Chapter 8 the Perception of Auditory Patterns Diana Deutsch University of California, San Diego

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 8 the Perception of Auditory Patterns Diana Deutsch University of California, San Diego Chapter 8 The Perception of Auditory Patterns Diana Deutsch University of California, San Diego 1 INTRODUCTION Over the last half-century a considerable body of knowledge has accumulated concerning visual shape perception, based on findings in experimental psychology, neurophysiology, artificial intelligence and related fields. These developments have not, however, been paralleled by analogous developments in audition. It is inter- esting, therefore, that the foundations of pattern perception were laid by scientists who were as much concerned with auditory and musical phenomena as they were with visual ones. Wertheimer (1924/1938) described the beginnings of Gestalt theory thus: 'Historically, the most important impulse came from von Ehrenfels who raised the following problem. Psychology has said that experience is a compound of elements; we hear a melody and then, upon hearing it again, memory enables us to recognize it. But what is it that enables us to recognize the melody when it is played in a new key? The sum of its elements is different, yet the melody is the same; indeed, one is often not even aware that a transposition has been made.' (p. 4) In another paper in which he proposed the Gestalt principles of perceptual organization, Wertheimer (1923/1955) frequently presented musical illustrations along with visual ones. For example, in order to illustrate that 'more or less dissimilarity operates to determine experienced arrangement' he wrote: 'With tones, for example, C, C~, E, F, G~, A, C, C~... will be heard in the grouping ab/cd... ; and C, C~, D, E, F, F~, G~, A, A~, C, C~, D ... in the grouping abc/def' (1923/1955, p. 76). Figure 8.1 shows visual arrays such as presented by Wertheimer as analogous to these musical ones. In contrast to work on visual perception, the development of psychoacoustics around the middle of this century was characterized by a strong focus on highly restricted perceptual phenomena: namely, those that could be produced by very simple stimuli and which lent themselves to interpretations based on the workings of the peripheral hearing apparatus. Issues explored in detail included absolute and differential thresholds for pitch and loudness, lateralization of sine waves and noise bands, and various masking functions. The reluctance over the past few decades to consider higher-level processing in audition c~n be attributed to a number of factors (Deutsch and Pierce, 1992). First, Handbook of Perception and Action: Volume 1 Copyright 1996 Academic Press Ltd ISBN 0-12-516161-1 All rights of reproduction in any form reserved 253 254 D. Deutsch (a) (b) O O0 O o~ O O0 O O0 @O Figure 8.1 Visual analogs of two pitch series, to illustrate perceptual grouping in the two modalities. Pattern (a) corresponds to the series C, C~, E, F, G~, A, C, C~, and pattern (b) to the series C, C~, D, E, F, F~, G~, A, A~, C, C~, D. [From Wertheimer, 1923/1955. 1923 Springer; reprinted with kind permission of the publisher.] it was very difficult until recently to generate complex auditory stimuli with sufficient precision to address higher-level issues in the laboratory. A second factor was the lack of awareness of musical phenomena on the part of many researchers in the field. In the case of vision, it is evident from everyday experience that we recognize shapes as equivalent when these differ in size, in orientation and location in the visual field. Analogous perceptual equivalences in hearing are not evident from consideration of extramusical phenomena; however, music provides us with a number of convincing examples. We recognize musical passages when these are transposed to different keys; we treat as harmonically equivalent tones that are related by octaves; we perceive patterns of duration as equivalent when these are presented at different tempi, and so on. We are at present experiencing a renewed interest in mechanisms of auditory shape perception, and it appears as no surprise that this is accompanied by a resurgence of interest in music. 2 PERCEPTUAL GROUPING PRINCIPLES Before embarking on a consideration of auditory phenomena, we first review two approaches to the issue of how elements of perceptual arrays are grouped together. The first approach, expounded by the Gestalt psychologists, assumes that the perceptual system forms groupings on the basis of a number of primitive organiza- tional principles (Wertheimer, 1923/1955). One principle is termed proximity and states that perceptual connections are formed between elements that are close together, in preference to those that are further apart. Figure 8.2a presents an The Perception of Auditory Patterns 255 b) O00O 0000 O000 0000 A 0 c Q DO00000 0 0 OB Figure 8.2. Illustrations of several principles of perceptual organization enunciated by the Gestalt psychologists: (a) proximity; (b) similarity; (c) good continuation; (d) closure. example