Bayesian Networks Without Tears

Total Page:16

File Type:pdf, Size:1020Kb

Bayesian Networks Without Tears AI Magazine Volume 12 Number 4 (1991) (© AAAI) Articles …making Bayesian Bayesian Networks networks more accessible to without Tears the probabilis- tically Eugene Charniak unsophis- ticated. Over the last few I give an introduction to Bayesian networks for understanding years, a method of AI researchers with a limited grounding in prob- (Charniak and Gold- reasoning using ability theory. Over the last few years, this man 1989a, 1989b; method of reasoning using probabilities has probabilities, vari- Goldman 1990), become popular within the AI probability and ously called belief uncertainty community. Indeed, it is probably vision (Levitt, Mullin, networks, Bayesian fair to say that Bayesian networks are to a large and Binford 1989), networks, knowl- segment of the AI-uncertainty community what heuristic search edge maps, proba- resolution theorem proving is to the AI-logic (Hansson and Mayer bilistic causal community. Nevertheless, despite what seems to 1989), and so on. It networks, and so on, be their obvious importance, the ideas and is probably fair to has become popular techniques have not spread much beyond the say that Bayesian within the AI proba- research community responsible for them. This is networks are to a bility and uncertain- probably because the ideas and techniques are large segment of not that easy to understand. I hope to rectify this ty community. This the AI-uncertainty situation by making Bayesian networks more method is best sum- accessible to the probabilistically unsophisticated. community what marized in Judea resolution theorem Pearl’s (1988) book, proving is to the AI- but the ideas are a logic community. product of many hands. I adopted Pearl’s Nevertheless, despite what seems to be their name, Bayesian networks, on the grounds obvious importance, the ideas and techniques that the name is completely neutral about have not spread much beyond the research the status of the networks (do they really rep- community responsible for them. This is resent beliefs, causality, or what?). Bayesian probably because the ideas and techniques are networks have been applied to problems in not that easy to understand. I hope to rectify medical diagnosis (Heckerman 1990; Spiegel- this situation by making Bayesian networks halter, Franklin, and Bull 1989), map learning more accessible to (Dean 1990), lan- the probabilis- guage tically unso- 50 AI MAGAZINE 0738-4602/91/$4.00 ©1991 AAAI Articles phisticated. That is, this article tries to make the basic ideas and intuitions accessible to someone with a limited grounding in proba- family-out bowel-problem bility theory (equivalent to what is presented in Charniak and McDermott [1985]). An Example Bayesian Network light-on dog-out The best way to understand Bayesian networks is to imagine trying to model a situation in which causality plays a role but where our hear-bark understanding of what is actually going on is incomplete, so we need to describe things probabilistically. Suppose when I go home at Figure 1. A Causal Graph. night, I want to know if my family is home The nodes denote states of affairs, and the arcs can be interpreted as causal connections. before I try the doors. (Perhaps the most con- venient door to enter is double locked when nobody is home.) Now, often when my wife leaves the house, she turns on an outdoor light. However, she sometimes turns on this states of affairs, and the variables have two light if she is expecting a guest. Also, we have possible values, true and false. However, this a dog. When nobody is home, the dog is put need not be the case. We could, say, have a in the back yard. The same is true if the dog node denoting the intensity of an earthquake has bowel troubles. Finally, if the dog is in the with values no-quake, trembler, rattler, major, backyard, I will probably hear her barking (or and catastrophe. Indeed, the variable values what I think is her barking), but sometimes I do not even need to be discrete. For example, can be confused by other dogs barking. This the value of the variable earthquake might be example, partially inspired by Pearl’s (1988) a Richter scale number. (However, the algo- earthquake example, is illustrated in figure 1. rithms I discuss only work for discrete values, There we find a graph not unlike many we see so I stick to this case.) in AI. We might want to use such diagrams to In what follows, I use a sans serif font for predict what will happen (if my family goes the names of random variables, as in earth- out, the dog goes out) or to infer causes from quake. I use the name of the variable in italics observed effects (if the light is on and the dog to denote the proposition that the variable is out, then my family is probably out). takes on some particular value (but where we The important thing to note about this are not