Quantum Scattering Theory and Applications

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Scattering Theory and Applications Quantum Scattering Theory and Applications A thesis presented by Adam LupuSax to The DepartmentofPhysics in partial fulllment of the requirements for the degree of Do ctor of Philosophy in the sub ject of Physics Harvard University Cambridge Massachusetts September c Adam LupuSax All rights reserved Abstract Scattering theory provides a convenient framework for the solution of a varietyof problems In this thesis we fo cus on the combination of b oundary conditions and scattering potentials and the combination of nonoverlapping scattering p otentials within the context of scattering theory Using a scattering tmatrix approach we derivea useful relationship between the scattering tmatrix of the scattering potential and the Green function of the b oundary and the tmatrix of the combined system eectively renormalizing the scatter ing tmatrix to account for the b oundaries In the case of the combination of scattering potentials the combination of tmatrix op erators is achieved via multiple scattering the ealsoderive metho ds primarily for numerical use for nding the Green function of ory W arbitrarily shap ed b oundaries of various sorts These metho ds can b e applied to b oth op en and closed systems In this thesis we consider single and multiple scatterers in two dimensional strips regions which are innite in one direction and b ounded in the other as well as two dimensional rectangles In D strips both the renormalization of the single scatterer strength and the conductance of disordered manyscatterer systems are studied For the case of the single scatterer we see nontrivial renormalization eects in the narrow wire limit In the many scatterer case wenumerically observe suppression of the conductance beyond that which is explained by weak lo calization In closed systems we fo cus primarily on the eigenstates of disordered many scatterer systems There has b een substantial investigation and calculation of prop erties of the eigenstate intensities of these systems We have for the rst time b een able to inves tigate these questions numerically Since there is little exp erimental work in this regime these numerics provide the rst test of various theoretical mo dels Our observations indicate that the probability of large uctuations of the intensity of the wavefunction are explained qualitatively byvarious eldtheoretic mo dels However quantitatively no existing theory accurately predicts the probability of these uctuations Acknowledgments Doing the work which app ears in this thesis has been a largely delightful way to sp end the last veyears The nancial supp ort for my graduate studies was provided bya National Science Foundation Fellowship Harvard University and the HarvardSmithsonian Institute for Theoretical Atomic and Molecular Physics ITAMP Together all of these sources provided me with the wonderful opp ortunity to study without b eing concerned ab out my nances My advisor Rick Heller is a wonderful source of ideas and insights I b egan working with Rick four years ago and I have learned an immense amount from him in that One time From the very rst time wespokeIhave felt not only challenged but resp ected particularly nice asp ect of having Rick as an advisor is his ready availability More than one tricky part of this thesis has b een sorted out in a marathon conversation in Ricks oce I cannot thank him enough for all of his time and energy In the last veyearsIhave had the great pleasure of working not only with Rick himself but also with his p ostdo cs and other students Maurizio Carioli was a p ostdo c when I b egan working with Rick There is much I cannot imagine having learned so quickly or so well without him particularly ab out numerical metho ds Lev Kaplan a student and then p ostdo c in the group is an invaluable source of clear thinking and uncanny insight He has also demonstrated a nearly innite patience in discussing our work My classmate Neepa Maitra and I b egan working with Rick at nearly the same time and have b een partners in this journey Neepas emotional supp ort and p erceptive comments and questions ab out substantially easier Alex Barnett Bill Bies Greg my work have made my last ve years Fiete Jesse Hersch Bill Hosten and Areez Mo dy all graduate students in Ricks group have given me wonderful feedbackonthis and other work The substantial p ostdo c contingent in the group Michael Haggerty Martin Naraschewski and Doron Cohen have b een equally helpful and provided very useful guidance along the way At the time I b egan graduate scho ol I was pleasantly surprised by the co op erative spirit among my classmates Manyofusspentcountless hours discussing physics and sorting out problem sets Among this crowd I must particularly thank Martin Bazant Brian Busch Sheila Kannappan Carla Levy Carol Livermore Neepa Maitra Ron Rubin and Glenn Wong for making many late nights b earable and oftentimes fun Imust particularly thank