of this principle in vision. An array of dots is here displayed, which are closer along the vertical axis than along the horizontal one. These dots are perceptually connected on the basis of spatial proximity, so that columns rather than rows are perceived. A second principle, termed similarity, states that connec- tions are formed between elements that are similar rather than between those that are dissimilar. Figure 8.2b presents an example from vision. Here, the open and closed circles form separate groupings, so that, in this case, rows rather than columns are perceived. A third principle, termed good continuation, states that connections are formed between elements that continue in the same direction. As a visual example, the dots in Figure 8.2c are perceived as forming the continuous lines AB and CD. A fourth principle, termed closure, states that we tend to perceive arrays as self-enclosed units. Thus, the pattern in Figure 8.2d is perceived as a circle that is partially occluded by a rectangle. A fifth principle, termed common fate, states that elements that move synchronously in the same direction are perceptually connected together. For example, two rows of dots moving in opposite directions are seen as belonging to two distinctly different sources. Another approach to perceptual organization, expounded by Helmholtz (1862/ 1954), argues that the observer employs perceptual principles that give rise to the most effective interpretation of the environment. This line of reasoning could explain why the Gestalt grouping principles operate in perception. In making sense of our visual environment, it is useful to group together elements that are in spatial proximity or that are similar to each other, since these elements are more likely to belong to the same object. Analogously, sounds that are proximal in frequency or that are similar in timbre are likely to be emanating from the same source. We now turn to the application of these organizational principles to sound perception, with an emphasis on music, and we also consider the relative contribu- tions of pitch, timbre, spatial location and time as bases for such organization. 256 D. Deutsch .~ ,f. w - Figure 8.3. A measure from Beethoven's Waldstein Sonata. The visual representation provided by the score mirrors the converging pitch lines heard in the passage. The most prominent characteristics of music consist of arrangements of pitches in time. As a result, the conventions of musical scores have evolved primarily to emphasize such arrangements. Generally speaking, in a written score, pitch and time are mapped respectively into the vertical and horizontal dimensions of visual space. An illustration of such a mapping is given in Figure 8.3, which reproduces a measure from Beethoven's Waldstein Sonata. Here, the converging lines in the score provide a good visual analog of the converging pitch movements that are heard in the passage. As we shall see, several principles of perceptual organization in music are evident in visual analogs provided by scores, although there are also important exceptions. 2.1 Pitch Proximity in the Grouping of Sound Patterns Proximity is a powerful organizational principle in the perception of pitch struc- tures. This is particularly manifest for series of tones which are presented in rapid succession. When such tones are drawn from different pitch ranges, the listener hears two melodic lines in parallel: one corresponding to the higher tones and the other to the lower tones. This perceptual phenomenon has frequently been ex- ploited by composers. Figure 8.4 provides, as an example, a passage from Tarrega's Recuerdos de la Alhambra. The musical score is here given together with a represen- tation in which pitch (or log frequency) and time are mapped into two dimensions of visual space. The two separate pitch lines are clearly reflected in the visual representation. There are a number of interesting consequences to this tendency to group rapid series of tones on the basis of pitch proximity. One concerns the perception of temporal relationships. These are well perceived between tones that are in the same pitch range, but poorly perceived between tones that are in different pitch ranges (Bregman, 1990; Bregman and Campbell, 1971; Dannenbring and Bregman, 1976; Fitzgibbon, Pollatsek and Thomas, 1974; van Noorden, 1975). As an example, Figure 8.5 shows the just noticeable temporal displacement of a tone in a continuous series of alternating tones, plotted as a function of the pitch separation between the alternating tones. As can be seen, there is a gradual breakdown of temporal resolution with an increase in the pitch separation between the alternating tones. Another interesting consequence of grouping by pitch range was demonstrated by Dowling (1973). He generated two well-known melodies such that the tones from each melody occurred in rapid alternation. When the pitch ranges of the melodies overlapped heavily, listeners perceived a single line which corresponded The Perception of Auditory Patterns 257 00 000 000 000 000 000 000 000 0 0 M time Figure 8.4.