concerned with which one), for exam- example is that the causal connections are ple, earthquake. For the special case of Boolean not absolute. Often, my family will have left variables (with values true and false), I use the without putting out the dog or turning on a variable name in a sans serif font to denote light. Sometimes we can use these diagrams the proposition that the variable has the anyway, but in such cases, it is hard to know value true (for example, family-out). I also what to infer when not all the evidence points show the arrows pointing downward so that the same way. Should I assume the family is “above” and “below” can be understood to out if the light is on, but I do not hear the indicate arrow direction. dog? What if I hear the dog, but the light is The arcs in a Bayesian network specify the out? Naturally, if we knew the relevant proba- independence assumptions that must hold bilities, such as P(family-out | light-on, ¬ hear- between the random variables. These inde- bark), then we would be all set. However, pendence assumptions determine what prob- typically, such numbers are not available for ability information is required to specify the all possible combinations of circumstances. probability distribution among the random Bayesian networks allow us to calculate them variables in the network. The reader should from a small set of probabilities, relating only note that in informally talking about DAG, I neighboring nodes. said that the arcs denote causality, whereas in Bayesian networks are directed acyclic graphs the Bayesian network, I am saying that they (DAGs) (like figure 1), where the nodes are specify things about the probabilities. The random variables, and certain independence next section resolves this conflict. assumptions hold, the nature of which I dis- To specify the probability distribution of a cuss later. (I assume without loss of generality Bayesian network, one must give the prior that DAG is connected.) Often, as in figure 1, probabilities of all root nodes (nodes with no the random variables can be thought of as predecessors) and the conditional probabilities WINTER 1991 51 Articles …the complete P(fo) = .15 P(bp) = .01 specification bowel-problem (bp) of a family-out (fo) probability distribution P(do fo bp) = .99 P(do fo ¬bp) = .90 requires ¬ light-on (lo) dog-out (do) P(do fo bp) = .97 absurdly P(do ¬fo bp) = .3 many P(lo fo) = .6 numbers. P(lo ¬ fo) = .05 hear-bark(hb) P(hb do) = .7 P(hb ¬ do) = .01 Figure 2. A Bayesian Network for the family-out Problem. I added the prior probabilities for root nodes and the posterior probabilities for nonroots given all possible values of their parents. of all nonroot nodes given all possible combi- harmless provided that one keeps in mind nations of their direct predecessors. Thus, that here, belief is simply the conditional figure 2 shows a fully specified Bayesian net- probability given the evidence. work corresponding to figure 1. For example, In the remainder of this article, I first it states that if family members leave our describe the independence assumptions house, they will turn on the outside light 60 implicit in Bayesian networks and show how percent of the time, but the light will be turned they relate to the causal interpretation of arcs on even when they do not leave 5 percent of (Independence Assumptions). I then show the time (say, because someone is expected). that given these independence assumptions, Bayesian networks allow one to calculate the numbers I specified are, in fact, all that the conditional probabilities of the nodes in are needed (Consistent Probabilities). Evaluat- the network given that the values of some of ing Networks describes how Bayesian net- the nodes have been observed. To take the works are evaluated, and the next section earlier example, if I observe that the light is describes some of their applications. on (light-on = true) but do not hear my dog (hear-bark = false), I can calculate the condi- tional probability of family-out given these Independence Assumptions pieces of evidence. (For this case, it is .5.) I talk of this calculation as evaluating the One objection to the use of probability Bayesian network (given the evidence). In theory is that the complete specification of a more realistic cases, the networks would con- probability distribution requires absurdly sist of hundreds or thousands of nodes, and many numbers. For example, if there are n they might be evaluated many times as new binary random variables, the complete distri- information comes in. As evidence comes in, bution is specified by 2n-1 joint probabilities. it is tempting to think of the probabilities of (If you do not know where this 2n-1 comes the nodes changing, but, of course, what is from, wait until the next section, where I changing is the conditional probability of the define joint probabilities.) Thus, the complete nodes given the changing evidence.
