Raport CBK PAN 2018(15.03)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SPACE RESEARCH in POLAND Report to COMMITTEE
SPACE RESEARCH IN POLAND Report to COMMITTEE ON SPACE RESEARCH (COSPAR) 2020 Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Report to COMMITTEE ON SPACE RESEARCH (COSPAR) ISBN 978-83-89439-04-8 First edition © Copyright by Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Warsaw, 2020 Editor: Iwona Stanisławska, Aneta Popowska Report to COSPAR 2020 1 SATELLITE GEODESY Space Research in Poland 3 1. SATELLITE GEODESY Compiled by Mariusz Figurski, Grzegorz Nykiel, Paweł Wielgosz, and Anna Krypiak-Gregorczyk Introduction This part of the Polish National Report concerns research on Satellite Geodesy performed in Poland from 2018 to 2020. The activity of the Polish institutions in the field of satellite geodesy and navigation are focused on the several main fields: • global and regional GPS and SLR measurements in the frame of International GNSS Service (IGS), International Laser Ranging Service (ILRS), International Earth Rotation and Reference Systems Service (IERS), European Reference Frame Permanent Network (EPN), • Polish geodetic permanent network – ASG-EUPOS, • modeling of ionosphere and troposphere, • practical utilization of satellite methods in local geodetic applications, • geodynamic study, • metrological control of Global Navigation Satellite System (GNSS) equipment, • use of gravimetric satellite missions, • application of GNSS in overland, maritime and air navigation, • multi-GNSS application in geodetic studies. Report -
Looking for Volcanic Ash Deposits Within the Interior Layered Deposits of Valles Marineris, Mars – Physical and Chemical Characteristics of Ash Falls and Flows
47th Lunar and Planetary Science Conference (2016) 2752.pdf LOOKING FOR VOLCANIC ASH DEPOSITS WITHIN THE INTERIOR LAYERED DEPOSITS OF VALLES MARINERIS, MARS – PHYSICAL AND CHEMICAL CHARACTERISTICS OF ASH FALLS AND FLOWS. M.A. Matiella Novak1, C. Viviano-Beck1, K. Seelos1 and D. Buczkowski1 , 1Johns Hopkins Univer- sity Applied Physics Laboratory, 11101 Johns Hopkins Road, Laurel, MD 20723. Introduction: Candor, Ophir, and Ganges Chas- ing the record of volcanic ash deposits on Mars could mata, located within Valles Marineris, Mars, contain also provide this same type of stratigraphic correlation Interior Layered Deposits (ILDs). Previous geologic on a regional or even global scale. The presence of mapping has shown that ILDs are regional formations volcanic ash falls within the chasmata ILDs of Valles and contain deposits that are widespread through Val- Marineris have been suggested by numerous studies, les Marineris. While the formation of these features e.g., [2],[3],[5],[6], as well the presence of consolidat- remains somewhat enigmatic, one leading hypothesis ed volcanic ash material (i.e. welded tuffs) [1]. With suggests that some layers within the ILDs may be com- its close proximity to the Tharsis Volcanic Plateau, the posed of explosive volcanic deposits, comparable to presence of diverse types of volcanic material within the Bishop Tuff ignimbrite of Long Valley Caldera, the ILDs is likely. Furthermore, if volcanoes in this CA [1]. region are the source of ash layers within the ILDs then This investigation aims to advance our understand- it’s reasonable to assume that the physical characteris- ing of how volcanic deposits may have come to exist tics of these deposits would change in both thickness within these chasmata and how subsequent surface and particle size with distance from the source, and in processes altered these deposits. -
The Magellan Spacecraft at Venus by Andrew Fraknoi, Astronomical Society of the Pacific
