Fottea 10(1): 83–92, 2010 83

Cyanobacterium alatum Be r k . ex Ki r c h n . – species variability and diversity

Bohuslav Uh e r

Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ–611 37 Brno, Czech Republic; e–mail: [email protected]

Abstract: is an interesting cyanobacterial species of subaerial calcareous habitats in gorges of the National Park Slovenský raj, Slovakia. Observation of different morphological forms in natural and culture materials is demonstrated and discussed. Cultures of P. alatum differed from natural populations mainly in the width of the filament apex, massiveness of mucilage sheaths, and degree of heteropolarity. This meansthat these features are more likely controlled by environmental variables. Other characteristics (heteropolarity, false branching, sheath structure) were found to be stable and consequently can have taxonomical importance.

Key words: cyanobacterium, Petalonema alatum, Microchaetaceae, subaerial habitat, morphometric analysis, National Park Slovenský raj, Slovakia

Introduction Park Slovenský raj (Slovakia). The substrate hosting an algal biofilm was limestone (90% of calcite, and 4% Petalonema alatum was described as Oscillatoria of quartz, from Powder Diffraction data). The samples alata for the first time and also illustrated later by were collected by random scraping of rock surface (2-4 mm) into sterile tubes during summer seasons Ca r m i c h a e l (in Gr e v i l l e 1823, fig. 1–60; 1826, fig. (June 24th 1998, August 1st 1999, September 27th 2000, 181–240) from wet rocks from Scotland (Argyll, July 9th 2002, August 7th 2005 and on September 16th Appin) as “stratum rufo–fuscum, filis brunneis, 2007). Environmental variables (relative humidity minutis, late alatis, alis albidis.” However, and temperature) were measured (1 meter above the Be r k e l e y (1833, p. 23, tab.7, fig. 2) synonymized soil surface) using a thermo–hygrometer (Mütec it to a new established name Petalonema alatum Instruments GmbH, Germany). Irradiance values were and Bo r z i (1879) combined it with measured using a radiometer equipped with a quantum densum (A.Br a u n ) Bo r n e t under a new name sensor (Excellent Technology Co., Italy). Both natural Scytonema alatum. It z i g s o h n (1855, p. 165) even samples and isolates maintained in cultures were combined Petalonema alatum with Scytonema observed and documented using an Olympus BX 50 myochrous. Although this species has long been light microscope equipped with Lucia Image Analysis and stereomicroscope Olympus SZH. Cultures were known (Tables 1 and 2), its has still not kept in Petri dishes and tubes containing culture been clarified and the range of its morphological medium BBM (Sm i t h & Bo l d , 1966) under controlled variability under different conditions is unknown. conditions (temperature 21°C, humidity 60%, irradiance The present study focuses on morphological 10.3 μmol.s-1.m-2, light 660 lx, (PhAR) 2.14 W.m-2 and variation of natural population of Petalonema in a photoperiod 12:12h light:dark). The initial sample alatum in comparison to clones growing under incubation in Petri dishes (7–21 days) was followed laboratory conditions and to published data by isolation of clones. The following morphometric (Tables 1 and 2). data were measured from natural populations (60 specimens) and from cultures (60 specimens): Apical zones – width of filament apex; heterocyte zones – width of the part with the first heterocyte; terminal Material and methods zones – width of terminal part (with many heterocytes). Afterwards these data were statistically visualised using Samples were taken from a wet calcareous wall of the the program STATISTICA (StatSoft®). Dimensions Piecky Gorge (Veľký vodopád waterfall) in the National of cells, trichomes, and filaments of 84 Uh e r : Cyanobacterium Petalonema alatum from the wild sample and the cultivation sample were cross walls, heteropolar, with apical to subapical compared using the Wilcoxon Signed Ranks Test (© meristematic zones, with rounded or globular Microsoft Excel). apical cells. Shapes of cells are the same such as in a wild sample, only the size range differs (2.5)5–15 × 7.5–15(16) μm. Heterocytes were Results rare, basal or intercalary, 7.5–10 × 7.5–10 μm in