M1b. Scattering Theory 1 A

Total Page:16

File Type:pdf, Size:1020Kb

M1b. Scattering Theory 1 A Scattering Theory 1 (last revised: July 8, 2013) M1b–1 M1b. Scattering Theory 1 a. To be covered in Scattering Theory 2 (T1b) This is a non-exhaustive list of what will be covered in T1b. Electromagnetic part of the NN interaction • Bound states and NN scattering • – basic deuteron properties (but not mixing) – absence of other two-body bound states Phenomenology of NN phase shifts (e.g., `ala Machleidt) • – Both S-waves and large scattering lengths. E↵ective range e↵ects. Sign changes – what parts of forces contribute to di↵erent phases – low vs. high L partial waves How high in energy and partial wave and how accurately do phase shifts need to be reproduced • for various nuclear applications? b. Reminder of basic quantum mechanical scattering Our first and dominant source of information about the two-body force between nucleons (protons and neutrons) is nucleon-nucleon scattering. All of you are familiar with the basic quantum me- chanical formulation of non-relativistic scattering. We will review and build on that knowledge in this lecture and the exercises. Nucleon-nucleon scattering means n–n, n–p, and p–p. While all involve electromagnetic inter- actions as well as the strong interaction, p–p has to be treated specially because of the Coulomb interaction (what other electromagnetic interactions contribute to the other scattering processes?). We’ll start here with neglecting the electromagnetic potential Vem and the di↵erence between the proton and neutron masses (this is a good approximation, because (m m )/m 10 3 with n − p ⇡ − m (m + m )/2). So we consider a generic case of scattering two particles of mass m in a ⌘ n p short-ranged potential V . While we have in mind that V = VNN, we won’t consider those details until tomorrow’s lectures. Let’s set our notation with a quick review of scattering (without derivation). The Hamiltonian (in operator form) is p2 p2 H = 1 + 2 + V, (1) 2m 2m where we label the momentum operators for particles 1 and 2. We switch to relative (“rel”) and Scattering Theory 1 (last revised: July 8, 2013) M1b–2 p2 p20 P/2 + k P/2 + k! = p ) 1 p0 P/2 k P/2 k! 1 − − Figure 1: Kinematics for scattering in lab and relative coordinates. If these are external (and 2 2 therefore “on-shell”) lines for elastic scattering, then when P =0wehavek = k0 = mEk =2µEk (assuming equal masses m). center-of-mass (“cm”) coordinates: r + r r = r r , R = 1 2 (2) 1 − 2 2 p p k = 1 − 2 , P = p + p , (3) 2 1 2 so that the Hamiltonian becomes (still operators, but the P, k, and k0 in Fig. 1 are numbers) P2 k2 H = T + H = + + V, (4) cm rel 2M 2µ with total mass M = m1 + m2 =2m and reduced mass µ = m1m2/M = m/2. (Note: Hrel is sometimes called the intrinsic Hamiltonian.) Now we note that V depends only on the cm variables (more on this tomorrow!), which means that we can separate the total wave function into a plane wave for the center-of-mass motion (only kinetic energy) and the wave function for relative motion: = P . (5) | i | i| reli As a result, the two-body problem has become an e↵ective one-body problem. From now on, we are only concerned with rel , so we will drop the “rel” most of the time. 42 | i Scattering theory Incoming plane wave exp(ikz) R = 0 Beam direction +z Outgoing spherical waves exp(ikR)/R Fig. 3.1. A plane wave in the +z direction incident on a spherical target, giving Figure 2: Scatteringrise problem to spherically-outgoing for an incident scattering plane waves wave in the +z direction on a spherical target (in the text r is used instead of R). [From F. Nunes notes.] 