www.astrosociety.org/uitc No. 18 - Fall 1991 © 1991, Astronomical Society of the Pacific, 390 Ashton Avenue, San Francisco, CA 94112. The Magellan Spacecraft at Venus by Andrew Fraknoi, Astronomical Society of the Pacific "Having finally penetrated below the clouds of Venus, we find its surface to be naked [not hidden], revealing the history of hundreds of millions of years of geological activity. Venus is a geologist's dream planet.'' —Astronomer David Morrison This fall, the brightest star-like object you can see in the eastern skies before dawn isn't a star at all — it's Venus, the second closest planet to the Sun. Because Venus is so similar in diameter and mass to our world, and also has a gaseous atmosphere, it has been called the Earth's "sister planet''. Many years ago, scientists expected its surface, which is perpetually hidden beneath a thick cloud layer, to look like Earth's as well. Earlier this century, some people even imagined that Venus was a hot, humid, swampy world populated by prehistoric creatures! But we now know Venus is very, very different. New radar images of Venus, just returned from NASA's Magellan spacecraft orbiting the planet, have provided astronomers the clearest view ever of its surface, revealing unique geological features, meteor impact craters, and evidence of volcanic eruptions different from any others found in the solar system. This issue of The Universe in the Classroom is devoted to what Magellan is teaching us today about our nearest neighbor, Venus. Where is Venus, and what is it like? Spacecraft exploration of Venus's surface Magellan — a "recycled'' spacecraft How does Magellan take pictures through the clouds? What has Magellan revealed about Venus? How does Venus' surface compare with Earth's? What is the next step in Magellan's mission? If Venus is such an uninviting place, why are we interested in it? Reading List Why is it so hot on Venus? Where is Venus, and what is it like? Venus orbits the Sun in a nearly circular path between Mercury and the Earth, about 3/4 as far from our star as the Earth is. -
The Earth-Based Radar Search for Volcanic Activity on Venus
52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 2339.pdf THE EARTH-BASED RADAR SEARCH FOR VOLCANIC ACTIVITY ON VENUS. B. A. Campbell1 and D. B. Campbell2, 1Smithsonian Institution Center for Earth and Planetary Studies, MRC 315, PO Box 37012, Washington, DC 20013-7012, [email protected]; 2Cornell University, Ithaca, NY 14853. Introduction: Venus is widely expected to have geometry comes from shifts in the latitude of the sub- ongoing volcanic activity based on its similar size to radar point, which spans the range from about 8o S Earth and likely heat budget. How lithospheric (2017) to 8o N (2015). Observations in 1988, 2012, and thickness and volcanic activity have varied over the 2020 share a similar sub-radar point latitude of ~3o S. history of the planet remains uncertain. While tessera Coverage of higher northern and southern latitudes may highlands locally represent a period of thinner be obtained during favorable conjunctions (Fig. 1), but lithosphere and strong deformation, there is no current the shift in incidence angle must be recognized in means to determine whether they formed synchronously analysis of surface features over time. The 2012 data on hemispheric scales. Understanding the degree to were collected in an Arecibo-GBT bistatic geometry which mantle plumes currently thin and uplift the crust that led to poorer isolation between the hemispheres. to create deformation and effusive eruptions will better inform our understanding of the “global” versus Searching for Change. Ideally, surface change “localized” timing of heat transport. Ground-based detection could be achieved by co-registering and radar mapping of one hemisphere of Venus over the past differencing any pair of radar maps. -
Westfield Council Approves Budget (Continued from Page A-L) Sullivan Also Thanked State Two More Years," Said Echausse
Cook's walk-off homer lifts WHS past Union. Please see Sports, Page C-1. WESTFIELD SCOTCH PLAINS FANWOOD Vol. 16, No.' Friday, April 27, 2001 50 cents Aro Small businesses have a friend in county corporation By GREG MARX For loans or training, the UCEDC is there for the little guys Trustees with members from "all Tow THE RECORD-PRESS walks of life," Brown said. The Bonn! of Trustees offers guidance Westfield wel< UNION COUNTY — In mod- an important ally in the Union "our key goal is to assist smiill- under-served groups, such as on how the UCEDC can best dis- ern suburban communities, small County Economic Development and medium-size businesses in women and minority entrepre- tribute the