Botany of Trees 2

Total Page:16

File Type:pdf, Size:1020Kb

Botany of Trees 2 Botany of Trees California’s Part 2: How Wood Forms Iconic Flora North Coast California Na.ve Plant Society Free Webinar 7 PM Tomorrow Night Dr. Ma9 Ri9er h9ps://us04web.zoom.us/webinar/register/ WN_s4i_BmnlTryUe_7t45a9Qw Botany of Trees Tuesday, April 14th: IntroducTon to trees, growth, development, leaves, and morphology • Five part series -Tuesdays, 11 AM to 12:30 PM • Each will be ~1 hour with 30 minutes of ques.ons Tuesday, April 28th: Tree names, Tuesday, April 21st: Trunks, branches, diversity, and why names change tree form, branching pa9erns, and shape, and how wood forms Tuesday, May 5th: Water in trees, Tuesday, May 12th: ReproducTon, photosynthesis, and respiraTon flower formaTon, fruit, and seeds All aboveground plant structures are: Interpret the sharp structure: stems, leaves, or buds Modified leaf - spine bud becoming a new branch Pointy Structures on Plants Big Leaf Maple (Acer macrophyllum) Thorn Spine Prickle modified branch modified leaf epidermal that comes from that comes from outgrowths that an axillary bud below the occur at random on axillary bud the stem (not necessarily at nodes) Big Leaf Maple (Acer Pine Leaves macrophyllum) • Leaves of two kinds: primary scales and secondary needles • Primary leaves of pines are membranous scales • A set number of needle leaves are produced on short branches (fascicles) • Each bundle (fascicle) of needles is surrounded by membranous bud scales Leaf Leaf Leaf Stump SprouTng & Epicormic Growth Meristems: where growth occurs • Apical Meristems • Form primary .ssues • Increase in plant length and height Trees get taller because of primary growth Leaf A9achment (Phyllotaxy) DisTchous Decussate Shoot Apical Meristem Alternate Opposite Whorled Leaf Form (Shape) pinnate leaf venation terminal leafet leaf blade leafet leaf veins leaf axil leafet stipules petiole secondary axillary leafet petiole bud nodes rachis primary stem leafet Simple Pinnately Bipinnately Palmately Compound Compound Compound Secondary Growth in Trees • Why wood and bark are needed • Vascular cambium • Ini.a.on, fusiform ini.als, rays, cambial cells, grows and development of the cambium • Secondary Xylem • Types of cells in wood, growth rings, heart wood / sap wood / reac.on wood • Secondary Phloem and Bark • Cork and cork cambium, len.cels Root - Leaf Constraint Meristems: where growth occurs • Lateral meristems young young old • Form secondary .ssues Monocot with a stem Broad-leaved tree with a vascular cambium • Increase in plant girth Palm Trees • Vascular cambium Grass • Cork cambium old Monocot without Tree increase in girth a stem because of secondary growth Vascular Cambium Phloem Cork Xylem 3 1 2 Pith Cork Vascular Rays Phloem Vascular Cambium Rays (darkly stained 3 cells) Xylem 2 1 Growth rings result from “And see this ring right here, Jimmy? … That’s different cell sizes in another Tme when the old fellow miraculously xylem Tssue survived some big forest fire.” Heartwood no longer conducts water, sapwood sTll does. Heartwood Sapwood Sequoiadendron 200 years Quarter-sawn Wood White Oak Cuts Cross-secTon (x) TangenTal Radial (T) ® Cell Types in Wood • Conduc.ng cells • Tracheids • Vessel elements • Fibers - structural • Parenchyma - living thin-walled cels The density of different Rosewood A Balsa woods is based on the cells that make up that wood B Weaker Wood Strong Wood The characterisTcs of different woods is based on its evoluTonary history Hard Wood Soft Wood • Gymnosperms (conifers or soUwood trees) - Only tracheids • Angiosperms - (flowering or hardwood trees) Vessel Elements + Tracheids • Both have fibers, but they Douglas Fir are more common and Red Maple (Acer rubrum) abundant in angiosperms (Pseudotsuga menziesii) branch ReacTon Wood load Graning • Gymnosperms (conifers) - • Most economically important type compression wood of plant propaga.on aUer seeds • Angiosperms - tension wood • Transplan.ng a shoot from one plant to another • Scion- bud or shoot • Stock- root stock Cork Cambia LenTcels Cork Oak (Quercus suber) LenTcel Stem cross secTon Bark Secondary Phloem Wood Summary Botany of Trees • The leaf - root constraint is solved by making www.wcisa.net more conduc.ng cells. to register for the next session • The forma.on of wood is due to the ac.vity of Introduc.on to trees, growth, development, leaves, and April 14th the vascular cambium morphology. Trunks, branches, tree form, branching pa_erns, and shape, and • Growth rings vary and they’re due to differen.al April 21st how wood forms growth of the vascular cambium • The character of different woods is based on the April 28th Tree names, diversity, and why names change different cells in it May 5th Water in trees, photosynthesis, and respiraTon • Cork cambia form as living cells that give rise to dead protec.ve cells on the outside of the bark May 12th ReproducTon, flower formaTon, fruit, and seeds Botany of Trees CEU and Survey Link: h9ps://www.surveymonkey.com/r/ ri9erpart2.