diameter; hormogonia were present often in apical Morphology and taxonomy parts of the filaments. Heteropolar development Natural samples were dominated by P. alatum. of hormogonia begins from one pole, where cells The dominant cyanobacterium was accompanied are intensively divided, the other pole ending by other coccal and trichal cyanobacteria. Crusts cell often becomes a heterocyte. Hormogonia with Petalonema were caespitose, mucilaginous, germinated typically within lamellated sheath. from yellowish green or greyish green to blackish P. alatum from cultures differed significantly brown in colour. Petalonema alatum is classified in morphological characters (Figs 1–3). They as an euendolithic species, which actively were significantly narrower than that from natural penetrates the calcareous substrate. The major populations (Wilcoxon Signed Ranks Tests, part of filaments was inside the limestone rock, significant value 0.05; Apical zones: Z = –5,62, except for the wide apical parts. Filaments of P. p < 0.0001; Heterocyte zones: Z = –3,16, p = alatum were flexuous, loosely entangled, single 0.0016; Terminal zones: Z = –2,09, p = 0.0370) or branching, procumbent, and about 2500 μm The following features were found to be relatively long, (25)30–115(130) μm broad; heteropolarity stable: the heteropolarity of trichomes with basal was obvious. False branching was observed heterocytes, lateral false branching starting at the at heterocytes (Figs 1d, e); sheaths were very heterocytes, heteropolar germination; presence thick, with distinct funnel-shaped mucilage of apical or subapical meristematic zones and sheaths consisting of divergent layers (Fig. rounded apical cells. 1b). Inner layers were from yellowish, yellow, orange to brown (in old filaments), outer layers were colourless or yellowish (in old filaments). Discussion Trichomes were typically constricted at the cross walls, heteropolar, with apical meristematic zones, The taxonomic position of Petalonema and with rounded or globular apical cells (Figs 1b–d, Scytonema species has been based on different f; 2 a, b, k–n). Cells at the apical growing region morphological features since the beginning of were short and barrel shaped, in older parts long 19th century. The old descriptions (Ca r m i c h a e l in and cylindrical, up to twice as long as broad (5)6– Gr e v i l l e 1823, 1826; Be r k e l e y 1833; Le m m e r m a n n 15(18) × (4)5–8(9) μm. Heterocytes were basal 1910; Mi gu l a 1915; Ge i t l e r 1932) mentioned or intercalary, (12.5)15–17.5 × (5)7.5–10.5 μm. only the structure type of the trichome sheaths Hormogonia occurred rarely in the apical part of and filament envelopes including the colour. the filaments (Figs 2d, n). Additional important information (the presence Cultures of P. alatum were not axenic. of heterocytes, meristematic zones on trichomes, Mucilaginous cyanobacteria are usually filament growth and branching) recorded later accompanied by microorganisms such as , by Ti l d e n (1910), Ko s s i n s k a j a (1926), Ge i t l e r fungi, small coccal green algae or cyanobacteria, (1942) and Sk u j a (1929, 1964) have been found and diatoms. Petalonema grown on an agar to be crucial. The first more comprehensive set of plate forms mucilaginous, compact, dark-green data on the false branching and sheath structure colonies; filaments were horizontal or erect, was recorded by Bh a r a d w a y a (1933). Phycologists mostly unbranched, rarely with single lateral false interested in these genera, could be separated into branching at the heterocytes. Heteropolarity of the groups depending on their interpretation of the filament was reduced (30)35–70(80) μm, but still morphological data, in particular whether the defi- visible. It had scytonematoid character and lost nition of the main diacritical taxonomic features the majority of mucilage layers. Reduced sheaths was validated or shuffled (Table 1). Interestingly, were still lamellated, both layers being colourless the article published by Ze h n d e r (1985) caused (Figs 1g, h); only old filaments were yellowish. taxonomic discussion between phycologists. Trichomes were generally constricted at the Based on comparative studies he explained it Fottea 10(1): 83–92, 2010 85