3.1.1 Partial wave scattering from a finite spherical potential We start our development of scattering theory by finding the elastic scat- tering from a potential V (R) that is spherically symmetric and so can be written as V (R). Finite potentials will be dealt with first: those for which V (R)=0forR R , where R is the finite range of the potential. This ≥ n n excludes Coulomb potentials, which will be dealt with later. We will examine the solutions at positive energy of the time-independent Schr¨odinger equation with this potential, and show how to find the scattering amplitude f(✓, φ) and hence the di↵erential cross section σ(✓, φ)= f(✓, φ) 2 | | for elastic scattering. We will use a decomposition in partial waves L=0, 1, , and the spherical nature of the potential will mean that each partial ··· wave function can be found separately. The time-independent Schr¨odinger equation for the relative motion with c.m. energy E, from Eq. (2.3.18), is [Tˆ + V E] (R, ✓, φ)=0, (3.1.1) − using polar coordinates (✓, φ) such that z = R cos ✓, x = R sin ✓ cos φ and y = R sin ✓ sin φ. In Eq. (3.1.1), the kinetic energy operator Tˆ uses the reduced mass µ, and is ~2 Tˆ = 2 −2µrR 1 ~2 @ @ Lˆ2 = R2 + , (3.1.2) 2µ −R2 @R @R R2 ✓ ◆ Scattering Theory 1 (last revised: July 8, 2013) M1b–3 Thus we can consider relative motion with total P = 0 (see Fig. 1) and describe elastic scattering 2 from a potential from incoming k to outgoing k0 with k = k0 and E = k /(2µ)(with~ = 1). We | | | | describe this quantum mechanically in terms of an incoming plane wave and an outgoing scattered (“sc”) wave: ik r (+) e · (r)= in(r)+ sc(r)= + sc(r) , (6) E (2⇡)3/2 which (assuming V falls o↵with r faster than 1/r), means that far way from the potential the wave function has the asymptotic form ikr (+) 3/2 ik r e (r) (2⇡)− e · + f(k, ✓,φ) , (7) E r! r !1 ✓ ◆ where the scattering angle ✓ is given by cos ✓ = kˆ kˆ . A schematic picture is shown in Fig. 2 with · 0 k = kzˆ. The scattering amplitude f modulates the outgoing spherical wave according to direction and carries all the physics information. The di↵erential cross section is calculated from dσ number of particles scattering into d⌦perunittime S r2 (k, ✓,φ)= = sc,r , (8) d⌦ number of incident particles per unit area and time Sin where Ssc,r and Sin are the scattered and incoming probability current densities, respectively. Taking k z without loss of generality (and with ~ = 1 and suppressing common (2⇡)3 factors), / 1 d ikz 1 ikz k S =Reb ⇤ =Re e− ike , (9) in in iµ dz in iµ / µ ✓ ◆ ✓ ◆ ikr ikr 1 d e− 1 e 1 k 2 1 S =Re ⇤ =Re f ⇤ ikf + f + , (10) sc,r sc iµ dr sc r iµ r O r3 / µr2 | | O r3 ✓ ◆ ✓ ◆ ✓ ◆ ✓ ◆ so the di↵erential cross section is dσ (k, ✓,φ)= f(k, ✓,φ) 2 . (11) d⌦ | | If we do not consider spin observables (where the spin orientation of at least one of the particles is known—polarized), then f(k, ✓,φ) is independent of φ; we consider only this case for now and drop the φ dependence. We expand the wave function in spherical coordinates as 1 u (r) 1 u (r) (r, ✓)= c l Y (✓,φ)= c˜ l P (cos ✓) , (12) l r l0 l r l Xl=0 Xl=0 where because there is no φ dependence, only the m = 0 spherical harmonic Y (✓,φ)= ✓,φ l, m = l l0 h | l 0 appears and we can use Y = 2l+1 P (cos ✓). The radial function u (r) satisfies the radial i l0 4⇡ l l Schr¨odinger equation (if there is noq mixing of di↵erent l values), d2u l(l + 1) l +2µV k2 u (r)=0. (13) dr2 − r2 − l ✓ ◆ Scattering Theory 1 (last revised: July 8, 2013) M1b–4 We have freedom in choosing the normalization of ul, which we will exploit below. For a central potential V (we’ll come back to non-central potentials tomorrow!), we resolve the scattering amplitude f into decoupled partial waves (the definition of fl sometimes has a extra k factor): 1 f(k, ✓)= (2l + 1)fl(k)Pl(cos ✓) . (14) Xl=0 [We can do a partial wave expansion even if the potential is not central, which means the potential does not commute with the orbital angular momentum (as in the nuclear case!); it merely means that di↵erent l’s will mix to some degree (in the nuclear case, this includes triplet S and D waves). The more important question is how many total l’s do we need to include to ensure convergence of observables of interest.] Using the plane wave expansion of the incoming wave, l+1 ikr ikr ik r ikr cos ✓ 1 l 1 ( 1) e− + e e · = e = (2l + 1)i jl(kr)Pl(cos ✓) (2l + 1)Pl(cos ✓) − , (15) r !!1 2ikr Xl=0 Xl=0 where we have used the asymptotic form of the spherical Bessel function jl: ⇡ l ikr l ikr sin(kr l 2 ) 1 ( i) e i e− jl(kr) − = − − , (16) r !!1 kr kr 2i ikr ikr we can resolve the asymptotic wave function into incoming (e− ) and outgoing (e ) spherical waves (so now e↵ectively a one-dimensional interference problem): l+1 ikr ikr (+) 3/2 1 ( 1) e− + Sl(k)e (r) (2⇡)− (2l + 1)Pl(cos ✓) − , (17) E r !!1 2ikr Xl=0 which identifies the partial wave S-matrix Sl(k)=1+2ik fl(k) .
Recommended publications
  • The University of Chicago Bose-Einstein Condensates
    THE UNIVERSITY OF CHICAGO BOSE-EINSTEIN CONDENSATES IN A SHAKEN OPTICAL LATTICE A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHYSICS BY LICHUNG HA CHICAGO, ILLINOIS JUNE 2016 Copyright © 2016 by Lichung Ha All Rights Reserved To my family and friends to explore strange new worlds, to seek out new life and new civilizations, to boldly go where no man has gone before. -Star Trek TABLE OF CONTENTS LIST OF FIGURES . viii LIST OF TABLES . x ACKNOWLEDGMENTS . xi ABSTRACT . xiv 1 INTRODUCTION . 1 1.1 Quantum simulation with ultracold atoms . 2 1.2 Manipulating ultracold atoms with optical lattices . 4 1.3 Manipulating ultracold atoms with a shaken optical lattice . 5 1.4 Our approach of quantum simulation with optical lattices . 6 1.5 Overview of the thesis . 7 2 BOSE-EINSTEIN CONDENSATE IN THREE AND TWO DIMENSIONS . 10 2.1 Bose-Einstein condensate in three dimensions . 10 2.2 Berezinskii-Kosterlitz-Thouless transition in two dimensions . 13 2.3 Gross-Pitaevskii Equation . 15 2.4 Bogoliubov excitation spectrum . 16 2.5 Superfluid-Mott insulator transition . 18 3 CONTROL OF ATOMIC QUANTUM GAS . 21 3.1 Feshbach resonance . 21 3.1.1 s-wave interactions . 22 3.1.2 s-wave scattering length . 22 3.2 Optical dipole potential . 25 3.3 Optical lattice . 27 3.3.1 Band structure . 29 3.3.2 Projecting the wavefunction in the free space . 31 3.4 Modulating the lattice . 32 3.4.1 Band hybridization . 32 3.4.2 Floquet model .