Martin Carla and Neepa for remaining great friends and colleagues in the years that followed Ihave had the great fortune to make go o d friends at various stages in my life and I am honored to count these three among them It is hard to imagine howIwould have done all of this without my ancee Kiersten Conner Our up coming marriage has been a singular source of joy during the pro cess of writing this thesis Her unagging supp ort and b oundless sense of humor have kept me centered throughout graduate scho ol My parents Chip Lupu and Jana Sax have both been a great source of supp ort and encouragement throughout my life and the last veyears have b een no exception The rest of my family has also b een very supp ortive particularly my grandmothers Sara Lupu and Pauline Sax and my stepmother Nancy Altman It saddens me that neither of my grandfathers Dave Lupu or N Irving Sax are alive to see this moment in my life but I thank them b oth for teaching me things that have help ed bring me this far Citations to Previously Published Work Portions of chapter and App endix B have app eared in Quantum scattering from arbitrary b oundaries MGE da Luz AS LupuSax and EJ Heller Physical Review B no pages Contents Title Page Abstract Acknowledgments Citations to Previously Published Work Table of Contents List of Figures List of Tables Intro duction and Outline of the Thesis Intro duction Outline of the Thesis Quantum Scattering Theory in dDimensions CrossSections Unitarit y and the Optical Theorem Green Functions Zero Range Interactions Scattering in two dimensions Scattering in the Presence of Other Potentials Multiple Scattering Renormalized tmatrices Scattering From Arbitrarily Shap ed Boundaries Intro duction Boundary Wall Metho d I Boundary Wall Metho d I I Perio dic Boundary Conditions Green Function Interfaces Numerical Considerations and Analysis From Wavefunctions to Green Functions Eigenstates Contents Scattering in Wires I One Scatterer One Scatterer in a Wide Wire The Green function of an empty p erio dic wire Renormalization of the ZRI Scattering Strength From the Green function to Conductance Computing the channeltochannel Green function One Scatterer in a Narrow Wire Scattering in Rectangles I One Scatterer Dirichlet b oundaries Perio dic b oundaries Disordered Systems Disorder Averages Mean Free Path Prop erties of Randomly Placed ZRIs as a Disordered Potential Eigenstate Intensities and the PorterThomas Distribution Weak Lo calization Strong Lo calization Anomalous Wav efunctions in Two Dimensions Conclusions Quenched Disorder in D Wires Transp ort in Disordered Systems Quenched Disorder in D Rectangles Extracting eigenstates from tmatrices Intensity Statistics in Small Disordered Dirichlet Bounded Rectangles Intensity Statistics in Disordered Perio dic Rectangle Algorithms Conclusions Bibliography A Green Functions A Denitions A Scaling L A Integration of Energy Green functions A Green functions of separable systems A Examples A The Gorkov bulk sup erconductor Green Function B Generalization of the Boundary Wall Metho d Contents C Linear Algebra and NullSpace Hunting C Standard Linear Solvers
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Lecture 6: Spectroscopy and Photochemistry II
    Lecture 6: Spectroscopy and Photochemistry II Required Reading: FP Chapter 3 Suggested Reading: SP Chapter 3 Atmospheric Chemistry CHEM-5151 / ATOC-5151 Spring 2005 Prof. Jose-Luis Jimenez Outline of Lecture • The Sun as a radiation source • Attenuation from the atmosphere – Scattering by gases & aerosols – Absorption by gases • Beer-Lamber law • Atmospheric photochemistry – Calculation of photolysis rates – Radiation fluxes – Radiation models 1 Reminder of EM Spectrum Blackbody Radiation Linear Scale Log Scale From R.P. Turco, Earth Under Siege: From Air Pollution to Global Change, Oxford UP, 2002. 2 Solar & Earth Radiation Spectra • Sun is a radiation source with an effective blackbody temperature of about 5800 K • Earth receives circa 1368 W/m2 of energy from solar radiation From Turco From S. Nidkorodov • Question: are relative vertical scales ok in right plot? Solar Radiation Spectrum II From F-P&P •Solar spectrum is strongly modulated by atmospheric scattering and absorption From Turco 3 Solar Radiation Spectrum III UV Photon Energy ↑ C B A From Turco Solar Radiation Spectrum IV • Solar spectrum is strongly O3 modulated by atmospheric absorptions O 2 • Remember that UV photons have most energy –O2 absorbs extreme UV in mesosphere; O3 absorbs most UV in stratosphere – Chemistry of those regions partially driven by those absorptions – Only light with λ>290 nm penetrates into the lower troposphere – Biomolecules have same bonds (e.g. C-H), bonds can break with UV absorption => damage to life • Importance of protection From F-P&P provided by O3 layer 4 Solar Radiation Spectrum vs. altitude From F-P&P • Very high energy photons are depleted high up in the atmosphere • Some photochemistry is possible in stratosphere but not in troposphere • Only λ > 290 nm in trop.