funds it collects from TV-36broadc downtown businesses often Corporation. low- to moderate-income areas." neurs. fund-raising activities and WESTHEtti struggle to compete with huge According to Susan Brown, In more affluent areas, Brown To undertake that task, the grunts from county and federal access televisi' chain stores on regional high- director of Business said, the UCEDC seeks to help UCEDC lias a paid staff of 12 agencies. launched a new ways. But local businesses have Development for the UCEDC, individuals from historically and a volunteer Board of (Continued on page A-8) night with a ril thenewTV-36br The center is second floor of the Westfield Westfield council Municipal Building and will replace space previously occu- pied at Westfield High School. Phil Falcone, chairman of the TV- 36 Advisory Committee, said offi- approves budget cials hope the new center will enhance broadcasts over the a whole cent, according to town cable-access channel. -
Final Report Venus Exploration Targets Workshop May 19–21
Final Report Venus Exploration Targets Workshop May 19–21, 2014, Lunar and Planetary Institute, Houston, TX Conveners: Virgil (Buck) Sharpton, Larry Esposito, Christophe Sotin Breakout Group Leads Science from the Surface Larry Esposito, Univ. Colorado Science from the Atmosphere Kevin McGouldrick, Univ. Colorado Science from Orbit Lori Glaze, GSFC Science Organizing Committee: Ben Bussey, Martha Gilmore, Lori Glaze, Robert Herrick, Stephanie Johnston, Christopher Lee, Kevin McGouldrick Vision: The intent of this “living” document is to identify scientifically important Venus targets, as the knowledge base for this planet progresses, and to develop a target database (i.e., scientific significance, priority, description, coordinates, etc.) that could serve as reference for future missions to Venus. This document will be posted in the VEXAG website (http://www.lpi.usra.edu/vexag/), and it will be revised after the completion of each Venus Exploration Targets Workshop. The point of contact for this document is the current VEXAG Chair listed at ABOUT US on the VEXAG website. Venus Exploration Targets Workshop Report 1 Contents Overview ....................................................................................................................................................... 2 1. Science on the Surface .............................................................................................................................. 3 2. Science within the Atmosphere ............................................................................................................... -
Raport CBK PAN 2019
CENTRUM BADAŃ KOSMICZNYCH POLSKA AKADEMIA NAUK SPACE RESEARCH CENTRE, Polish Academy of Sciences ANNUAL REPORT 2019 WARSAW Cover: New editions of European Land Cover maps S2GLC Edited by: MAŁGORZATA MICHALSKA JOLANTA NASTULA and MARCIN GADOMSKI Technical editor: EDYTA LISIECKA Publikację wykonano na papierze ksero 80 gr oraz w wersji elektronicznej. Okładkę wykonano na Z-Laser kolor 250 gr. Skład: Edyta Lisiecka Druk i oprawa: CBK PAN 00-716 Warszawa, ul. Bartycka 18a CENTRUM BADAŃ KOSMICZNYCH Polskiej Akademii Nauk SPACE RESEARCH CENTRE Polish Academy of Sciences Bartycka 18A, 00-716 Warsaw, Poland Phone: (48-22) 49 66 200 Fax: (48-22) 840 31 31 e-mail: [email protected] CONTENTS 04 .......... THE YEAR 2019 - FOR SCIENCE AND SOCJETY 07 .......... SPACE PROJECTS ARIEL ASIM ATHENA IMAP / GLOWS JUICE LAERT OPS-SAT PROBA-3 SOLAR ORBITER TARANIS 18 .......... OTHER INNOVATIVE TECHNOLOGIES SPACE TECHNOLOGIES TECHNOLOGY DEVELOPMENT OTHER PROJECTS 36 .......... DATA ACQUISITION ASTROGEODYNAMICAL OBSERVATORY IN BOROWIEC GNSS OBSERVATORY IN WARSAW 45 .......... INTERPRETATION AND MODELLING SPACE PHYSICS PLASMA PHYSICS PHYSICAL AND GEODETIC STUDIES OF SOLAR SYSTEM BODIES AND EARTH SPACE MECHATRONICS 101 .......... APPLICATIONS EARTH OBSERVATIONS HELIOGEOPHYSICAL PREDICTION SERVICE CENTRE GNSS OBSERVATORY IN WARSAW 116 .......... PUBLICATIONS 131 .......... GRANTS AND CONTRACTS 137 .......... GENERAL INFORMATION 141 .......... EDUCATIONAL AND PROMOTIONAL ACTIVITIES The year 2019 - for science and socjety. The year 2019 was rich in impressive scientific results, but also in innovative importance application of social and economic works. Using the observations of neutral interstellar helium from the NASA IBEX-Lo space experiment, the density of He+ ions in the closest interstellar environment of the Sun was determined and the degree of ionization of helium, hydrogen and electron density in this medium was measured. -