Recommended publications
  • Tree Planting Guide
    City of Bellingham Tree Planting Guide This guide provides you with resources for planting trees in the city. Using the right tree in the right place, and maintaining it correctly will provide healthy, beautiful trees whose benefits can be enjoyed by the community for many years. Why plant trees? ....................... page 1 Get a Street Tree Permit First.... page 2 Check the Site & Choose the Right Tree……........ page 3 Plant it Right………………...……page 4 Four trees are removed for every one planted in most American cities. Help it Grow ……...……………… pg 5 & 6 A single large average tree absorbs 26 pounds of CO2 per year. Resources………………………… pg 6 Each vehicle spews out approximately 100 pounds of CO2 per year. Why Plant Trees? Trees in an urban area increase quality of life by: Air quality and cleansing - A typical person uses 386 lb. of oxygen per year. A healthy 32 ft. tall ash tree can produce about 260 lb. of oxygen annually. Two of these trees would supply the oxygen needs of a person each year! Improved water quality - The canopy of a street tree intercepts rain, reducing the amount of water that will fall on pavement and then be removed by a storm water system. Heating & Cooling Costs - A mature tree canopy reduces air temperatures by about 5 to 10° F, influencing the internal temperatures of nearby buildings. Trees divert wind in the winter and increase winter-time temperatures. Increased home sales prices - When homes with equivalent features are evaluated, a 6% increase to the value is associated with nearby trees. Soil Stabilization - Tree roots stabilize soil, helping to minimize erosion.
    [Show full text]
  • Bark Anatomy and Cell Size Variation in Quercus Faginea
    Turkish Journal of Botany Turk J Bot (2013) 37: 561-570 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1201-54 Bark anatomy and cell size variation in Quercus faginea 1,2, 2 2 2 Teresa QUILHÓ *, Vicelina SOUSA , Fatima TAVARES , Helena PEREIRA 1 Centre of Forests and Forest Products, Tropical Research Institute, Tapada da Ajuda, 1347-017 Lisbon, Portugal 2 Centre of Forestry Research, School of Agronomy, Technical University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal Received: 30.01.2012 Accepted: 27.09.2012 Published Online: 15.05.2013 Printed: 30.05.2013 Abstract: The bark structure of Quercus faginea Lam. in trees 30–60 years old grown in Portugal is described. The rhytidome consists of 3–5 sequential periderms alternating with secondary phloem. The phellem is composed of 2–5 layers of cells with thin suberised walls and narrow (1–3 seriate) tangential band of lignified thick-walled cells. The phelloderm is thin (2–3 seriate). Secondary phloem is formed by a few tangential bands of fibres alternating with bands of sieve elements and axial parenchyma. Formation of conspicuous sclereids and the dilatation growth (proliferation and enlargement of parenchyma cells) affect the bark structure. Fused phloem rays give rise to broad rays. Crystals and druses were mostly seen in dilated axial parenchyma cells. Bark thickness, sieve tube element length, and secondary phloem fibre wall thickness decreased with tree height. The sieve tube width did not follow any regular trend. In general, the fibre length had a small increase toward breast height, followed by a decrease towards the top.