    [Show full text]
  • 12 Light Scattering AQ1
    12 Light Scattering AQ1 Lev T. Perelman CONTENTS 12.1 Introduction ......................................................................................................................... 321 12.2 Basic Principles of Light Scattering ....................................................................................323 12.3 Light Scattering Spectroscopy ............................................................................................325 12.4 Early Cancer Detection with Light Scattering Spectroscopy .............................................326 12.5 Confocal Light Absorption and Scattering Spectroscopic Microscopy ............................. 329 12.6 Light Scattering Spectroscopy of Single Nanoparticles ..................................................... 333 12.7 Conclusions ......................................................................................................................... 335 Acknowledgment ........................................................................................................................... 335 References ...................................................................................................................................... 335 12.1 INTRODUCTION Light scattering in biological tissues originates from the tissue inhomogeneities such as cellular organelles, extracellular matrix, blood vessels, etc. This often translates into unique angular, polari- zation, and spectroscopic features of scattered light emerging from tissue and therefore information about tissue
    [Show full text]
  • Solving the Quantum Scattering Problem for Systems of Two and Three Charged Particles
    Solving the quantum scattering problem for systems of two and three charged particles Solving the quantum scattering problem for systems of two and three charged particles Mikhail Volkov c Mikhail Volkov, Stockholm 2011 ISBN 978-91-7447-213-4 Printed in Sweden by Universitetsservice US-AB, Stockholm 2011 Distributor: Department of Physics, Stockholm University In memory of Professor Valentin Ostrovsky Abstract A rigorous formalism for solving the Coulomb scattering problem is presented in this thesis. The approach is based on splitting the interaction potential into a finite-range part and a long-range tail part. In this representation the scattering problem can be reformulated to one which is suitable for applying exterior complex scaling. The scaled problem has zero boundary conditions at infinity and can be implemented numerically for finding scattering amplitudes. The systems under consideration may consist of two or three charged particles. The technique presented in this thesis is first developed for the case of a two body single channel Coulomb scattering problem. The method is mathe- matically validated for the partial wave formulation of the scattering problem. Integral and local representations for the partial wave scattering amplitudes have been derived. The partial wave results are summed up to obtain the scat- tering amplitude for the three dimensional scattering problem. The approach is generalized to allow the two body multichannel scattering problem to be solved. The theoretical results are illustrated with numerical calculations for a number of models. Finally, the potential splitting technique is further developed and validated for the three body Coulomb scattering problem. It is shown that only a part of the total interaction potential should be split to obtain the inhomogeneous equation required such that the method of exterior complex scaling can be applied.
