the early days of the solar system I Asteroids and comets may have delivered water and even the seeds of life to the young Earth I Planetary defense I NEA characterization I NEA proximity operations I In-Situ Resource Utilization I Could manufacture radiation shielding, propellant, and more I Human Exploration I The most ambitious journey of human discovery since Apollo I NEAs as stepping stones to Mars 3 NHATS Background I NASA's Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) (pron.: /næts/) began in September of 2010 under the auspices of the NASA Headquarters Planetary Science Mission Directorate in cooperation with the Advanced Exploration Systems Division of the Human Exploration and Operations Mission Directorate. -
1 ABSTRACT Aside from the Exploration of Mars, the Objects That
IAC-07-B3.5.06 INTO THE BEYOND: A CREWED MISSION TO A NEAR-EARTH OBJECT David J. Korsmeyer, NASA Ames Research Center, Intelligent Systems Division, Moffett Field, CA, USA, [email protected] Rob R. Landis, NASA Johnson Space Center, Mission Operations Directorate, Houston, TX, USA [email protected] Paul A. Abell, NASA Johnson Space Center, Astromaterials Research & Exploration Science, Houston, TX, USA [email protected] ABSTRACT utility and opportunities for the developing Aside from the exploration of Mars, the Constellation infrastructure, particularly, the objects that most capture our interest for a Ares Launch vehicles and the Orion crewed new human visit are the Near-Earth Objects spacecraft, to be used for missions that were (NEOs). These objects are ideal candidates not directly in the design specifications (aka for deep space operations and explorations as non-lunar missions). The Ares and Orion we extend the human presence out into the systems are designed to launch 4-6 crew to solar system. The notion of a crewed mission the International Space Station (ISS), and to to a NEO was first discussed in the Apollo eventually take 4 crew back to lunar orbit era. The most recent assessment has been where a lunar lander would take the crew to undertaken by the Advanced Projects Office the surface. within NASA’s Constellation Program. This particular study examined the feasibility of The NASA Constellation Program wanted to sending NASA’s new Orion spacecraft (also understand what are some other feasible, referred to as the Crew Exploration Vehicle, high-value uses of the Orion spacecraft and or CEV) to a NEO. -
Asteroid Retrieval Mission Concept – Trailblazing Our Future in Space and Helping to Protect Us from Earth Impactors
Asteroid Retrieval Mission Concept – Trailblazing Our Future in Space and Helping to Protect Us from Earth Impactors Presented by Dan Mazanek1 Co-authors: John Brophy2 and Gabe Merrill1 1NASA Langley Research Center; 2Jet Propulsion Laboratory April 16, 2013 2013 Planetary Defense Conference Flagstaff, USA Paper No: IAA-PDC13-04-14 1 Background The idea of utilizing asteroidal resources is not new • 1903 – Konstantin Tsiolkovskii included the concept of using asteroids for resources in his most famous publication, The Exploration of Cosmic Space by Means of Reaction Motors • 1977 – NASA’s Dr. Brian O’Leary proposed using mass drivers to move Earth- approaching Apollo and Amor asteroids to Earth’s vicinity • 1997 – Dr. John S. Lewis detailed how we can extract the vast resources available from our solar system in the influential book Mining the Sky: Untold Riches from the Asteroids, Comets, and Planets September 2011 and February 2012 – Asteroid Retrieval Mission (ARM) Study at Caltech’s Keck Institute for Space Studies (KISS) • Examined the feasibility of returning a small (~7 m diameter) near-Earth asteroid (NEA), or part of a large NEA, to cislunar space • Utilize robotic 50 kW-class solar electric propulsion (SEP) vehicle and currently available technologies (40 kW available to the electric propulsion system) • John Brophy (Co-Leader along with Louis Friedman and Fred Culick) and Dan Mazanek were KISS ARM study members 2 Recent Events Recent events have elevated the public’s awareness of the potential of space resources and have -
What Killed the Dinosaurs?
What killed the dinosaurs? The impact theory The impact theory was beautifully simple and appealing. Much of its evidence was drawn from a thin layer of rock known as the 'KT boundary'. This layer is 65 million years old (which is around the time when the dinosaurs disappeared) and is found around the world exposed in cliffs and mines. For supporters of the impact theory, the KT boundary layers contained two crucial clues. In 1979 scientists discovered that there were high concentrations of a rare element called iridium, which they thought could only have come from an asteroid. Right underneath the iridium was a layer of 'spherules', tiny balls of rock which seemed to have been condensed from rock which had been vapourised by a massive impact. On the basis of the spherules and a range of other evidence, Dr Alan Hildebrand of the University of Calgary deduced that the impact must have happened in the Yucatan peninsula, at the site of a crater known as Chicxulub. Chemical analysis later confirmed that the spherules had indeed come from rocks within the crater. The impact theory seemed to provide the complete answer. In many locations around the world, the iridium layer (evidence of an asteroid impact) sits right on top of the spherule layer (evidence that the impact was at Chicxulub). So Hildebrand and other supporters of the impact theory argued that there was one massive impact 65 million years ago, and that it was at Chicxulub. This, they concluded, must have finished off the dinosaurs by a variety of mechanisms. -
“Impact Winter” Guest: Ben Murray [Intro Music] JOSH: Hello, You're Listening to the West Wing