    [Show full text]
  • Quant-Ph/0012087
    Quantum scattering in one dimension Vania E Barlette1, Marcelo M Leite2 and Sadhan K Adhikari3 1Centro Universit´ario Franciscano, Rua dos Andradas 1614, 97010-032 Santa Maria, RS, Brazil 2Departamento de F´isica, Instituto Tecnol´ogico de Aeronautica, Centro T´ecnico Aeroespacial, 12228-900 S˜ao Jos´edos Campos, SP, Brazil 3Instituto de F´ısica Te´orica, Universidade Estadual Paulista 01.405-900 S˜ao Paulo, SP, Brazil (October 22, 2018) Abstract A self-contained discussion of nonrelativistic quantum scattering is pre- sented in the case of central potentials in one space dimension, which will facilitate the understanding of the more complex scattering theory in two and three dimensions. The present discussion illustrates in a simple way the concept of partial-wave decomposition, phase shift, optical theorem and effective-range expansion. arXiv:quant-ph/0012087v1 17 Dec 2000 1 I. INTRODUCTION There has been great interest in studying tunneling phenomena in a finite superlattice [1], which essentially deals with quantum scattering in one dimension. It has also been emphasized [2] that a study of quantum scattering in one dimension is important for the study of Levinson’s theorem and virial coefficient. Moreover, one-dimensional quantum scattering continues as an active line of research [3]. Because of these recent interests we present a comprehensive description of quantum scattering in one dimension in close analogy with the two- [4] and three-dimensional cases [5]. Apart from these interests in research, the study of one-dimensional scattering is also interesting from a pedagogical point of view. In a one dimensional treatment one does not need special mathematical functions, such as the Bessel’s functions, while still retaining sufficient complexity to illustrate many of the physical processes which occur in two and three dimensions.
    [Show full text]
  • Renormalization of Resonance Scattering Theory
    Resonance superfluidity : renormalization of resonance scattering theory Citation for published version (APA): Kokkelmans, S. J. J. M. F., Milstein, J. N., Chiofalo, M. L., Walser, R., & Holland, M. J. (2002). Resonance superfluidity : renormalization of resonance scattering theory. Physical Review A : Atomic, Molecular and Optical Physics, 65(5), 53617-1/14. [53617]. https://doi.org/10.1103/PhysRevA.65.053617 DOI: 10.1103/PhysRevA.65.053617 Document status and date: Published: 01/01/2002 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
    [Show full text]
  • Feshbach Resonances in Cold Atomic Gases
    Feshbach resonances in cold atomic gases Citation for published version (APA): Kempen, van, E. G. M. (2006). Feshbach resonances in cold atomic gases. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR609975 DOI: 10.6100/IR609975 Document status and date: Published: 01/01/2006 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Scattering and S-Matrix 1/42 J
    SCATTERING AND S-MATRIX 1/42 J. Rosner – Reaction Theory Summer Workshop Indiana University – June 2015 Lecture 1: Review of Lecture 2: S-matrix and Lecture 3: Some simple scattering theory related physics applications S, T , and K matrices 1-,2-channel examples Optical analogs Wave packet scattering Transmission resonances Eikonal approximation Scattering amplitude Bound states Diffractive scattering Partial wave expansion S wave properties Adding resonances Phase shifts Resonances Dalitz plot applications R-matrix Absorption Historical notes Unitarity circle Inelastic cross section Example from electronics For simplicity some of the formalism will be nonrelativistic “In” state i : Free particle in remote past | iin “Out” state j : Free particle in remote future outh | S-matrix takes “in” states to “out” (with wave packets: Goldberger and Watson, Scattering Theory, 1964.) UNITARITY; T AND K MATRICES 2/42 Sji out j i in is unitary: completeness and orthonormality of “in”≡ andh | i “out” states S†S = SS† = ½ Just an expression of probability conservation S has a piece corresponding to no scattering Can write S = ½ +2iT Notation of S. Spanier, BaBar Analysis Document #303, based on S. U. Chung et al. Ann. d. Phys. 4, 404 (1995). Unitarity of S-matrix T T † =2iT †T =2iT T †. ⇒ − 1 1 1 1 (T †)− T − =2i½ or (T − + i½)† = (T − + i½). − 1 1 1 Thus K [T − + i½]− is hermitian; T = K(½ iK)− ≡ − WAVE PACKETS 3/42 i~q ~r 3/2 Normalized plane wave states: χ~q = e · /(2π) 3 3 i(~q q~′) ~r 3 (χ , χ )=(2π)− d ~re − · = δ (~q q~ ) . q~′ ~q − ′ R Expansion of wave packet: ψ (~r, t =0)= d3q χ φ(~q ~p) ~p ~q − where φ is a weight function peaked aroundR 0 3 i~k ~r Fourier transform of φ: G(~r)= d k e · φ(~k) 3 R ψ~p(~r, t =0)= d q χ~q ~p+~p φ(~q ~p)= χ~p G(~r) .