Recommended publications
  • MUSICAL SKILLS and PERCEIVED VIVIDNESS of IMAGERY: DIFFERENCES BETWEEN MUSICIANS and UNTRAINED SUBJECTS Di Santo F
    Annali della facoltà di Scienze della formazione Università degli studi di Catania 14 (2015), pp. 3-13 ISSN 2038-1328 / EISSN 2039-4934 doi: 10.4420/unict-asdf.14.2015.1 MUSICAL SKILLS AND PERCEIVED VIVIDNESS OF IMAGERY: DIFFERENCES BETWEEN MUSICIANS AND UNTRAINED SUBJECTS di Santo F. Di Nuovo , Anita Angelica 1. Introduction 1.1. Neuropsychology of music Neuropsychological studies have demonstrated that musical processes are represented throughout the brain, involving widely diffuse cerebral areas: i.e., auditory, visual, cognitive, affective, memory, and motor systems 1. This activa - tion involves also mental imagery, intended as reproduction – and original inter - pretation, if requested – of cognitive contents an d/or motor behaviors not imme - diately present in the actual sensory-motor perception, using working memory and rehearsal 2. Kinesthetic imagery, in particular, activates neuronal structures necessary for the execution of the movements and the learning of new motor skills 3. The ability of reconstructing in images some cognitive and emotional fea - tures of memory may be useful to foster the expression of musical activitie s4; in fact, they require the mental representation of musical sounds an d/or movements 1 D. Hodges, Neuromusical research: A review of the literature , in Handbook of music psy - chology , ed. by D. Hodges, San Antonio, IMR Press, 1996, pp. 203-290; R.I. Godøy, H. Jørgen - sen, Musical Imagery , Lisse, The Netherlands, Swets & Zeitlinger, 2001; S. Koelsch, Brain and Music , New York, Wiley, 2012. 2 A. Paivio, Imagery and verbal processes , New York, Holt, Rinehart and Winston, 1971; S.M. Kosslyn, Image and Mind , Cambridge, MA, Harvard University Press, 1980; S.M.
    [Show full text]
  • The Perception of Melodic Consonance: an Acoustical And
    The perception of melodic consonance: an acoustical and neurophysiological explanation based on the overtone series Jared E. Anderson University of Pittsburgh Department of Mathematics Pittsburgh, PA, USA Abstract The melodic consonance of a sequence of tones is explained using the overtone series: the overtones form “flow lines” that link the tones melodically; the strength of these flow lines determines the melodic consonance. This hypothesis admits of psychoacoustical and neurophysiological interpretations that fit well with the place theory of pitch perception. The hypothesis is used to create a model for how the auditory system judges melodic consonance, which is used to algorithmically construct melodic sequences of tones. Keywords: auditory cortex, auditory system, algorithmic composition, automated com- position, consonance, dissonance, harmonics, Helmholtz, melodic consonance, melody, musical acoustics, neuroacoustics, neurophysiology, overtones, pitch perception, psy- choacoustics, tonotopy. 1. Introduction Consonance and dissonance are a basic aspect of the perception of tones, commonly de- scribed by words such as ‘pleasant/unpleasant’, ‘smooth/rough’, ‘euphonious/cacophonous’, or ‘stable/unstable’. This is just as for other aspects of the perception of tones: pitch is described by ‘high/low’; timbre by ‘brassy/reedy/percussive/etc.’; loudness by ‘loud/soft’. But consonance is a trickier concept than pitch, timbre, or loudness for three reasons: First, the single term consonance has been used to refer to different perceptions. The usual convention for distinguishing between these is to add an adjective specifying what sort arXiv:q-bio/0403031v1 [q-bio.NC] 22 Mar 2004 is being discussed. But there is not widespread agreement as to which adjectives should be used or exactly which perceptions they are supposed to refer to, because it is difficult to put complex perceptions into unambiguous language.