Recommended publications
  • Common Quandaries and Their Practical Solutions in Bayesian Network Modeling
    Ecological Modelling 358 (2017) 1–9 Contents lists available at ScienceDirect Ecological Modelling journa l homepage: www.elsevier.com/locate/ecolmodel Common quandaries and their practical solutions in Bayesian network modeling Bruce G. Marcot U.S. Forest Service, Pacific Northwest Research Station, 620 S.W. Main Street, Suite 400, Portland, OR, USA a r t i c l e i n f o a b s t r a c t Article history: Use and popularity of Bayesian network (BN) modeling has greatly expanded in recent years, but many Received 21 December 2016 common problems remain. Here, I summarize key problems in BN model construction and interpretation, Received in revised form 12 May 2017 along with suggested practical solutions. Problems in BN model construction include parameterizing Accepted 13 May 2017 probability values, variable definition, complex network structures, latent and confounding variables, Available online 24 May 2017 outlier expert judgments, variable correlation, model peer review, tests of calibration and validation, model overfitting, and modeling wicked problems. Problems in BN model interpretation include objec- Keywords: tive creep, misconstruing variable influence, conflating correlation with causation, conflating proportion Bayesian networks and expectation with probability, and using expert opinion. Solutions are offered for each problem and Modeling problems researchers are urged to innovate and share further solutions. Modeling solutions Bias Published by Elsevier B.V. Machine learning Expert knowledge 1. Introduction other fields. Although the number of generally accessible journal articles on BN modeling has continued to increase in recent years, Bayesian network (BN) models are essentially graphs of vari- achieving an exponential growth at least during the period from ables depicted and linked by probabilities (Koski and Noble, 2011).
    [Show full text]
  • Bayesian Network Modelling with Examples
    Bayesian Network Modelling with Examples Marco Scutari [email protected] Department of Statistics University of Oxford November 28, 2016 What Are Bayesian Networks? Marco Scutari University of Oxford What Are Bayesian Networks? A Graph and a Probability Distribution Bayesian networks (BNs) are defined by: a network structure, a directed acyclic graph G = (V;A), in which each node vi 2 V corresponds to a random variable Xi; a global probability distribution X with parameters Θ, which can be factorised into smaller local probability distributions according to the arcs aij 2 A present in the graph. The main role of the network structure is to express the conditional independence relationships among the variables in the model through graphical separation, thus specifying the factorisation of the global distribution: p Y P(X) = P(Xi j ΠXi ;ΘXi ) where ΠXi = fparents of Xig i=1 Marco Scutari University of Oxford What Are Bayesian Networks? How the DAG Maps to the Probability Distribution Graphical Probabilistic DAG separation independence A B C E D F Formally, the DAG is an independence map of the probability distribution of X, with graphical separation (??G) implying probabilistic independence (??P ). Marco Scutari University of Oxford What Are Bayesian Networks? Graphical Separation in DAGs (Fundamental Connections) separation (undirected graphs) A B C d-separation (directed acyclic graphs) A B C A B C A B C Marco Scutari University of Oxford What Are Bayesian Networks? Graphical Separation in DAGs (General Case) Now, in the general case we can extend the patterns from the fundamental connections and apply them to every possible path between A and B for a given C; this is how d-separation is defined.
    [Show full text]
  • Empirical Evaluation of Scoring Functions for Bayesian Network Model Selection
    Liu et al. BMC Bioinformatics 2012, 13(Suppl 15):S14 http://www.biomedcentral.com/1471-2105/13/S15/S14 PROCEEDINGS Open Access Empirical evaluation of scoring functions for Bayesian network model selection Zhifa Liu1,2†, Brandon Malone1,3†, Changhe Yuan1,4* From Proceedings of the Ninth Annual MCBIOS Conference. Dealing with the Omics Data Deluge Oxford, MS, USA. 17-18 February 2012 Abstract In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The suboptimal structures found by the approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world data. We use real-world data to generate our gold-standard structures, so our experimental design more closely approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC)) consistently outperforms other scoring functions such as Akaike’s information criterion (AIC), Bayesian Dirichlet equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying Bayesian network structures.