    [Show full text]
  • Scattering in Three Dimensions
    Scattering in Three Dimensions Scattering experiments are an important source of information about quantum systems, ranging in energy from very low energy chemical reactions to the highest possible energies at the LHC. This set of notes gives a brief treatment of some of the main ideas of scattering of a single particle in three dimensions from a static potential. Partial Wave Expansion A partial wave expansion is useful for scattering from a spherically symmetric potential at low energy. The basic move is to expand the wave function into states of definite orbital angular momentum. Experiments never input waves of definite angular momentum, rather the input is a beam of particles, along a certain direction, almost always taken to be the z−axis. Therefore, one of the first results needed is the expansion of a plane wave along the z−axis into partial waves. (The word \partial wave" is synonymous with a state of definite angular momentum.) Setting z = r cos θ; the expansion reads X ikr cos θ l e = (i) jl(kr)(2l + 1)Pl(cos θ): l The Pl(cos θ) are the Legendre polynomials. The jl(kr) are the so-called \spherical Bessel functions." They are actually simple functions, involving sin kr and cos kr and inverse powers of kr: The main properties of the jl are the following: sin(kr − lπ ) j (kr) ! 2 as kr ! 1; l kr and l jl(kr) ! Cl(kr) as r ! 0: l The factor i in the expansion is for convenience. With this factor pulled out, the jl are real.
    [Show full text]
  • 3. Scattering Theory 1 A
    Scattering Theory 1 (last revised: September 5, 2014) 3{1 3. Scattering Theory 1 a. Reminder of basic quantum mechanical scattering The dominant source of information about the two-body force between nucleons (protons and neutrons) is nucleon-nucleon scattering. You are probably familiar from quantum mechanics classes of some aspects of non-relativistic scattering. We will review and build on that knowledge in this section. Nucleon-nucleon scattering means n{n, n{p, and p{p. While all involve electromagnetic inter- actions as well as the strong interaction, p{p has to be treated specially because of the Coulomb interaction (what other electromagnetic interactions contribute to the other scattering processes?). We'll start here with neglecting the electromagnetic potential Vem and the difference between the proton and neutron masses (this is a good approximation, because (m m )=m 10−3 with n − p ≈ m (m + m )=2). So we consider a generic case of scattering two particles of mass m in a ≡ n p short-ranged potential V . While we often have in mind that V = VNN, we won't consider those details until the next sections. p2 p2′ P/2 + k P/2 + k0 = p ) 1 p′ P/2 k P/2 k0 1 − − Figure 1: Kinematics for scattering in lab and relative coordinates. If these are external (and 2 02 therefore \on-shell") lines for elastic scattering, then when P = 0 we have k = k = mEk = 2µEk (assuming equal masses m). Let's set our notation with a quick review of scattering (without derivation; see the linked references to fill in the details).
    [Show full text]
  • 21 Scattering and Partial Wave Analysis
    C. Amsler, Nuclear and Particle Physics 21 Scattering and partial wave analysis In this chapter we deal with elastic two-body scattering between two particles with masses m1 and m2. We shall first assume that the two particles are spinless and that particle 1 scatters in the potential V (r) of particle 2 (figure 21.1). At distances of separation larger than the range R of the potential the projectile can be described by a plane wave moving along the z-axis, which is then scattered in the spherically symmetrical potential V (r). 1 dF dV k Q 1 b z 2 R Figure 21.1: Elastic scattering 1+2 1+2by a potential of range R. ! At large distances (r>R) from the scattering center the scattered particle 1 is represented by a spherical wave emitted from the origin at r = 0. The wave function is given by eikr (r, ✓)=eikz + f(✓) , (21.1) r up to an overall normalization constant, and where k is the momentum of both incident and scattered particles, that is the momentum expressed in the center-of-mass system. The function f(✓) is the scattering amplitude. Using (8.13) one obtains from the total energy E1 and momentum p1 in the laboratory k = βγE γp = βγm , (21.2) 1 − 1 2 hence the velocity of the center of mass, p β = 1 . (21.3) E1 + m2 The relativistic γ-factor is 1 E + m γ = = 1 2 , (21.4) p2 2 2 1 m + m +2E1m2 1 2 1 2 − (E1+m2) q p and therefore from (21.2) m2p1 m2p1 k = = µβ1 (21.5) 2 2 m1 + m2 +2E1m2 ' m1 + m2 21.0 p Nuclear and Particle Physics in the non-relativistic limit E1 m1, where β1 is the incident velocity in the laboratory m1m2 ' and µ = the reduced mass.