    [Show full text]
  • Absolute Pitch (AP)
    Absolute Pitch (AP) • A.k.a. ‘perfect pitch’ • The ability to name or produce a tone without a reference tone • Very rare: 1 in 10,000 Vs. Relative pitch (RP) • Most people use relative pitch: • Recognizing tones relative to other tones • Remember and produce intervals abstracted from specific pitch, or given a reference pitch AP: how it works • Thought to be a labeling process: – AP possessors associate names/ meaning with pitches or pitch classes – Retain this association over time • AP is not ‘perfect’; i.e., auditory perception/ pitch discrimination not more accurate than RP Imaging evidence • When making judgments using AP: • possessors compared to non- possessors show more activation in frontal naming/labeling areas • Anatomically, AP possessors show greater planum temporale asymmetry – Apparently due to reduced RH PT size AP ‘flavors’ • AP not purely ‘have’ or ‘have-not; ability level varies along continuum • Some possessors make more accurate judgments with certain instruments – e.g. piano vs. pure sine wave tones – Sometimes called ‘absolute piano’ AP ‘flavors’ cont’d • Other possessors may perform more accurately with white-key notes than black-key notes – E.g. C,D,E vs. C#, D# • May be due to early learning influence – Early musical training on keyboard usually starts with white-key notes only • So, is AP learned? Learnable? Nature vs. Nurture, of course • The debate continues: – Some researchers ascribe genetic origins to AP, suspecting that early musical training is neither sufficient nor necessary – Others find most possessors
    [Show full text]
  • Classical Net Review
    The Internet's Premier Classical Music Source BOOK REVIEW The Psychology of Music Diana Deutsch, editor Academic Press, Third Edition, 2013, pp xvii + 765 ISBN-10: 012381460X ISBN-13: 978-0123814609 The psychology of music was first explored in detail in modern times in a book of that name by Carl E. Seashore… Psychology Of Music was published in 1919. Dover's paperback edition of almost 450 pages (ISBN- 10: 0486218511; ISBN-13: 978-0486218519) is still in print from half a century later (1967) and remains a good starting point for those wishing to understand the relationship between our minds and music, chiefly as a series of physical processes. From the last quarter of the twentieth century onwards much research and many theories have changed the models we have of the mind when listening to or playing music. Changes in music itself, of course, have dictated that the nature of human interaction with it has grown. Unsurprisingly, books covering the subject have proliferated too. These range from examinations of how memory affects our experience of music through various forms of mental disabilities, therapies and deviations from "standard" auditory reception, to attempts to explain music appreciation psychologically. Donald Hodges' and David Conrad Sebald's Music in the Human Experience: An Introduction to Music Psychology (ISBN-10: 0415881862; ISBN-13: 978- 0415881869) makes a good introduction to the subject; while Aniruddh Patel's Music, Language, and the Brain (ISBN-10: 0199755302; ISBN-13: 978-0199755301) is a good (and now classic/reference) overview. Oliver Sacks' Musicophilia: Tales of Music and the Brain (ISBN-10: 1400033535; ISBN-13: 978-1400033539) examines specific areas from a clinical perspective.