    [Show full text]
  • Bayesian Networks
    Bayesian Networks Read R&N Ch. 14.1-14.2 Next lecture: Read R&N 18.1-18.4 You will be expected to know • Basic concepts and vocabulary of Bayesian networks. – Nodes represent random variables. – Directed arcs represent (informally) direct influences. – Conditional probability tables, P( Xi | Parents(Xi) ). • Given a Bayesian network: – Write down the full joint distribution it represents. • Given a full joint distribution in factored form: – Draw the Bayesian network that represents it. • Given a variable ordering and some background assertions of conditional independence among the variables: – Write down the factored form of the full joint distribution, as simplified by the conditional independence assertions. Computing with Probabilities: Law of Total Probability Law of Total Probability (aka “summing out” or marginalization) P(a) = Σb P(a, b) = Σb P(a | b) P(b) where B is any random variable Why is this useful? given a joint distribution (e.g., P(a,b,c,d)) we can obtain any “marginal” probability (e.g., P(b)) by summing out the other variables, e.g., P(b) = Σa Σc Σd P(a, b, c, d) Less obvious: we can also compute any conditional probability of interest given a joint distribution, e.g., P(c | b) = Σa Σd P(a, c, d | b) = (1 / P(b)) Σa Σd P(a, c, d, b) where (1 / P(b)) is just a normalization constant Thus, the joint distribution contains the information we need to compute any probability of interest. Computing with Probabilities: The Chain Rule or Factoring We can always write P(a, b, c, … z) = P(a | b, c, ….
    [Show full text]
  • Deep Regression Bayesian Network and Its Applications Siqi Nie, Meng Zheng, Qiang Ji Rensselaer Polytechnic Institute
    1 Deep Regression Bayesian Network and Its Applications Siqi Nie, Meng Zheng, Qiang Ji Rensselaer Polytechnic Institute Abstract Deep directed generative models have attracted much attention recently due to their generative modeling nature and powerful data representation ability. In this paper, we review different structures of deep directed generative models and the learning and inference algorithms associated with the structures. We focus on a specific structure that consists of layers of Bayesian Networks due to the property of capturing inherent and rich dependencies among latent variables. The major difficulty of learning and inference with deep directed models with many latent variables is the intractable inference due to the dependencies among the latent variables and the exponential number of latent variable configurations. Current solutions use variational methods often through an auxiliary network to approximate the posterior probability inference. In contrast, inference can also be performed directly without using any auxiliary network to maximally preserve the dependencies among the latent variables. Specifically, by exploiting the sparse representation with the latent space, max-max instead of max-sum operation can be used to overcome the exponential number of latent configurations. Furthermore, the max-max operation and augmented coordinate ascent are applied to both supervised and unsupervised learning as well as to various inference. Quantitative evaluations on benchmark datasets of different models are given for both data representation and feature learning tasks. I. INTRODUCTION Deep learning has become a major enabling technology for computer vision. By exploiting its multi-level representation and the availability of the big data, deep learning has led to dramatic performance improvements for certain tasks.
    [Show full text]
  • A Widely Applicable Bayesian Information Criterion
    JournalofMachineLearningResearch14(2013)867-897 Submitted 8/12; Revised 2/13; Published 3/13 A Widely Applicable Bayesian Information Criterion Sumio Watanabe [email protected] Department of Computational Intelligence and Systems Science Tokyo Institute of Technology Mailbox G5-19, 4259 Nagatsuta, Midori-ku Yokohama, Japan 226-8502 Editor: Manfred Opper Abstract A statistical model or a learning machine is called regular if the map taking a parameter to a prob- ability distribution is one-to-one and if its Fisher information matrix is always positive definite. If otherwise, it is called singular. In regular statistical models, the Bayes free energy, which is defined by the minus logarithm of Bayes marginal likelihood, can be asymptotically approximated by the Schwarz Bayes information criterion (BIC), whereas in singular models such approximation does not hold. Recently, it was proved that the Bayes free energy of a singular model is asymptotically given by a generalized formula using a birational invariant, the real log canonical threshold (RLCT), instead of half the number of parameters in BIC. Theoretical values of RLCTs in several statistical models are now being discovered based on algebraic geometrical methodology. However, it has been difficult to estimate the Bayes free energy using only training samples, because an RLCT depends on an unknown true distribution. In the present paper, we define a widely applicable Bayesian information criterion (WBIC) by the average log likelihood function over the posterior distribution with the inverse temperature 1/logn, where n is the number of training samples. We mathematically prove that WBIC has the same asymptotic expansion as the Bayes free energy, even if a statistical model is singular for or unrealizable by a statistical model.