    [Show full text]
  • Neutron and X-Ray Scattering
    D 1 Atomic and Magnetic Structures in Crystalline Materials: Neutron and X-ray Scattering Thomas Brückel Institut für Festkörperforschung Forschungszentrum Jülich GmbH Contents 1 Introduction 2 2 Elementary Scattering Theory: Elastic Scattering 3 2.1 Scattering Geometry and Scattering Cross Section 3 2.2 Fundamental Scattering Theory: The Born Series 7 2.3 Coherence 12 2.4 Pair Correlation Functions 14 2.5 Form-Factor 15 2.6 Scattering from a Periodic Lattice in Three Dimensions 17 3 Probes for Scattering Experiments in Condensed Matter Science 18 3.1 Suitable Types of Radiation 18 3.2 The Scattering Cross Section for X-rays: Thomson Scattering, Anomalous Charge Scattering and Magnetic X-ray Scattering 19 3.3 The Scattering Cross Section for Neutrons: Nuclear and Magnetic Scattering 28 3.4 Nuclear Scattering 29 3.5 Magnetic Neutron Scattering 32 3.6 Comparison of Probes 37 4 Examples for Structure Determination 39 4.1 Neutron Powder Diffraction from a CMR Manganite 39 4.2 Resonance Exchange Scattering from a Multiferroic Material 42 References 46 D1.2 Thomas Brückel 1 Introduction Our present understanding of the properties and phenomena of condensed matter science is based on atomic theories. The first question we pose when studying any condensed matter system is the question concerning the internal structure: what are the relevant building blocks (atoms, molecules, colloidal particles, ...) and how are they arranged? The second question concerns the microscopic dynamics: how do these building blocks move and what are their internal degrees of freedom? For magnetic systems, in addition we need to know the ar- rangement of the microscopic magnetic moments due to spin and orbital angular momentum and their excitation spectra.
    [Show full text]
  • Interaction of X-Rays, Neutrons and Electrons with Matter
    Interaction of X-rays, Neutrons and Electrons with Matter David P. DiVincenzo This document has been published in Manuel Angst, Thomas Brückel, Dieter Richter, Reiner Zorn (Eds.): Scattering Methods for Condensed Matter Research: Towards Novel Applications at Future Sources Lecture Notes of the 43rd IFF Spring School 2012 Schriften des Forschungszentrums Jülich / Reihe Schlüsseltechnologien / Key Tech- nologies, Vol. 33 JCNS, PGI, ICS, IAS Forschungszentrum Jülich GmbH, JCNS, PGI, ICS, IAS, 2012 ISBN: 978-3-89336-759-7 All rights reserved. A 4 Interaction of X-rays, Neutrons and Electrons with Matter David P. DiVincenzo PGI-2 Forschungszentrum Julich¨ GmbH Contents 1 The Basics of Scattering Theory 2 2 The Scattering of Electromagnetic Radiation from Atoms 4 3 Atomic Form Factor for X-rays 7 4 X-ray Absorption and Dispersion 9 5 Electron Scattering 12 6 Neutron Scattering 13 7 Magnetic Neutron Scattering 15 A4.2 David P. DiVincenzo 1 The Basics of Scattering Theory Each of the scattering probes that we discuss here, be they particles or waves, permit, according to the tenets of quantum mechanics, a description of either sort. In fact, the wave theory is the best adapted as the unified framework that we will set up here. The incident beam will be treated as monoenergetic and unidirectional – and thus as a plane wave, with incident wave field ik·r Ψinc(r) = Ae (1) k’ → → k Fig. 1: A schematic of the scattering process from an atomic target. The incident plane wave (wavy line) has wavevector k; its constant-phase fronts are shown as straight lines. The scattered wave is an outgoing spherical wave (circles) going out in all directions, in- cluding in the wavevector direction k0.