    [Show full text]
  • 7. Gamma and X-Ray Interactions in Matter
    Photon interactions in matter Gamma- and X-Ray • Compton effect • Photoelectric effect Interactions in Matter • Pair production • Rayleigh (coherent) scattering Chapter 7 • Photonuclear interactions F.A. Attix, Introduction to Radiological Kinematics Physics and Radiation Dosimetry Interaction cross sections Energy-transfer cross sections Mass attenuation coefficients 1 2 Compton interaction A.H. Compton • Inelastic photon scattering by an electron • Arthur Holly Compton (September 10, 1892 – March 15, 1962) • Main assumption: the electron struck by the • Received Nobel prize in physics 1927 for incoming photon is unbound and stationary his discovery of the Compton effect – The largest contribution from binding is under • Was a key figure in the Manhattan Project, condition of high Z, low energy and creation of first nuclear reactor, which went critical in December 1942 – Under these conditions photoelectric effect is dominant Born and buried in • Consider two aspects: kinematics and cross Wooster, OH http://en.wikipedia.org/wiki/Arthur_Compton sections http://www.findagrave.com/cgi-bin/fg.cgi?page=gr&GRid=22551 3 4 Compton interaction: Kinematics Compton interaction: Kinematics • An earlier theory of -ray scattering by Thomson, based on observations only at low energies, predicted that the scattered photon should always have the same energy as the incident one, regardless of h or • The failure of the Thomson theory to describe high-energy photon scattering necessitated the • Inelastic collision • After the collision the electron departs
    [Show full text]
  • Solutions 7: Interacting Quantum Field Theory: Λφ4
    QFT PS7 Solutions: Interacting Quantum Field Theory: λφ4 (4/1/19) 1 Solutions 7: Interacting Quantum Field Theory: λφ4 Matrix Elements vs. Green Functions. Physical quantities in QFT are derived from matrix elements M which represent probability amplitudes. Since particles are characterised by having a certain three momentum and a mass, and hence a specified energy, we specify such physical calculations in terms of such \on-shell" values i.e. four-momenta where p2 = m2. For instance the notation in momentum space for a ! scattering in scalar Yukawa theory uses four-momenta labels p1 and p2 flowing into the diagram for initial states, with q1 and q2 flowing out of the diagram for the final states, all of which are on-shell. However most manipulations in QFT, and in particular in this problem sheet, work with Green func- tions not matrix elements. Green functions are defined for arbitrary values of four momenta including unphysical off-shell values where p2 6= m2. So much of the information encoded in a Green function has no obvious physical meaning. Of course to extract the corresponding physical matrix element from the Greens function we would have to apply such physical constraints in order to get the physics of scattering of real physical particles. Alternatively our Green function may be part of an analysis of a much bigger diagram so it represents contributions from virtual particles to some more complicated physical process. ∗1. The full propagator in λφ4 theory Consider a theory of a real scalar field φ 1 1 λ L = (@ φ)(@µφ) − m2φ2 − φ4 (1) 2 µ 2 4! (i) A theory with a gφ3=(3!) interaction term will not have an energy which is bounded below.
    [Show full text]
  • Zero-Point Energy of Ultracold Atoms
    Zero-point energy of ultracold atoms Luca Salasnich1,2 and Flavio Toigo1 1Dipartimento di Fisica e Astronomia “Galileo Galilei” and CNISM, Universit`adi Padova, via Marzolo 8, 35131 Padova, Italy 2CNR-INO, via Nello Carrara, 1 - 50019 Sesto Fiorentino, Italy Abstract We analyze the divergent zero-point energy of a dilute and ultracold gas of atoms in D spatial dimensions. For bosonic atoms we explicitly show how to regularize this divergent contribution, which appears in the Gaussian fluctuations of the functional integration, by using three different regular- ization approaches: dimensional regularization, momentum-cutoff regular- ization and convergence-factor regularization. In the case of the ideal Bose gas the divergent zero-point fluctuations are completely removed, while in the case of the interacting Bose gas these zero-point fluctuations give rise to a finite correction to the equation of state. The final convergent equa- tion of state is independent of the regularization procedure but depends on the dimensionality of the system and the two-dimensional case is highly nontrivial. We also discuss very recent theoretical results on the divergent zero-point energy of the D-dimensional superfluid Fermi gas in the BCS- BEC crossover. In this case the zero-point energy is due to both fermionic single-particle excitations and bosonic collective excitations, and its regu- larization gives remarkable analytical results in the BEC regime of compos- ite bosons. We compare the beyond-mean-field equations of state of both bosons and fermions with relevant experimental data on dilute and ultra- cold atoms quantitatively confirming the contribution of zero-point-energy quantum fluctuations to the thermodynamics of ultracold atoms at very low temperatures.