The West Wing Weekly 6.09: “Impact Winter” Guest: Ben Murray [Intro Music] JOSH: Hello, you’re listening to The West Wing Weekly. I’m Joshua Malina. HRISHI: And I’m Hrishikesh Hirway. Today, we’re talking about Season 6 Episode 9. It’s called “Impact Winter”. JOSH: This episode was written by Debora Cahn. This episode was directed by Lesli Linka Glatter. This episode first aired on December 15th, 2004. HRISHI: Two episodes ago, in episode 6:07, the title was “A Change is Gonna Come,” and I think in this episode the changes arrive. JOSH: Aaaahhh. HRISHI: The President goes to China, but he is severely impaired by his MS. Charlie pushes C.J. to consider her next step after she steps out of the White House, and Josh considers his next step after it turns out Donna has already considered what her next step will be. JOSH: Indeed. HRISHI: Later in this episode we’re going to be joined by Ben Murray who made his debut on The West Wing in the last episode. He plays Curtis, the president’s new personal assistant to replace Charlie. JOSH: A man who has held Martin Sheen in his arms. I mean, I’ve done that off camera, but he did it on television. HRISHI: [Laughs] Little do our listeners know that Martin Sheen insists on being carried everywhere. JOSH: That’s right. I was amazed all these years later when Martin showed up for his interview with us that Ben was carrying him. That was the first time we met him. -
Diamondback Terrapin, Malaclemys Terrapin, Nesting and Overwintering Ecology
Diamondback Terrapin, Malaclemys terrapin, Nesting and Overwintering Ecology A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Leah J. Graham June 2009 © 2009 Leah J. Graham. All Rights Reserved. 2 This thesis titled Diamondback Terrapin, Malaclemys terrapin, Nesting and Overwintering Ecology by LEAH J. GRAHAM has been approved for the Program of Environmental Studies and the College of Arts and Sciences by Willem M. Roosenburg Associate Professor of Biological Sciences Benjamin M. Ogles Dean, College of Arts and Sciences 3 ABSTRACT GRAHAM, LEAH J., M.S., June 2009, Environmental Studies Diamondback Terrapin, Malaclemys terrapin, Nesting and Overwintering Ecology (69 pp.) Director of Thesis: Willem M. Roosenburg Poplar Island Environmental Restoration Project is a unique solution for the dredge material placement and restoring decreasing habitat in the Chesapeake Bay. Since 2002, a long-term terrapin monitoring program has been documenting diamondback terrapin, Malaclemys terrapin habitat use. Northern diamondback terrapins, hatchlings may either emerge from their nest in the fall and seek other overwintering hibernacula, or remain inside their natal nest to emerge the following spring, known as delayed emergence. Results from the 2007-08 nesting season found that compaction and the presence of ice nucleating agents (as a measure of crystallization temperature) affected nest emergence timing in hatchlings. Fall emerged nests had lower bulk density (less compacted) and had a higher potency of ice nucleating agents compared to spring emerging nests. With proper management, areas such as Poplar Island may become areas of concentration for terrapins and thus provide a source population for the terrapin recovery throughout the Bay. -
Timberlane High School Science Summer Reading Assignment
Timberlane High School Science Summer Reading Assignment: Course: Zoology Instructions Please read the following selection(s) from the book A Short History of Nearly Everything by Bill Bryson. Please provide written answers (short essay style) to the questions at the end of the reading •Questions adapted from Random House Publishing Inc. https://www.randomhouse.com/catalog/teachers_guides/9780767908184.pdf The written assignment is to be turned into your teacher by Friday Sept. 8th for potential full credit. Accepted until Sept 13th with 10% deduction in grade per day. Not accepted after Sept 13th. This is a graded assignment worth up to 3% of your quarter 1 grade. Grading Rubric: The writing will be assessed on the following 0 to 3 scales Each answer should be in a short essay style (minimum one paragraph). o 1: most answers are short one word answers. o 3: complete thoughts and sentences that fully convey the answers. Each answer should demonstrate evidence of reading to comprehension. o 1: answers indicate that the reading was not completed o 3: answers show clear comprehension of the reading Each answer should be correct, relevant to the topic, should strive for detail and completeness. o 1: answers are not relative to question or reading o 3: Answers demonstrate clear relevancy to passage and get to the heart of the rationale for question in relation to subject area. Each answer should refer to a specific statement or include a quote from the reading. o 1: the writing is vague, incomplete and contains little detail o 3: writing is detailed, complete and references specific statements or quotes from the reading passage. -
Why Atens Enjoy Enhanced Accessibility for Human Space Flight
(Preprint) AAS 11-449 WHY ATENS ENJOY ENHANCED ACCESSIBILITY FOR HUMAN SPACE FLIGHT Daniel R. Adamo* and Brent W. Barbee† Near-Earth objects can be grouped into multiple orbit classifications, among them being the Aten group, whose members have orbits crossing Earth's with semi-major axes less than 1 astronomical unit. Atens comprise well under 10% of known near-Earth objects. This is in dramatic contrast to results from recent human space flight near-Earth object accessibility studies, where the most favorable known destinations are typically almost 50% Atens. Geocentric dynamics explain this enhanced Aten accessibility and lead to an understanding of where the most accessible near-Earth objects reside. Without a com- prehensive space-based survey, however, highly accessible Atens will remain largely un- known. INTRODUCTION In the context of human space flight (HSF), the concept of near-Earth object (NEO) accessibility is highly subjective (Reference 1). Whether or not a particular NEO is accessible critically depends on mass, performance, and reliability of interplanetary HSF systems yet to be designed. Such systems would cer- tainly include propulsion and crew life support with adequate shielding from both solar flares and galactic cosmic radiation. Equally critical architecture options are relevant to NEO accessibility. These options are also far from being determined and include the number of launches supporting an HSF mission, together with whether consumables are to be pre-emplaced at the destination. Until the unknowns of HSF to NEOs come into clearer focus, the notion of relative accessibility is of great utility. Imagine a group of NEOs, each with nearly equal HSF merit determined from their individual characteristics relating to crew safety, scientific return, resource utilization, and planetary defense.