Fig. 1. Petalonema alatum: (a–e) natural sample; (f–h) culture; (a) filament arising from substrate, (b, c, f) apices with apical rounded cell, (d) tolypotrichoid fragment of filament; (e) false branching; (g, h) well established sheath stratification. Scale bars 30 μm.

as follows: “Petalonema alatum and Scytonema interesting to observe (Table 1), Be r k e l e y (1833) myochrous are not, as has been suggested on stressed the branching, filament lined by lamella, the basis of observation in situ, ecomorphoses and structure of the envelopes (Petalonema (status) of the same taxon, but two different taxa. alatum). Ko m á r e k & An a g n o s t i d i s (1989) stres- Cultured side by side in the laboratory under sed the type of heterocytes, type of branching the same conditions, width and structure of the (asymmetric), wide apex of filament and structured sheaths are different and thus, these differences sheath and consequently the genus Petalonema are genetically rather than environmentally became an independent taxon in the subfamily controlled.” In particular, the development of the Tolypotrichoideae of the Microchaetaceae. This preferred main diacritical taxonomic features is relatively complicated history of the taxonomy 86 Uh e r : Cyanobacterium Petalonema alatum

Fig. 2. Iconographs of Petalonema alatum: (a–i) natural sample; (j–s) culture; (a–c, e–g, j–m, o–q) heteropolarity of filaments and sheath stratification; (d, n) hormogonia formation; (r–s) trichome spiral–curved in culture. Scale bar 40 µm Fottea 10(1): 83–92, 2010 87

Fig. 3. Comparison of the filament measurements of Petalonema alatum – in nature vs. culture, * outliers, □ median, ┬ non outlier, box border quantil 25% and 75% of the species Petalonema alatum or the genus to indicate that the Microchaetaceae are a Petalonema motivated me to do a comparative monophyletic group (Ře h á k o v á et al. 2007; study based on cultivation and the use of statistical Ka š t o v s k ý & Jo h a n s e n 2008; Lu k e š o v á et al. methods to illustrate some suggestions on often 2009), and Scytonema falls outside of this group discussed diacritical features. (Flechtner et al. 2002). There is currently only one Results presented here confirm that Petalonema that has been sequenced, Petalonema morphological variation of Petalonema alatum cf. involvens from Antarctica (Ta t o n et al. 2006). under different conditions is broad and the study of Unfortunately, Ta t o n et al. (2006) did not include similar taxa is still required in order to definitively many Microchaetaceae in their phylogeny. They establish that they do not belong to a life-history placed their Petalonema in the Nostoc clade. stage of P. alatum. Furthermore, the other putative member of Microchaetaceae (an Antarctic Coleodesmium) I would like to more definitively say that was close to the Nostoc clade, sister to Nostoc I agree with Ko m á r e k & An a g n o s t i d i s 1989 that Fin 152, a taxon demonstrated elsewhere to not Petalonema is a valid genus, and that P. alatum be Nostoc (Ře h á k o v á et al. 2007; Ka š t o v s k ý & is more closely affiliated with Tolypothrix in the Jo h a n s e n 2008; Lu k e š o v á et al. 2009). The Ta t o n Microchaetaceae than Scytonema (Figs 1–3). phylogeny does show Scytonema hofmannii The taxon is defined by the copious sheath with distant from Petalonema and Coleodesmium, funnel–like lamellations, and while the feature consistent with Fl e c h t n e r et al. (2002). is variable, it still persists in culture (Figs 1-2). The Microchaetaceae and Acknowledgement are possibly confused, and we certainly need Financial support for this study was provided by the some molecular data to resolve these families. Funding of Ministry of Education of Czech Republic; The preliminary phylogenies that exist seem project No. MSM0021622416. Author acknowledge 88 Table 1. Overview of development of main diacritical taxonomic features of species Petalonema alatum through history.