    [Show full text]
  • 12 Scattering in Three Dimensions
    12 Scattering in three dimensions 12.1 Cross sections and geometry Most experiments in physics consist of sending one particle to collide with another, and looking at what comes out. The quantity we can usually measure is the scattering cross section: by analogy with classical scattering of hard spheres, we assuming that scattering occurs if the particles ‘hit’ each other. The cross section is the apparent ‘target area’. The total scattering cross section can be determined by the reduction in intensity of a beam of particles passing through a region on ‘targets’, while the differential scattering cross section requires detecting the scattered particles at different angles. We will use spherical polar coordinates, with the scattering potential located at the origin and the plane wave incident flux parallel to the z direction. In this coordinate system, scattering processes dσ are symmetric about φ, so dΩ will be independent of φ. We will also use a purely classical concept, the impact parameter b which is defined as the distance of the incident particle from the z-axis prior to scattering. S(k) δΩ I(k) θ z φ Figure 11: Standard spherical coordinate geometry for scattering 12.2 The Born Approximation We can use time-dependent perturbation theory to do an approximate calculation of the cross- section. Provided that the interaction between particle and scattering centre is localised to the region around r = 0, we can regard the incident and scattered particles as free when they are far from the scattering centre. We just need the result that we obtained for a constant perturbation, Fermi’s Golden Rule, to compute the rate of transitions between the initial state (free particle of momentum p) to the final state (free particle of momentum p0).
    [Show full text]
  • Discrete Variable Representations and Sudden Models in Quantum
    Volume 89. number 6 CHLMICAL PHYSICS LEITERS 9 July 1981 DISCRETEVARlABLE REPRESENTATIONS AND SUDDEN MODELS IN QUANTUM SCATTERING THEORY * J.V. LILL, G.A. PARKER * and J.C. LIGHT l7re JarrresFranc/t insrihrre and The Depwrmcnr ofC7temtsrry. Tire llm~crsrry of Chrcago. Otrcago. l7lrrrors60637. USA Received 26 September 1981;m fin11 form 29 May 1982 An c\act fOrmhSm In which rhe scarrcnng problem may be descnbcd by smsor coupled cqumons hbclcd CIIIW bb bans iuncltons or quadrature pomts ISpresented USCof each frame and the srnrplyculuatcd unitary wmsformatlon which connects them resulis III an cfliclcnt procedure ror pcrrormrnpqu~nrum scxrcrrn~ ca~cubr~ons TWO ~ppro~mac~~~ arc compxcd wrh ihe IOS. 1. Introduction “ergenvalue-like” expressions, rcspcctnely. In each case the potential is represented by the potcntud Quantum-mechamcal scattering calculations are function Itself evahrated at a set of pomts. most often performed in the close-coupled representa- Whjle these models have been shown to be cffcc- tion (CCR) in which the internal degrees of freedom tive III many problems,there are numerousambiguities are expanded in an appropnate set of basis functions in their apphcation,especially wtth regardto the resulting in a set of coupled diiierentral equations UI choice of constants. Further, some models possess the scattering distance R [ 1,2] _The method is exact formal difficulties such as loss of time reversal sym- IO w&in a truncation error and convergence is ob- metry, non-physical coupling, and non-conservation tained by increasing the size of the basis and hence the of energy and momentum [ 1S-191. In fact, it has number of coupled equations (NJ While considerable never been demonstrated that sudden models fit into progress has been madein the developmentof efficient any exactframework for solutionof the scattering algonthmsfor the solunonof theseequations [3-71, problem.