    [Show full text]
  • Transcript Profiling of a Novel Plant Meristem, the Monocot Cambium
    Journal of Integrative JIPB Plant Biology Transcript profiling of a novel plant meristem, the monocot cambiumFA Matthew Zinkgraf1,2, Suzanne Gerttula1 and Andrew Groover1,3* 1. US Forest Service, Pacific Southwest Research Station, Davis, California, USA 2. Department of Computer Science, University of California, Davis, USA 3. Department of Plant Biology, University of California, Davis, USA Article *Correspondence: Andrew Groover ([email protected]) doi: 10.1111/jipb.12538 Abstract While monocots lack the ability to produce a xylem tissues of two forest tree species, Populus Research vascular cambium or woody growth, some monocot trichocarpa and Eucalyptus grandis. Monocot cambium lineages evolved a novel lateral meristem, the monocot transcript levels showed that there are extensive overlaps cambium, which supports secondary radial growth of between the regulation of monocot cambia and vascular stems. In contrast to the vascular cambium found in woody cambia. Candidate regulatory genes that vary between the angiosperm and gymnosperm species, the monocot monocot and vascular cambia were also identified, and cambium produces secondary vascular bundles, which included members of the KANADI and CLE families involved have an amphivasal organization of tracheids encircling a in polarity and cell-cell signaling, respectively. We suggest central strand of phloem. Currently there is no information that the monocot cambium may have evolved in part concerning the molecular genetic basis of the develop- through reactivation of genetic mechanisms involved in ment or evolution of the monocot cambium. Here we vascular cambium regulation. report high-quality transcriptomes for monocot cambium Edited by: Chun-Ming Liu, Institute of Crop Science, CAAS, China and early derivative tissues in two monocot genera, Yucca Received Feb.
    [Show full text]
  • Tansley Review Evolution of Development of Vascular Cambia and Secondary Growth
    New Phytologist Review Tansley review Evolution of development of vascular cambia and secondary growth Author for correspondence: Rachel Spicer1 and Andrew Groover2 Andrew Groover 1The Rowland Institute at Harvard, Cambridge, MA, USA; 2Institute of Forest Genetics, Pacific Tel: +1 530 759 1738 Email: [email protected] Southwest Research Station, USDA Forest Service, Davis, CA, USA Received: 29 December 2009 Accepted: 14 February 2010 Contents Summary 577 V. Evolution of development approaches for the study 587 of secondary vascular growth I. Introduction 577 VI. Conclusions 589 II. Generalized function of vascular cambia and their 578 developmental and evolutionary origins Acknowledgements 589 III. Variation in secondary vascular growth in angiosperms 581 References 589 IV. Genes and mechanisms regulating secondary vascular 584 growth and their evolutionary origins Summary New Phytologist (2010) 186: 577–592 Secondary growth from vascular cambia results in radial, woody growth of stems. doi: 10.1111/j.1469-8137.2010.03236.x The innovation of secondary vascular development during plant evolution allowed the production of novel plant forms ranging from massive forest trees to flexible, Key words: forest trees, genomics, Populus, woody lianas. We present examples of the extensive phylogenetic variation in sec- wood anatomy, wood formation. ondary vascular growth and discuss current knowledge of genes that regulate the development of vascular cambia and woody tissues. From these foundations, we propose strategies for genomics-based research in the evolution of development, which is a next logical step in the study of secondary growth. I. Introduction this pattern characterizes most extant forest trees, significant variation exists among taxa, ranging from extinct woody Secondary vascular growth provides a means of radially lycopods and horsetails with unifacial cambia (Cichan & thickening and strengthening plant axes initiated during Taylor, 1990; Willis & McElwain, 2002), to angiosperms primary, or apical growth.