Taxonomic stream Mentioned as species Preferred main diacritical taxonomic fea- Classification References (origin) tures results Be r k e l e y 1833 Petalonema alatum the funnel structures of sheath Co r r e n s (1889) first definition apex of the filament Family: Mi gu l a (1907, 1915) type of heterocytes Microchaetaceae Le m m e r m a n n (1910) type of branching (asymmetric) Subfamily: Ge i t l e r (1932, 1942) germination of hormogonia Tolypotrichoidae Sk u j a 1964 filament lined by lamella Ze h n d e r (1985) Sa n t ’An n a (1988) Ko m á r e k & An a g n o s t i d i s (1989) It z i g s o h n 1855 inside species Scytonema type of branching (symmetric) Ja a g 1943 myochrous as morphotypes width of the filament and Go l u b i ć (1967) structure of the sheaths depends Family: Bo u r e l l y (1970) on the environment Scytonemataceae Ka n n (1978) Ho ff m a n n & De m o u l i n (1985) Ho ff m a n n (1986) Ab d e l a h a d (1989)

Bo r z i 1879 Scytonema alatum branching in pairs or Bo r n e t & Fl a h a u l t (1887) U r e h o r t i

Synonymous to P. alatum or genus individually, F (1907) : Cyanobacterium Petalonema does not exist structured sheath, Ti l d e n (1910), filament lined by lamella, Ko s i n s k a j a (1926) wide apex of filament and the Family: Ko s s i n s k a j a i n El e n k i n (1938) cells become thinner from apex Scytonemataceae Fr é m y (1927, 1942)

to the base Gu p t a & Na i r (1963) Petalonema alatum asymmetric filaments Ac l e t o (1966) broad apex St a r m a c h (1966) symmetric branching Ko n d r a t y e v a (1968) short branches Hi n d á k (1978) structured sheath Ku k k e t a l . (2001) Fottea 10(1): 83–92, 2010 2010 83–92, 10(1): Fottea Table 2. Published morphometric data of Petalonema taxa.

Petalonema species Cell length Cell width Filament Heterocytes Ecology References (μm) (μm) width length × width (μm) (μm) P. densum (A.Br a u n ) Mi gu l a ? 6–12 24–40 ? Humid stones, soil Ge i t l e r 1932 5–6 5–6 24–30 6 × 4.5 Aerial on the rock Bo u r e l l y & Ma r gu i n 1954

7.5 10–12 ? ? ? Ch o l n o k i 1952 89 7–9 5–10 30–45 4–12 × 6–9 Humid soil Ka m a t 1963

? 6–12 24–40 ? Humid rocks, soil Ko s s i n s k a j a 1926

? 6–12 24–40 ? Humid rocks, soil Fr é m y 1927

? 6–12 (19)24–40 ? Humid rocks St a r m a c h 1966

P. pulchrum (Fr é m y ) Ge i t l e r 6–7 15–20 Ad 65 ? Humid rocks Ge i t l e r 1932 6–7 15–20 Ad 65 ? Humid sandstone Ge i t l e r 1925

6–7 15–20 Ad 65 ? ? Fr é m y 1924

P. involvens (A.Br a u n ) Mi gu l a ? 6–12 15–30 ? Epiphytic in a swamp Ge i t l e r 1932 3–5 10 20–22 10 in diam. Epiphytic in a swamp Wo o d h e a d & Tw e e d 1959