    [Show full text]
  • Photon Cross Sections, Attenuation Coefficients, and Energy Absorption Coefficients from 10 Kev to 100 Gev*
    1 of Stanaaros National Bureau Mmin. Bids- r'' Library. Ml gEP 2 5 1969 NSRDS-NBS 29 . A111D1 ^67174 tioton Cross Sections, i NBS Attenuation Coefficients, and & TECH RTC. 1 NATL INST OF STANDARDS _nergy Absorption Coefficients From 10 keV to 100 GeV U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS T X J ". j NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation’s central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology. The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation’s scientific community, industry, and com- merce. The Institute consists of an Office of Measurement Services and the following technical divisions: Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic and Molec- ular Physics—Radio Physics -—Radio Engineering -—Time and Frequency -—Astro- physics -—Cryogenics.
    [Show full text]
  • The S-Matrix Formulation of Quantum Statistical Mechanics, with Application to Cold Quantum Gas
    THE S-MATRIX FORMULATION OF QUANTUM STATISTICAL MECHANICS, WITH APPLICATION TO COLD QUANTUM GAS A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Pye Ton How August 2011 c 2011 Pye Ton How ALL RIGHTS RESERVED THE S-MATRIX FORMULATION OF QUANTUM STATISTICAL MECHANICS, WITH APPLICATION TO COLD QUANTUM GAS Pye Ton How, Ph.D. Cornell University 2011 A novel formalism of quantum statistical mechanics, based on the zero-temperature S-matrix of the quantum system, is presented in this thesis. In our new formalism, the lowest order approximation (“two-body approximation”) corresponds to the ex- act resummation of all binary collision terms, and can be expressed as an integral equation reminiscent of the thermodynamic Bethe Ansatz (TBA). Two applica- tions of this formalism are explored: the critical point of a weakly-interacting Bose gas in two dimensions, and the scaling behavior of quantum gases at the unitary limit in two and three spatial dimensions. We found that a weakly-interacting 2D Bose gas undergoes a superfluid transition at T 2πn/[m log(2π/mg)], where n c ≈ is the number density, m the mass of a particle, and g the coupling. In the unitary limit where the coupling g diverges, the two-body kernel of our integral equation has simple forms in both two and three spatial dimensions, and we were able to solve the integral equation numerically. Various scaling functions in the unitary limit are defined (as functions of µ/T ) and computed from the numerical solutions.
    [Show full text]
  • (2021) Transmon in a Semi-Infinite High-Impedance Transmission Line
    PHYSICAL REVIEW RESEARCH 3, 023003 (2021) Transmon in a semi-infinite high-impedance transmission line: Appearance of cavity modes and Rabi oscillations E. Wiegand ,1,* B. Rousseaux ,2 and G. Johansson 1 1Applied Quantum Physics Laboratory, Department of Microtechnology and Nanoscience-MC2, Chalmers University of Technology, 412 96 Göteborg, Sweden 2Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France (Received 8 December 2020; accepted 11 March 2021; published 1 April 2021) In this paper, we investigate the dynamics of a single superconducting artificial atom capacitively coupled to a transmission line with a characteristic impedance comparable to or larger than the quantum resistance. In this regime, microwaves are reflected from the atom also at frequencies far from the atom’s transition frequency. Adding a single mirror in the transmission line then creates cavity modes between the atom and the mirror. Investigating the spontaneous emission from the atom, we then find Rabi oscillations, where the energy oscillates between the atom and one of the cavity modes. DOI: 10.1103/PhysRevResearch.3.023003 I. INTRODUCTION [43]. Furthermore, high-impedance resonators make it pos- sible for light-matter interaction to reach strong-coupling In the past two decades, circuit quantum electrodynamics regimes due to strong coupling to vacuum fluctuations [44]. (circuit QED) has become a field of growing interest for quan- In this article, we investigate the spontaneous emission tum information processing and also to realize new regimes of a transmon [45] capacitively coupled to a 1D TL that is in quantum optics [1–11].
    [Show full text]