    [Show full text]
  • Checking Individuals and Sampling Populations with Imperfect Tests
    Checking individuals and sampling populations with imperfect tests Giulio D’Agostini1 and Alfredo Esposito2 Abstract In the last months, due to the emergency of Covid-19, questions related to the fact of belonging or not to a particular class of individuals (‘infected or not infected’), after being tagged as ‘positive’ or ‘negative’ by a test, have never been so popular. Similarly, there has been strong interest in estimating the proportion of a population expected to hold a given characteristics (‘having or having had the virus’). Taking the cue from the many related discussions on the media, in addition to those to which we took part, we analyze these questions from a probabilistic perspective (‘Bayesian’), considering several ef- fects that play a role in evaluating the probabilities of interest. The resulting paper, written with didactic intent, is rather general and not strictly related to pandemics: the basic ideas of Bayesian inference are introduced and the uncertainties on the performances of the tests are treated using the metro- logical concepts of ‘systematics’, and are propagated into the quantities of interest following the rules of probability theory; the separation of ‘statistical’ and ‘systematic’ contributions to the uncertainty on the inferred proportion of infectees allows to optimize the sample size; the role of ‘priors’, often over- looked, is stressed, however recommending the use of ‘flat priors’, since the resulting posterior distribution can be ‘reshaped’ by an ‘informative prior’ in a later step; details on the calculations are given, also deriving useful approx- imated formulae, the tough work being however done with the help of direct Monte Carlo simulations and Markov Chain Monte Carlo, implemented in R and JAGS (relevant code provided in appendix).
    [Show full text]
  • A Bayesian Network Approach to Making Inferences in Causal Maps
    European Journal of Operational Research 128 (2001) 479±498 www.elsevier.com/locate/dsw Theory and Methodology A Bayesian network approach to making inferences in causal maps Sucheta Nadkarni, Prakash P. Shenoy * School of Business, University of Kansas, Summer®eld Hall, Lawrence, KS 66045-2003, USA Received 8 September 1998; accepted 19 May 1999 Abstract The main goal of this paper is to describe a new graphical structure called ÔBayesian causal mapsÕ to represent and analyze domain knowledge of experts. A Bayesian causal map is a causal map, i.e., a network-based representation of an expertÕs cognition. It is also a Bayesian network, i.e., a graphical representation of an expertÕs knowledge based on probability theory. Bayesian causal maps enhance the capabilities of causal maps in many ways. We describe how the textual analysis procedure for constructing causal maps can be modi®ed to construct Bayesian causal maps, and we illustrate it using a causal map of a marketing expert in the context of a product development decision. Ó 2001 Elsevier Science B.V. All rights reserved. Keywords: Causal maps; Cognitive maps; Bayesian networks; Bayesian causal maps 1. Introduction In the last few years, researchers have empha- sized that causal maps may be used as tools to Recently, there has been a growing interest in facilitate decision making and problem solving the use of causal maps to represent domain within the context of organizational intervention knowledge of decision-makers (Hu, 1990; Eden (Eden, 1992; Laukkanen, 1996). Studies in arti®- et al., 1992; Laukkanen, 1996). Causal maps are cial intelligence have also emphasized the impor- cognitive maps that represent the causal knowl- tance of domain knowledge in constructing edge of subjects in a speci®c domain.