? 6–12 15–30 ? Epiphytic in a swamp Fr é m y 1927

4 5–6 12–15 15×7 ? Se r p e t t e 1955

3.4–14 6–12 13–30 9–16 × 7–8.5 Epiphytic and epilithic in a St a r m a c h 1966 swamp ? 5.7–9.2 13–30 9.2–13.8 × Epiphytic in a swamp, humid Ko s s i n s k a j a 1926 5.7–9.2 rocks P. velutinum (C.Ag h a r d ) Ki r c h n . 4–10 6–8 15–30 ? Humid soil Ge i t l e r 1932 3.4–6.9 5.7–11.5 13–35 9.2–12.6 × Humid soil, thermal waters Ko s s i n s k a j a 1926 3.4–6.9 ? 10 ? ? Humid soil., thermal waters Fr é m y & Ra y s s 1938

? 9–15 12–30 ? Humid soil, thermal waters Fr é m y 1927

5–8 10–13 30–50 10–13 ×13–15 Soil Ja o 1944

? 10 ? ? Thermal waters Ra y s s 1944 90 Table 2 Cont.

3.7–7 5.7–13 12–35 ? Humid soil St a r m a c h 1966

P. crustaceum (C. Ag h a r d ) Ki r c h n . 4–10 6–8 15–30 12×6 Soil Bi s w a s 1934 ? 6–12 (15)18–22 ? Humid rocks Ge i t l e r 1932

? 7.5–10 20–27 ? In a swamp Wh e l d e n 1947

4.6–6.9 4.6–8 13–30 5.7–9 × 5.7–6.9 Soil, humid rocks Ko s s i n s k a j a 1926

? 6–8 15–30 ? Soil, in mosses Fr é m y 1927

4.5–7 5.7–8 13–30 5.7–8 in diameter Calcareous rocks, in mosses St a r m a c h 1966

? 7 15–18.5 ? In a swamp Ni e l s e n & Ma d s e n 1956

? 7–9 22–50 ? ? Na k a n o 1971

? 4.5–7 ? ? On rocks, in mosses St a r m a c h 1975

P. alatum Be r k . ex Ki r c h n . 4.6–15 4.6–11.5 25.3–75 11.5–12.6 in Humid rocks, swamps Ko s s i n s k a j a 1926 diam. ? 11–14 42–53 19–21 × 9.5 ? Ac l e t o 1966

? ? 24–66 ? In a water, on rocks Fr é m y 1927

4.6–15 4.6–11.5 24–75 12.5 in diameter In a water, on humid rocks St a r m a c h 1966

4–9.5 5–11 24– 18–22 × 8–15 Rocks Gu p t a & Na i r 1963 92.5(138) U

? 8–18 30–80 14–19×13–15 On water mosses, on sub- Sk u j a 1929 r e h

mersed rocks : Cyanobacterium ? 9–15 24–66 17 in diameter Humid rocks Ge i t l e r 1932