    [Show full text]
  • Mechanical Stress in the Inner Bark of 15 Tropical Tree Species and The
    Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure Romain Lehnebach, Léopold Doumerc, Bruno Clair, Tancrède Alméras To cite this version: Romain Lehnebach, Léopold Doumerc, Bruno Clair, Tancrède Alméras. Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure. Botany / Botanique, NRC Research Press, 2019, 10.1139/cjb-2018-0224. hal-02368075 HAL Id: hal-02368075 https://hal.archives-ouvertes.fr/hal-02368075 Submitted on 18 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure1 Romain Lehnebach, Léopold Doumerc, Bruno Clair, and Tancrède Alméras Abstract: Recent studies have shown that the inner bark is implicated in the postural control of inclined tree stems through the interaction between wood radial growth and tangential expansion of a trellis fiber network in bark. Assessing the taxonomic extent of this mechanism requires a screening of the diversity in bark anatomy and mechanical stress. The mechanical state of bark was measured in 15 tropical tree species from various botanical families on vertical mature trees, and related to the anatomical structure of the bark.
    [Show full text]
  • Tree Identification: from Bark and Leaves Or Needles
    Tree Identification: from bark and leaves or needles A walk in the woods can be a lot of fun, especially if you bring your kids. How do you get them to come along with you? Tell them this. “Look at the bark on the trees. Can you can find any that look like burnt potato chips, warts, cat scratches, camouflage pants or rippling muscles?” Believe it or not, these are descriptions of different kinds of tree bark. Tree ID from bark:______________________________________________________ Black cherry: The bark looks like burnt potato chips. Hackberry: The bark is bumpy and warty. Ironwood: The bark has long thin strips. With a little imagination, an ironwood can look like it is used as a scratching post by cats. They can also be easily spotted in winter because their light brown dead leaves hang on well past the first snow. Sycamore: A tree with bark that looks like camouflaged pants. The largest tree in Illinois is a sycamore, a majestic 115-foot tree near Springfield. Musclewood: a tree with smooth gray bark covering a trunk with ridges that look like they are rippling muscles. Shagbark hickory: Long strips of shaggy bark peeling at both ends. Cottonwood: Has heavy ridges that make it look like Paul Bunyan’s corduroy pants. Bur oak: Thick and gnarly bark has deep craggy furrows. The corky bark allows it to easily withstand hot forest fires. Tree ID from leaves or needles:________________________________________ Willow Oak: Has elongated leaves similar to those of a willow tree. Red pine: Red has 3 letters; a red pine has groupings of 2-3 prickly needles.
    [Show full text]
  • Chapter 5: the Shoot System I: the Stem
    Chapter 5 The Shoot System I: The Stem THE FUNCTIONS AND ORGANIZATION OF THE SHOOT SYSTEM PRIMARY GROWTH AND STEM ANATOMY Primary Tissues of Dicot Stems Develop from the Primary Meristems The Distribution of the Primary Vascular Bundles Depends on the Position of Leaves Primary Growth Differs in Monocot and Dicot Stems SECONDARY GROWTH AND THE ANATOMY OF WOOD Secondary Xylem and Phloem Develop from Vascular Cambium Wood Is Composed of Secondary Xylem Gymnosperm Wood Differs from Angiosperm Wood Bark Is Composed of Secondary Phloem and Periderm Buds Are Compressed Branches Waiting to Elongate Some Monocot Stems Have Secondary Growth STEM MODIFICATIONS FOR SPECIAL FUNCTIONS THE ECONOMIC VALUE OF WOODY STEMS SUMMARY ECONOMIC BOTANY: How Do You Make A Barrel? 1 KEY CONCEPTS 1. The shoot system is composed of the stem and its lateral appendages: leaves, buds, and flowers. Leaves are arranged in different patterns (phyllotaxis): alternate, opposite, whorled, and spiral. 2. Stems provide support to the leaves, buds, and flowers. They conduct water and nutrients and produce new cells in meristems (shoot apical meristem, primary and secondary meristems). 3. Dicot stems and monocot stems are usually different. Dicot stems tend to have vascular bundles distributed in a ring, whereas in monocot stems they tend to be scattered. 4. Stems are composed of the following: epidermis, cortex and pith, xylem and phloem, and periderm. 5. Secondary xylem is formed by the division of cells in the vascular cambium and is called wood. The bark is composed of all of the tissues outside the vascular cambium, including the periderm (formed from cork cambium) and the secondary phloem.