    [Show full text]
  • Convergent Evolution in a Large Cross-Cultural Database of Musical Scales
    Convergent evolution in a large cross-cultural database of musical scales John M. McBride1,* and Tsvi Tlusty1,2,* 1Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, South Korea 2Departments of Physics and Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea *[email protected], [email protected] August 3, 2021 Abstract We begin by clarifying some key terms and ideas. We first define a scale as a sequence of notes (Figure 1A). Scales, sets of discrete pitches used to generate Notes are pitch categories described by a single pitch, melodies, are thought to be one of the most uni- although in practice pitch is variable so a better descrip- versal features of music. Despite this, we know tion is that notes are regions of semi-stable pitch centered relatively little about how cross-cultural diversity, around a representative (e.g., mean, meadian) frequency or how scales have evolved. We remedy this, in [10]. Thus, a scale can also be thought of as a sequence of part, we assemble a cross-cultural database of em- mean frequencies of pitch categories. However, humans pirical scale data, collected over the past century process relative frequency much better than absolute fre- by various ethnomusicologists. We provide sta- quency, such that a scale is better described by the fre- tistical analyses to highlight that certain intervals quency of notes relative to some standard; this is typically (e.g., the octave) are used frequently across cul- taken to be the first note of the scale, which is called the tures.
    [Show full text]
  • Memory and Production of Standard Frequencies in College-Level Musicians Sarah E
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2013 Memory and Production of Standard Frequencies in College-Level Musicians Sarah E. Weber University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Part of the Cognition and Perception Commons, Fine Arts Commons, Music Education Commons, and the Music Theory Commons Weber, Sarah E., "Memory and Production of Standard Frequencies in College-Level Musicians" (2013). Masters Theses 1911 - February 2014. 1162. Retrieved from https://scholarworks.umass.edu/theses/1162 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Memory and Production of Standard Frequencies in College-Level Musicians A Thesis Presented by SARAH WEBER Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF MUSIC September 2013 Music Theory © Copyright by Sarah E. Weber 2013 All Rights Reserved Memory and Production of Standard Frequencies in College-Level Musicians A Thesis Presented by SARAH WEBER _____________________________ Gary S. Karpinski, Chair _____________________________ Andrew Cohen, Member _____________________________ Brent Auerbach, Member _____________________________ Jeff Cox, Department Head Department of Music and Dance DEDICATION For my parents and Grandma. ACKNOWLEDGEMENTS I would like to thank Kristen Wallentinsen for her help with experimental logistics, Renée Morgan for giving me her speakers, and Nathaniel Liberty for his unwavering support, problem-solving skills, and voice-over help.
    [Show full text]
  • Major Heading
    THE APPLICATION OF ILLUSIONS AND PSYCHOACOUSTICS TO SMALL LOUDSPEAKER CONFIGURATIONS RONALD M. AARTS Philips Research Europe, HTC 36 (WO 02) Eindhoven, The Netherlands An overview of some auditory illusions is given, two of which will be considered in more detail for the application of small loudspeaker configurations. The requirements for a good sound reproduction system generally conflict with those of consumer products regarding both size and price. A possible solution lies in enhancing listener perception and reproduction of sound by exploiting a combination of psychoacoustics, loudspeaker configurations and digital signal processing. The first example is based on the missing fundamental concept, the second on the combination of frequency mapping and a special driver. INTRODUCTION applications of even smaller size this lower limit can A brief overview of some auditory illusions is given easily be as high as several hundred hertz. The bass which serves merely as a ‘catalogue’, rather than a portion of an audio signal contributes significantly to lengthy discussion. A related topic to auditory illusions the sound ‘impact’, and depending on the bass quality, is the interaction between different sensory modalities, the overall sound quality will shift up or down. e.g. sound and vision, a famous example is the Therefore a good low-frequency reproduction is McGurk effect (‘Hearing lips and seeing voices’) [1]. essential. An auditory-visual overview is given in [2], a more general multisensory product perception in [3], and on ILLUSIONS spatial orientation in [4]. The influence of video quality An illusion is a distortion of a sensory perception, on perceived audio quality is discussed in [5].