(5)6–15(18) (4)5–8(9) 25–100(130) (12.5)15–17.5 × Humid limestones by water- *Uh e r (5)7.5–10.5 falls Petalonema alatum Fottea 10(1): 83–92, 2010 91 especially reviewer who kindly revised the English Regii Instituti Veneti Scientiarum, Littearum style of the manuscript. et Artium Academiaeque Veronensis Sodalis, Padua. Fr é m y , P. (1924): Contribution à la flore algologique References de l’Afrique équatoriale francaise. – Rev. Algol. 1: 28–49. Ab d e l a h a d , N. (1989): Scytonema myochrous (Di l l w .) Fr é m y , P. (1927): Les Scytonematacées de la France. – Ag. emend. Jaag (Cyanophyta) dans l’état In: Flore Algologique de France, Cyanopycées, typique et dans l’état petalonema dans quatre fasc. 1. – 71 pp., Paris et Saint-Lô, Paris. stations épilithiques de la Haute Vallée de Fr é m y , P. (1942): Cyanophycées de l’Inde meridionale. l’Aniene (Italie). – Nowa Hedwigia 49: 395– – Blumea 2: 21–40. 403. Fr é m y , P. & Ra y s s , T. (1938): Algues des sources Ac l e t o , O.C. (1966): Algae de agua dulce de las thermales de Kallirrhoe (Transjorganie). – cascadas de Barranco. – Rev. Sciencias 68: Palestine J. Bot. 1: 27–34. 21–85. Ge i t l e r L. (1925): Cyanophyceae. – In: Pa s c h e r A. Be r k e l e y , M.J. (1833): Gleening of British Algae: (ed.): Süßwasserflora von Mitteleuropa, vol. 12. being an Appendix to the Supplement to English – 450 pp., Verlag von Gustav Fischer, Jena. Botany. – 50 pp., C.E. Sowerby, London. Ge i t l e r , L. (1932): Cyanophyceae. – In: Rabenhorst’s Bh a r a d w a y a , Y. (1933): False branching and sheath- Kryptogamenflora von Deutschland, Österreich structure in the Myxophyceae, with special und Schweiz, vol. 14. – 1196 pp., Akad. reference to the Scytonemataceae. – Arch. Verlagsges., Leipzig. Protistenk. 81: 243–283. Ge i t l e r , L. (1942): Schizophyta (Klasse Bi s w a s , K. (1934): Observation on algal collections Schizophyceae). – In: En g l e r , A. & Pr a n t l , K. from Khasia and Jaintia Hills, Assam, India. – (eds): Natürliche Pflanzenfamilien, vol. 1b. – Hedwigia 74: 1–28. 232 pp., Duncker & Humbolt, Berlin. Bo r n e t , E. & Fl a h a u l t , C. (1886): Revision des Go l u b i ć , S. (1967): Algenvegetation der Felsen. Eine Nostocacées hétérocystées. – Ann. Sci. Nat. Ökologische Algenstudien im Dinarischen Bot. 5: 51–129. Karstgebiet. – In: El s t e r , H.J. & Oh l e , W. Bo u r e l l y , P. (1970): Les algues d’eau douce: (eds): Die Binnengewässer, vol. 23. – 183 pp., Initiation á la systématique. 