The Central Mesas of Hebes, Ganges, and East Candor Chasmae
Lunar and Planetary Science XXXIII (2002) 2019.pdf THE CENTRAL MESAS OF HEBES, GANGES, AND EAST CANDOR CHASMAE. J. A. Jernsletten, Rice University Dept. of Geology and Geophysics, 1917 Florida Dr., Seabrook, TX 77586-2985, [email protected]. Introduction: This paper presents a comparative Discussion: Figure 1 shows the DTM of Hebes study of the topographies of the central mesas in Hebes Chasma, Figure 2 shows the Ganges Chasma DTM, Chasma, Ganges Chasma, and East Candor Chasma. It and Figure 3 is the DTM of East Candor Chasma. is proposed that among the main factors in the post- These canyons are similar in width (~ 125 km), and all formation evolution of these central mesas are; fault- have central mesas located within them. The figures ing, erosion, mass wasting [8], tectonic processes [2, 4- have scale bars for reference, and the vertical shaded 7], geological structure and stratigraphy [3, 4-7], and bars indicate where the profiles in the following figures weathering and surface temperature [4-7]. All three of are drawn. Note that each north-south profile is these canyons are generally east-west trending [1]. The smoothed by averaging several profiles located at a data in this study is Digital Terrain Models (DTMs) range of longitudes together (the width of the vertical derived from Viking Orbiter 1 images used as stereo shaded bars show the range of longitude over which pairs. The mesas have roughly similar cross-sectional each summed profile is averaged). topographies and surface textures, indicating similar formation or post-formation evolution processes. DTM Left Img. -
VENUS Corona M N R S a Ak O Ons D M L YN a G Okosha IB E .RITA N Axw E a I O
N N 80° 80° 80° 80° L Dennitsa D. S Yu O Bachue N Szé K my U Corona EG V-1 lan L n- H V-1 Anahit UR IA ya D E U I OCHK LANIT o N dy ME Corona A P rsa O r TI Pomona VA D S R T or EG Corona E s enpet IO Feronia TH L a R s A u DE on U .TÜN M Corona .IV Fr S Earhart k L allo K e R a s 60° V-6 M A y R 60° 60° E e Th 60° N es ja V G Corona u Mon O E Otau nt R Allat -3 IO l m k i p .MARGIT M o E Dors -3 Vacuna Melia o e t a M .WANDA M T a V a D o V-6 OS Corona na I S H TA R VENUS Corona M n r s a Ak o ons D M L YN A g okosha IB E .RITA n axw e A I o U RE t M l RA R T Fakahotu r Mons e l D GI SSE I s V S L D a O s E A M T E K A N Corona o SHM CLEOPATRA TUN U WENUS N I V R P o i N L I FO A A ght r P n A MOIRA e LA L in s C g M N N t K a a TESSERA s U . P or le P Hemera Dorsa IT t M 11 km e am A VÉNUSZ w VENERA w VENUE on Iris DorsaBARSOVA E I a E a A s RM A a a OLO A R KOIDULA n V-7 s ri V VA SSE e -4 d E t V-2 Hiei Chu R Demeter Beiwe n Skadi Mons e D V-5 S T R o a o r LI s I o R M r Patera A I u u s s V Corona p Dan o a s Corona F e A o A s e N A i P T s t G yr A A i U alk 1 : 45 000 000 K L r V E A L D DEKEN t Baba-Jaga D T N T A a PIONEER or E Aspasia A o M e s S a (1 MM= 45 KM) S r U R a ER s o CLOTHO a A N u s Corona a n 40° p Neago VENUS s s 40° s 40° o TESSERA r 40° e I F et s o COCHRAN ZVEREVA Fluctus NORTH 0 500 1000 1500 2000 2500 KM A Izumi T Sekhm n I D . -
Vénus Les Transits De Vénus L’Exploration De Vénus Par Les Sondes Iconographie, Photos Et Additifs