    [Show full text]
  • The Psychology of Music Haverford College Psychology 303
    The Psychology of Music Haverford College Psychology 303 Instructor: Marilyn Boltz Office: Sharpless 407 Contact Info: 610-896-1235 or [email protected] Office Hours: before class and by appointment Course Description Music is a human universal that has been found throughout history and across different cultures of the world. Why, then, is music so ubiquitous and what functions does it serve? The intent of this course is to examine this question from multiple psychological perspectives. Within a biological framework, it is useful to consider the evolutionary origins of music, its neural substrates, and the development of music processing. The field of cognitive psychology raises questions concerning the relationship between music and language, and music’s ability to communicate emotive meaning that may influence visual processing and body movement. From the perspectives of social and personality psychology, music can be argued to serve a number of social functions that, on a more individual level, contribute to a sense of self and identity. Lastly, musical behavior will be considered in a number of applied contexts that include consumer behavior, music therapy, and the medical environment. Prerequisites: Psychology 100, 200, and at least one advanced 200-level course. Biological Perspectives A. Evolutionary Origins of Music When did music evolve in the overall evolutionary scheme of events and why? Does music serve any adaptive purposes or is it, as some have argued, merely “auditory cheesecake”? What types of evidence allows us to make inferences about the origins of music? Reading: Thompson, W.F. (2009). Origins of Music. In W.F. Thompson, Music, thought, and feeling: Understanding the psychology of music.
    [Show full text]
  • Toward a New Comparative Musicology
    Analytical Approaches To World Music 2.2 (2013) 148-197 Toward a New Comparative Musicology Patrick E. Savage1 and Steven Brown2 1Department of Musicology, Tokyo University of the Arts 2Department of Psychology, Neuroscience & Behaviour, McMaster University We propose a return to the forgotten agenda of comparative musicology, one that is updated with the paradigms of modern evolutionary theory and scientific methodology. Ever since the field of comparative musicology became redefined as ethnomusicology in the mid-20th century, its original research agenda has been all but abandoned by musicologists, not least the overarching goal of cross-cultural musical comparison. We outline here five major themes that underlie the re-establishment of comparative musicology: (1) classification, (2) cultural evolution, (3) human history, (4) universals, and (5) biological evolution. Throughout the article, we clarify key ideological, methodological and terminological objections that have been levied against musical comparison. Ultimately, we argue for an inclusive, constructive, and multidisciplinary field that analyzes the world’s musical diversity, from the broadest of generalities to the most culture-specific particulars, with the aim of synthesizing the full range of theoretical perspectives and research methodologies available. Keywords: music, comparative musicology, ethnomusicology, classification, cultural evolution, human history, universals, biological evolution This is a single-spaced version of the article. The official version with page numbers 148-197 can be viewed at http://aawmjournal.com/articles/2013b/Savage_Brown_AAWM_Vol_2_2.pdf. omparative musicology is the academic comparative musicology and its modern-day discipline devoted to the comparative study successor, ethnomusicology, is too complex to of music. It looks at music (broadly defined) review here.
    [Show full text]
  • Cognitive Science and the Cultural Nature of Music
    Topics in Cognitive Science 4 (2012) 668–677 Copyright Ó 2012 Cognitive Science Society, Inc. All rights reserved. ISSN: 1756-8757 print / 1756-8765 online DOI: 10.1111/j.1756-8765.2012.01216.x Cognitive Science and the Cultural Nature of Music Ian Cross Faculty of Music, University of Cambridge Received 5 September 2010; received in revised form 8 June 2012; accepted 8 June 2012 Abstract The vast majority of experimental studies of music to date have explored music in terms of the processes involved in the perception and cognition of complex sonic patterns that can elicit emotion. This paper argues that this conception of music is at odds both with recent Western musical scholar- ship and with ethnomusicological models, and that it presents a partial and culture-specific represen- tation of what may be a generic human capacity. It argues that the cognitive sciences must actively engage with the problems of exploring music as manifested and conceived in the broad spectrum of world cultures, not only to elucidate the diversity of music in mind but also to identify potential commonalities that could illuminate the relationships between music and other domains of thought and behavior. Keywords: Music; Learning; Processing; Ethnomusicology; Culture 1. The cognitive science and neuroscience of music The study of music learning and processing seems to present a rich set of complex chal- lenges in the auditory domain, drawing on psychoacoustic, perceptual, cognitive, and neuro- scientific approaches. Music appears to manifest itself as complex and time-ordered sequences of sonic events varying in pitch, loudness, and timbre that are capable of eliciting emotion.