3. Les algues Schweizerbart’sche Verlagsbuchhandlung, bleues et rouges. Les Eugléniens, Peridiniens Stuttgart. et Cryptomonadines. – 512 pp., Boubeé et Cie., Gr e v i l l e , R.K. (1823): Scottish cryptogamic flora or Paris. coloured figures and desriptions of cryptogamic Bo u r e l l y , P. & Ma n gu i n , E. (1947): Contribution a la plants, belonging chiefly to the order Fungi; and flore algale d’eau douce des Acores. – Societé intended to serve as a contituation of English Botany, vol. 1. – 60 pp., Synopsis generum et specierum cum de Biogéographie, Memoires 8/1946: 447–500. recensionibus et charscteribus, Edinburgh. o r z i B , A. (1879): Note alla morfologia e biologia delle Gr e v i l l e , R.K. (1826): Scottish cryptogamic flora or coloured Alghe Ficocromacee. – Nuov. Giorn. Bot. Ital. figures and desriptions of cryptogamic plants, 11: 347–388. belonging chiefly to the order Fungi; and intended Ch o l n o k i , B.J. (1952): Beiträge zur Kenntnis der to serve as a contituation of English Botany, vol. 4. Algenflora von Portugiesisch-Ost-Afrika – pp. 181–240, Synopsis generum et specierum cum (Mocambique). – I. Bol. Soc. Portug. Cienc. recensionibus et charscteribus, Edinburgh. Nat. 4: 89–135. Gu p t a , A. B. & Na i r , G. U. (1963): A contribution to Co r r e n s , C. (1889): Über Dickenwachstum durch the algal flora of Garhwal. – Agrar. Univ. J. Res. Intussusception bei einiger Algenmembranen. – 11: 227–240. Flora 72: 1–298. Hi n d á k , F. (ed.) (1978): Sladkovodné riasy. – 728 pp., El e n k i n , A.A. (1938): Monographia algarum SPN, Bratislava. cyanophycearum aquidulcium et terrestrium in Ho ff m a n n , L. & De m o u l i n , V. (1985): Morphological finibus URSS inventarum. 1. 2. – 1908 pp., Izd. variability of some species of Scytonemataceae AN SSSR, Moskva-Leningrad. (Cyanophyceae) under different culture Fl e c h t n e r , V.R., Bo y e r , S.L., Jo h a n s e n , J.R. & conditions. – Bull. Soc. Roy. Bot. Belg. 118: DeNo b l e , M.L. (2002): Spirirestis rafaelensis 189–197. gen. et sp. nov. (Cyanophyceae), a new Ho ff m a n n , L. (1986): Cyanophycées aeriennes et cyanobacterial genus from arid soils. – Nova subaeriennes du Grand-Duche de Luxembourg. Hedwigia 74:1–24. – Bull. Jard. Bot. Nat. Belg. 56: 77–127. Fo r t i , A. (1907): Sylloge myxophycearum omnium It z i g s o h n , H. (1855): Phykologische Studien. – Nova hucusque cognitarum. – In: De To n i J.B. (ed.): Acta Acad. Leop. 26: 135–166. Sylloge algarum omnium, vol. 5. – 761 pp., Ja a g , O. (1943): Scytonema myochrous (Di l l w .) Ag., 92 Uh e r : Cyanobacterium Petalonema alatum