    [Show full text]
  • Atom-Atom Interactions in Ultracold Gases Claude Cohen-Tannoudji
    Atom-atom interactions in ultracold gases Claude Cohen-Tannoudji To cite this version: Claude Cohen-Tannoudji. Atom-atom interactions in ultracold gases. DEA. Institut Henri Poincaré, 25 et 27 Avril 2007, 2007. cel-00346023 HAL Id: cel-00346023 https://cel.archives-ouvertes.fr/cel-00346023 Submitted on 12 Dec 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Atom-Atom Interactions in Ultracold Quantum Gases Claude Cohen-Tannoudji Lectures on Quantum Gases Institut Henri Poincaré, Paris, 25 April 2007 Collège de France 1 Lecture 1 (25 April 2007) Quantum description of elastic collisions between ultracold atoms The basic ingredients for a mean-field description of gaseous Bose Einstein condensates Lecture 2 (27 April 2007) Quantum theory of Feshbach resonances How to manipulate atom-atom interactions in a ultracold quantum gas 2 A few general references 1 – L.Landau and E.Lifshitz, Quantum Mechanics, Pergamon, Oxford (1977) 2 – A.Messiah, Quantum Mechanics, North Holland, Amsterdam (1961) 3 – C.Cohen-Tannoudji, B.Diu and F.Laloë, Quantum Mechanics, Wiley, New York (1977) 4 – C.Joachin, Quantum collision theory, North Holland, Amsterdam (1983) 5 – J.Dalibard, in Bose Einstein Condensation in Atomic Gases, edited by M.Inguscio, S.Stringari and C.Wieman, International School of Physics Enrico Fermi, IOS Press, Amsterdam, (1999) 6 – Y.
    [Show full text]
  • Universality in Few-Body Systems with Large Scattering Length Was Originally Developed in Nuclear Physics
    Universality in Few-body Systems with Large Scattering Length Eric Braaten a aDepartment of Physics, The Ohio State University, Columbus, OH 43210, USA H.-W. Hammer b,c bInstitute for Nuclear Theory, University of Washington, Seattle, WA 98195, USA cHelmholtz-Institut f¨ur Strahlen- und Kernphysik, Universit¨at Bonn, 53115 Bonn, Germany Abstract Particles with short-range interactions and a large scattering length have universal low-energy properties that do not depend on the details of their structure or their interactions at short distances. In the 2-body sector, the universal properties are familiar and depend only on the scattering length a. In the 3-body sector for identical bosons, the universal properties include the existence of a sequence of shallow 3- body bound states called “Efimov states” and log-periodic dependence of scattering observables on the energy and the scattering length. The spectrum of Efimov states in the limit a is characterized by an asymptotic discrete scaling symmetry → ±∞ that is the signature of renormalization group flow to a limit cycle. In this review, we present a thorough treatment of universality for the system of three identical bosons and we summarize the universal information that is currently available for other 3-body systems. Our basic tools are the hyperspherical formalism to provide qualitative insights, Efimov’s radial laws for deriving the constraints from unitarity, and effective field theory for quantitative calculations. We also discuss topics on the frontiers of universality, including its extension to systems with four or more particles and the systematic calculation of deviations from universality. arXiv:cond-mat/0410417v3 [cond-mat.other] 18 Aug 2006 Email addresses: [email protected] (Eric Braaten), [email protected] (H.-W.
    [Show full text]