    [Show full text]
  • The Montreal Protocol for Identification of Amusia Dominique T. Vuvan
    The Montreal protocol for identification of amusia Dominique T. Vuvan, Sebastien Paquette, Geneviève Mignault-Goulet, Isabelle Royal, Mihaela Felezeu, and Isabelle Peretz Volume 50, Issue 2, pp 662-672, Behavior Research Methods DOI: https://doi.org/10.3758/s13428-017-0892-8 THE MONTREAL PROTOCOL FOR IDENTIFICATION OF AMUSIA 1 The Montreal Protocol for Identification of Amusia Vuvan, D.T. Skidmore College, Saratoga Springs, NY, United States and International Laboratory for Brain, Music, and Sound Research, Montreal, QC, Canada Paquette, S. Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States and International Laboratory for Brain, Music, and Sound Research, Montreal, QC, Canada Mignault Goulet, G., Royal, I., Felezeu, M., & Peretz I. International Laboratory for Brain Music and Sound Research Center for Research on Brain, Language and Music Department of Psychology, University of Montreal, Montreal, QC, Canada Running title: The Montreal Protocol for Identification of Amusia Corresponding author: Dominique Vuvan Department of Psychology Skidmore College Saratoga Springs (NY) United States 12866 T: +1 518 316 6092 E: [email protected] W: //www.skidmore.edu/psychology/faculty/vuvan.php THE MONTREAL PROTOCOL FOR IDENTIFICATION OF AMUSIA 2 Abstract The Montreal Battery for the Evaluation of Amusia (MBEA; Peretz, Champod, & Hyde, 2003) is an empirically-grounded quantitative tool that is widely used to identify individuals with congenital amusia. The use of such a standardized measure ensures that individuals tested conform to a specific neuropsychological profile, allowing for comparisons across studies and research groups. Recently, a number of researchers have published credible critiques of the usefulness of the MBEA as a diagnostic tool for amusia.
    [Show full text]
  • Music: Broken Symmetry, Geometry, and Complexity Gary W
    Music: Broken Symmetry, Geometry, and Complexity Gary W. Don, Karyn K. Muir, Gordon B. Volk, James S. Walker he relation between mathematics and Melody contains both pitch and rhythm. Is • music has a long and rich history, in- it possible to objectively describe their con- cluding: Pythagorean harmonic theory, nection? fundamentals and overtones, frequency Is it possible to objectively describe the com- • Tand pitch, and mathematical group the- plexity of musical rhythm? ory in musical scores [7, 47, 56, 15]. This article In discussing these and other questions, we shall is part of a special issue on the theme of math- outline the mathematical methods we use and ematics, creativity, and the arts. We shall explore provide some illustrative examples from a wide some of the ways that mathematics can aid in variety of music. creativity and understanding artistic expression The paper is organized as follows. We first sum- in the realm of the musical arts. In particular, we marize the mathematical method of Gabor trans- hope to provide some intriguing new insights on forms (also known as short-time Fourier trans- such questions as: forms, or spectrograms). This summary empha- sizes the use of a discrete Gabor frame to perform Does Louis Armstrong’s voice sound like his • the analysis. The section that follows illustrates trumpet? the value of spectrograms in providing objec- What do Ludwig van Beethoven, Ben- • tive descriptions of musical performance and the ny Goodman, and Jimi Hendrix have in geometric time-frequency structure of recorded common? musical sound. Our examples cover a wide range How does the brain fool us sometimes • of musical genres and interpretation styles, in- when listening to music? And how have cluding: Pavarotti singing an aria by Puccini [17], composers used such illusions? the 1982 Atlanta Symphony Orchestra recording How can mathematics help us create new of Copland’s Appalachian Spring symphony [5], • music? the 1950 Louis Armstrong recording of “La Vie en Rose” [64], the 1970 rock music introduction to Gary W.
    [Show full text]