Formenkreis und Variabilität einer Blaualge. – Xu e s o n g , L. & Vi n c e n t , J. (2007): Boissiera 7: 437–454. Morphological and molecular characterization Ja o , Ch.-Ch. (1944): Studies on the fresh-water algae of of selected desert soil cyanobacteria: Three China, 13. New Myxophyceae from Kwangsi. – species new to science including Mojavia Sinensia 15: 75–90. pulchra gen. et sp. nov. – Phycologia 46: 481– Ka n n , E. (1978): Systematik und Ökologie der Algen 502. Österreichischer Bergbäche. – Arch. Hydrobiol. Sa n t ’An n a , C.L. (1988): Scytonemataceae 53: 405–643. (Cyanophyceae) from the State of São Paulo, Ka m a t , N.D. (1963): The Alagae of Kolhapur, India. – southern Brazil. – Nova Hedwigia 46: 519– Hydrobiologia 22: 209–305. 539. Ka š t o v s k ý , J. & Jo h a n s e n , J.R. (2008): Mastigocladus Se r p e t t e , M. (1955): Contribution à la l’étude des laminosus (Stigonematales, Cyanobacteria): Cyanophycées de l’Afrique Occidentale. – Bull. phylogenetic relationship of the strains from IFAN 17: 769–804. thermal springs to the soil-inhabiting genera of Sk u j a , H. (1929): Süsswasseralgen von den the order, and taxonomic implications for the Wesestnichen Inseln Saareraa und Hiiumaa. – genus. – Phycologia 47: 307–320. Acta Hort. Bot. Univ. Latv. 4: 1–76. Ko m á r e k , J. & An a g n o s t i d i s , K. (1989): Modern Sk u j a , H. (1964): Grundzüge der Algenflora und approach to the classification system of Algenvegetation der Fjeldgegenden um Abisko cyanophytes, 4. . – Algological in schwedische Lappland. – Nova Acta Reg. Studies 46: 157–226. Soc. Scient. Upsal. 18: 1–465. Ko n d r a t y e v a , N.V. (1968): Sino-zeleni vodorosti, Sm i t h , R.L. & Bo l d , H.C. (1966): Phycological Cyanophyta, 2. – In: Viznatshnyk Prisnovnykh studies 6. Investigations of the algal genera Vodorostey Ukrainskoi SSR. – 524 pp., Vidav. Eremesphaera and Oocystis. – Univ. Texas Naukova Dumka, Kyiv. Publ. 6612: 1–121. Ko s s i n s k a j a , E.K. (1926): Monografitsheskij St a r m a c h , K. (1966): Cyanophyta - sinice, otsherkvidov roda Scytonema sekcii Glaucophyta - glaukofity. – In: St a r m a c h , Petalonema. – Bot. Mater. Inst. spor. Rast. Gl. K. (ed.): Flora Słodkowodna Polski, vol. 2. – bot. Sada SSSR 4: 57–75. 808 pp., Paňstwowe Wydawnictwo Naukowe, Ku k k , E., Hä l l f o r s , G. & Ni e m i , A. (2001): Scytonema Warszawa. alatum (Carmichael) BorzÌ (Nostocophyceae, St a r m a c h , K. (1975): Glony w Wawozie Szopczańskim Nostocales) in a lake in Kuusamo, NE Finland. w Pieninach – Algae in the Szopczański Gorge – Algological Studies 140: 47–61. in the Pieniny Mts. – Fragm. Flor. Geobot. 21: Le m m e r m a n n , E. (1910): Algen 1. – In: Kryptogamen- 537–549. flora d. Mark Brandenburg, vol. 3. – 256 pp., Ta t o n , A., Gr ub i s i c , S., Er t z , D., Ho d g s o n , D., Pi cc a r d i , Mark Brandenburg, Leipzig. R., Bi o n d i , N., Tr e d i c i , M., Ma i n i n i , M., Lo s i , D., Lu k e š o v á , A., Jo h a n s e n , J.R., Ma r t i n , M.P. & Ma r i n e l l i , F. & Wi l m o t t e , A. (2006): Polyphasic study of Antarctic cyanobacterial strains. – J. Phycol. Ca s a m a t t a , D.A. (2009): Aulosira bohemensis 42:1257–1270. sp. nov.: further phylogenetic uncertainty at Ti l d e n , J. (1910): Minnesota algae 1. – In: The the base of the Nostocales (Cyanobacteria). – Myxophyceae of North America and Adjacent Phycologia 48: (in press). Regions. – 328 pp., University of Minnesota, Mi gu l a , W. (1907): Algen. 1. Teil. Cyanophyceae, Minneapolis. Diatomaceae, Chlorophyceae. – In: Wh e l d e n , R.M. (1947): Algae. – In: Botany of the Kryptogamen-Flora von Deutschland, Deutsch- Canadian Eastern Arctic, vol. 2. Thallophyta Österreich und der Schweiz, vol. 2. – 918 pp., and Bryophyta. – Nat. Mus. Bull. 97: 13–137. Ramm & Seemann, Leipzig. Wo o d h e a d , N. & Tw e e d , R.D. (1959): The freshwater Mi gu l a , W. (1915): Die Spaltalgen, Ein Hilfsbuch für algae of Sierra Leone 1. New and unusual algae Anfänger bei der Bestimmung der am häufigsten from the Sula Hills. – Hydrobiologia 12: 181– vorkommenden Arten. – 73 pp., Franckh’sche 225. Vlg.-handl., Stuttgart. Ze h n d e r , A. (1985): Isolation and cultivation of Na k a n o , T. (1971): Some aerial amd soil algae from the large cyanophytes for taxonomic purposes. – Ishizuchi mountains. – Hikobia 6: 139–152. Algological Studies 38/39: 281–289. Ni e l s e n , C.S. & Ma d s e n , G.C. (1956): Florida Scytonemataceae, 2. – Am. Midl. Natural. 56: 116–125. Ra y s s , T. (1944): Materioaux pour la flore algologique © Czech Phycological Society de la Palestine, 1. Les Cyanophycées. – Palestine Received February 20, 2009 J. Bot. 3: 94–113. Accepted May 9, 2009 Ře h á k o v á , K., Jo h a n s e n , J.R., Ca s a m a t t a , D.A.,