VVÉÉNUSNUS Introduction - Généralités Les caractéristiques de Vénus Les transits de Vénus L’exploration de Vénus par les sondes Iconographie, photos et additifs GAP 47 • Olivier Sabbagh • Février 2015 Vénus I Introduction – Généralités Vénus est la deuxième des huit planètes du Système solaire en partant du Soleil, et la sixième par masse ou par taille décroissantes. La planète Vénus a été baptisée du nom de la déesse Vénus de la mythologie romaine. Symbolisme La planète Vénus doit son nom à la déesse de l'amour et de la beauté dans la mythologie romaine, Vénus, qui a pour équivalent Aphrodite dans la mythologie grecque. Cythère étant une épiclèse homérique d'Aphrodite, l'adjectif « cythérien » ou « cythéréen » est parfois utilisé en astronomie (notamment dans astéroïde cythérocroiseur) ou en science-fiction (les Cythériens, une race de Star Trek). Par extension, on parle d'un Vénus à propos d'une très belle femme; de manière générale, il existe en français un lexique très développé mêlant Vénus au thème de l'amour ou du plaisir charnel. L'adjectif « vénusien » a remplacé « vénérien » qui a une connotation moderne péjorative, d'origine médicale. Les cultures chinoise, coréenne, japonaise et vietnamienne désignent Vénus sous le nom d'« étoile d'or », et utilisent les mêmes caractères (jīnxīng en hanyu, pinyin en hiragana, kinsei en romaji, geumseong en hangeul), selon la « théorie » des cinq éléments. Vénus était connue des civilisations mésoaméricaines; elle occupait une place importante dans leur conception du cosmos et du temps. Les Nahuas l'assimilaient au dieu Quetzalcoatl, et, plus précisément, à Tlahuizcalpantecuhtli (« étoile du matin »), dans sa phase ascendante et à Xolotl (« étoile du soir »), dans sa phase descendante. -
The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the Exomars 2016 Trace Gas Orbiter
Space Sci Rev (2018) 214:7 DOI 10.1007/s11214-017-0437-6 The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter O. Korablev1 · F. Montmessin2 · A. Trokhimovskiy1 · A.A. Fedorova1 · A.V. Shakun1 · A.V. Grigoriev1 · B.E. Moshkin1 · N.I. Ignatiev1 · F. Forget 3 · F. Lefèvre 4 · K. Anufreychik1 · I. Dzuban1 · Y.S. Ivanov 5 · Y.K. Kalinnikov6 · T.O. Kozlova1 · A. Kungurov1 · V. M a k a ro v 1 · F. Martynovich 1 · I. Maslov1 · D. Merzlyakov1 · P.P. Moiseev 7 · Y. Nikolskiy 1 · A. Patrakeev1 · D. Patsaev1 · A. Santos-Skripko1 · O. Sazonov1 · N. Semena1 · A. Semenov1 · V. S h a s h k i n 1 · A. Sidorov7 · A.V. Stepanov1,8 · I. Stupin1 · D. Timonin1 · A.Y. Titov1 · A. Viktorov7 · A. Zharkov1 · F. Altieri9 · G. Arnold10 · D.A. Belyaev1 · J.L. Bertaux1,2 · D.S. Betsis1 · N. Duxbury8 · T. Encrenaz11 · T. Fouchet11 · J.-C. Gérard12 · D. Grassi9 · S. Guerlet3 · P. Hartogh13 · Y. Kasaba 14 · I. Khatuntsev1 · V.A. Krasnopolsky15,16 · R.O. Kuzmin1,17 · E. Lellouch11 · M.A. Lopez-Valverde18 · M. Luginin1 · A. Määttänen1,4 · E. Marcq2 · J. Martin Torres19,20 · A.S. Medvedev13 · E. Millour3 · K.S. Olsen4 · M.R. Patel21 · C. Quantin-Nataf22 · A.V. Rodin1,15 · V. I . S h e m a t o v i c h 23 · I. Thomas24 · N. Thomas25 · L. Vazquez26 · M. Vincendon27 · V. Wilquet24 · C.F. Wilson28 · L.V. Zasova1 · L.M. Zelenyi1 · M.P. Zorzano19,29 Received: 1 March 2017 / Accepted: 13 October 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. -
Naše Osončje 1
NAŠE OSONČJE 1. Nekaj o sončevem sistemu: Sončev sistem je edini del vesolja, ki ga lahko raziskujemo z vesoljskimi plovili. Sestavlja ga ena zvezda (Sonce) in devet planetov. Zelo očitno je sončni sistem razdeljen na dva dela; najprej pridejo notranji planeti, ki jih imenujemo tudi kamniti planeti, nato pa zunanji planeti, imenovani tudi kot plinasti planeti. Med njimi je velik presledek, po katerem se giblje asteroidni pas. Notranje planete sončevega sistema sestavljajo štirje planeti, ki sem jih opisal spodaj na bolj ali manj natančno. Ti planeti so Merkur, Venera, Zemlja in Mars. Od vseh teh štirih planetov imata svoje satelite samo Zemlja (Luna) in Mars (Deimos in Fobos). Merkur Venera Zemlja Mars Oddaljenost od Sonca (milijoni km) (srednja) 57,9 108,2 149,6 227,9 Obhodni čas (dni) 87,97 224,7 365,3 687 Vrtilni čas (ekvatorialni) 58,646 d 234,16 d 23h 56m 4s 24h 37m 23s Naklon osi (stopinje) 2 178 23,4 24 Ubežna hitrost (km/s) 4,25 10,36 11,18 5,03 Gravitacijski pospešek (Zemlja=1) 0,38 0,90 1 0,38 Površinska temperatura podnevi (°C) +427 +480 +22 -23 Premer na ekvatorju (km) 4878 12104 12756 6794 Masa (Zemlja=1) 0,055 0,815 1 0,11 2. Opis planetov: 1. MerkUR Že stare kulture so poznale pet nebesnih teles - planetov, za katere je značilno, da se po nebu premikajo. Med nje sodi tudi Merkur. Prvi naj bi ga že pred 3000 leti opazovali Sumerci. Stari Grki so mu nadeli ime po hitronogem selu bogov - Merkurju. Johannes Hevelius (1611 - 1681) je kot prvi opazil Merkurjeve mene.