    [Show full text]
  • SECONDARY GROWTH in PLANTS Compiled and Circulated by Arpita Chakraborty, Govt.Approved Part-Time Teacher, Narajole Raj College, Narajole
    COMPILED AND CIRCULATED BY ARPITA CHAKRABORTY, GOVT. APPROVED PART TIME TEACHER, DEPARTMENT OF BOTANY, NARAJOLE RAJ COLLEGE. SECONDARY GROWTH IN PLANTS compiled and circulated by Arpita Chakraborty, Govt.approved Part-time teacher, Narajole Raj College, Narajole. BOTANY: SEM- IV, PAPER: GE4T:PLANT ANATOMY AND EMBRYOLOGY:UNIT-3:SECONDARY GROWTH COMPILED AND CIRCULATED BY ARPITA CHAKRABORTY, GOVT. APPROVED PART TIME TEACHER, DEPARTMENT OF BOTANY, NARAJOLE RAJ COLLEGE. •CHAPTER OUT LINE- • 1. Overview of secondary growth • 2. Growth patterns in wood and bark • 3. Commercial Uses of wood and bark BOTANY: SEM- IV, PAPER: GE4T:PLANT ANATOMY AND EMBRYOLOGY:UNIT-3:SECONDARY GROWTH COMPILED AND CIRCULATED BY ARPITA CHAKRABORTY, GOVT. APPROVED PART TIME TEACHER, DEPARTMENT OF BOTANY, NARAJOLE RAJ COLLEGE. CHAPTER OBJECTIVES- Students should have an idea of; 1. How wood and bark develop 2. How stems and roots become thicker and stronger 3. Commercial benefits of wood and bark of a plant with secondary growth BOTANY: SEM- IV, PAPER: GE4T:PLANT ANATOMY AND EMBRYOLOGY:UNIT-3:SECONDARY GROWTH COMPILED AND CIRCULATED BY ARPITA CHAKRABORTY, GOVT. APPROVED PART TIME TEACHER, DEPARTMENT OF BOTANY, NARAJOLE RAJ COLLEGE. SECONDARY GROWTH- Cambial 1.Vascular cambium a)Fusiform Initials (Vertically oriented) Secondary Xylem Secondary Phloem b)Ray Initials (Horizontally oriented) Vascular Rays Xylem rays Phloem ray 2.Cork cambium (Phellogen) Periderm Phellem (Cork cells) Phelloderm (Cork Parenchyma) BOTANY: SEM- IV, PAPER: GE4T:PLANT ANATOMY AND EMBRYOLOGY:UNIT-3:SECONDARY
    [Show full text]
  • The Bark: = Periderm
    The Bark: = Periderm The bark is everything outside the vascular cambium. As you can see, there is a lot going on in the bark. The Bark: periderm: phellogen (cork cambium): The phellogen is the region of cell division that forms the periderm tissues. Phellogen development influences bark appearance. The Bark: periderm: phellem (cork): Phellem replaces the epidermis as the tree increases in girth. Photosynthesis can take place in some trees both through the phellem and in fissures. The Bark: periderm: phelloderm: Phelloderm is active parenchyma tissue. Parenchyma cells can be used for storage, photosynthesis, defense, and even cell division! The Bark: phloem: Phloem tissue makes up the inner bark. However, it is vascular tissue formed from the vascular cambium. The Bark: phloem: sieve tube elements: Sieve tube elements actively transport photosynthates down the stem. Conifers have sieve cells instead. The cambium: The cambium is the primary meristem producing radial growth. It forms the phloem & xylem. The Xylem (wood): The xylem includes everything inside the vascular cambium. The Xylem: a growth increment (ring): The rings seen in many trees represent one growth increment. Growth rings provide the texture seen in wood. The Xylem: vessel elements: Hardwood species have vessel elements in addition to trachieds. Notice their location in the growth rings of this tree The Xylem: fibers: Fibers are cells with heavily lignified walls making them stiff. Many fibers in sapwood are alive at maturity and can be used for storage. The Xylem: axial parenchyma: Axial parenchyma is living tissue! Remember that parenchyma cells can be used for storage and cell division.
    [Show full text]
  • Current U.S. Forest Data and Maps
    CURRENT U.S. FOREST DATA AND MAPS Forest age FIA MapMaker CURRENT U.S. Forest ownership TPO Data FOREST DATA Timber harvest AND MAPS Urban influence Forest covertypes Top 10 species Return to FIA Home Return to FIA Home NEXT Productive unreserved forest area CURRENT U.S. FOREST DATA (timberland) in the U.S. by region and AND MAPS stand age class, 2002 Return 120 Forests in the 100 South, where timber production West is highest, have 80 s the lowest average age. 60 Northern forests, predominantly Million acreMillion South hardwoods, are 40 of slightly older in average age and 20 Western forests have the largest North concentration of 0 older stands. 1-19 20-39 40-59 60-79 80-99 100- 120- 140- 160- 200- 240- 280- 320- 400+ 119 139 159 199 240 279 319 399 Stand-age Class (years) Return to FIA Home Source: National Report on Forest Resources NEXT CURRENT U.S. FOREST DATA Forest ownership AND MAPS Return Eastern forests are predominantly private and western forests are predominantly public. Industrial forests are concentrated in Maine, the Lake States, the lower South and Pacific Northwest regions. Source: National Report on Forest Resources Return to FIA Home NEXT CURRENT U.S. Timber harvest by county FOREST DATA AND MAPS Return Timber harvests are concentrated in Maine, the Lake States, the lower South and Pacific Northwest regions. The South is the largest timber producing region in the country accounting for nearly 62% of all U.S. timber harvest. Source: National Report on Forest Resources Return to FIA Home NEXT CURRENT U.S.
    [Show full text]
  • Wood from Midwestern Trees Purdue EXTENSION
    PURDUE EXTENSION FNR-270 Daniel L. Cassens Professor, Wood Products Eva Haviarova Assistant Professor, Wood Science Sally Weeks Dendrology Laboratory Manager Department of Forestry and Natural Resources Purdue University Indiana and the Midwestern land, but the remaining areas soon states are home to a diverse array reforested themselves with young of tree species. In total there are stands of trees, many of which have approximately 100 native tree been harvested and replaced by yet species and 150 shrub species. another generation of trees. This Indiana is a long state, and because continuous process testifies to the of that, species composition changes renewability of the wood resource significantly from north to south. and the ecosystem associated with it. A number of species such as bald Today, the wood manufacturing cypress (Taxodium distichum), cherry sector ranks first among all bark, and overcup oak (Quercus agricultural commodities in terms pagoda and Q. lyrata) respectively are of economic impact. Indiana forests native only to the Ohio Valley region provide jobs to nearly 50,000 and areas further south; whereas, individuals and add about $2.75 northern Indiana has several species billion dollars to the state’s economy. such as tamarack (Larix laricina), There are not as many lumber quaking aspen (Populus tremuloides), categories as there are species of and jack pine (Pinus banksiana) that trees. Once trees from the same are more commonly associated with genus, or taxon, such as ash, white the upper Great Lake states. oak, or red oak are processed into In urban environments, native lumber, there is no way to separate species provide shade and diversity the woods of individual species.
    [Show full text]
  • Secondary Tree Growth Increments 11-07
    Secondary Tree Growth Increments: Ring Development & Forms by Dr. Kim D. Coder, Professor of Tree Biology & Health Care, University of Georgia Trees attempt to occupy more space and control available resources through cell divisions and cell expansion. From the end of a shoot tip to the end of a root tip, trees elongate. Along this axis of growth, trees also expand radially, which is termed “secondary growth.” Tree growth is initiated in the shoot tips (growing points / buds), root tips, vascular cambium (i.e. or simply cambium), and phellogen which generates the periderm. The first two meristems are primary generation systems and the second two are termed secondary meristems. Cambial activity and xylem formation, visible as increases in growth increment volume, is radial growth, and reviewed here. The secondary meristem phellogen, sometimes generically referred to as the cork cambium, will not be discussed here although it does increase tree diameter. Cambium The cambium is a cell generation zone which blends (within several cell thicknesses) inward into the xylem (wood) and outward into the phloem (inner bark). The cambium occupies the circumference of the wood cylinder which comprises the bulk of a tree. The cambium is responsible for modifying cell divisions, cell forms, and cell wall materials in response to mechanical, biological and defensive stresses at each point along its surface. The cambium receives signals from sensors both internally (from divid- ing and expanding cells in the cambial zone) and externally (located locally farther inside and outside the cambium, and from shoot tips and root tips.) A tree radially expands tissues as shoots and roots elongate.
    [Show full text]