    [Show full text]
  • Learning Bayesian Networks: Naïve and Non-Naïve Bayes
    LearningLearning BayesianBayesian Networks:Networks: NaNaïïveve andand nonnon--NaNaïïveve BayesBayes HypothesisHypothesis SpaceSpace –– fixedfixed sizesize –– stochasticstochastic –– continuouscontinuous parametersparameters LearningLearning AlgorithmAlgorithm –– directdirect computationcomputation –– eagereager –– batchbatch MultivariateMultivariate GaussianGaussian ClassifierClassifier y x TheThe multivariatemultivariate GaussianGaussian ClassifierClassifier isis equivalentequivalent toto aa simplesimple BayesianBayesian networknetwork ThisThis modelsmodels thethe jointjoint distributiondistribution P(P(xx,y),y) underunder thethe assumptionassumption thatthat thethe classclass conditionalconditional distributionsdistributions P(P(xx|y)|y) areare multivariatemultivariate gaussiansgaussians – P(y): multinomial random variable (K-sided coin) – P(x|y): multivariate gaussian mean µk covariance matrix Σk NaNaïïveve BayesBayes ModelModel y x1 x2 x3 … xn Each node contains a probability table – y: P(y = k) – xj: P(xj = v | y = k) “class conditional probability” Interpret as a generative model – Choose the class k according to P(y = k) – Generate each feature independently according to P(xj=v | y=k) – The feature values are conditionally independent P(xi,xj | y) = P(xi | y) · P(xj | y) RepresentingRepresenting P(P(xxjj||yy)) Many representations are possible – Univariate Gaussian if xj is a continuous random variable, then we can use a normal distribution and learn the mean µ and variance σ2 – Multinomial if xj is a discrete random variable,
    [Show full text]
  • Bayesian Networks: Probabilistic Programming
    Bayesian networks: probabilistic programming • In this module, I will talk about probabilistic programming, a new way to think about defining Bayesian networks through the lens of writing programs, which really highlights the generative process aspect of Bayesian networks. Probabilistic programs B E Joint distribution: A P(B = b; E = e; A = a) = p(b)p(e)p(a j b; e) Probabilistic program: alarm B ∼ Bernoulli() def Bernoulli(epsilon): E ∼ Bernoulli() return random.random() < epsilon A = B _ E Key idea: probabilistic program A randomized program that sets the random variables. CS221 2 • Recall that a Bayesian network is given by (i) a set of random variables, (ii) directed edges between those variables capturing qualitative dependencies, (iii) local conditional distributions of each variable given its parents which captures these dependencies quantitatively, and (iv) a joint distribution which is produced by multiplying all the local conditional distributions together. Now the joint distribution is your probabilistic database, which you can answer all sorts of questions on it using probabilistic inference. • There is another way of writing down Bayesian networks other than graphically or mathematically, and that is as a probabilistic program. • Let's go through the alarm example. We can sample B and E independently from a Bernoulli distribution with parameter , which produces 1 (true) with probability . Then we just set A = B _ E. • In general, a probabilistic program is a randomized program that invokes a random number generator. Executing this program will assign values to a collection of random variables X1;:::;Xn; that is, generating an assignment. • We then define probability under the joint distribution of an assignment to be exactly the probability that the program generates an assignment.
    [Show full text]
  • The Hidden Structure of Fact-Finding
    Florida State University College of Law Scholarship Repository Scholarly Publications Fall 2013 The Hidden Structure of Fact-Finding Mark Spottswood Florida State University College of Law Follow this and additional works at: https://ir.law.fsu.edu/articles Part of the Cognitive Psychology Commons, and the Law Commons Recommended Citation Mark Spottswood, The Hidden Structure of Fact-Finding, 64 CASE W. RES. L REV. 131 (2013), Available at: https://ir.law.fsu.edu/articles/106 This Article is brought to you for free and open access by Scholarship Repository. It has been accepted for inclusion in Scholarly Publications by an authorized administrator of Scholarship Repository. For more information, please contact [email protected]. Case Western Reserve Law Review Volume 64 Fall 2013 Issue 1 The Hidden Structure of Fact-Finding Mark Spottswood Case Western Reserve Law Review·Volume 64 ·Issue 1·2013 The Hidden Structure of Fact-Finding Mark Spottswood† Abstract This Article offers a new account of legal fact-finding based on the dual-process framework in cognitive psychology. This line of research suggests that our brains possess two radically different ways of thinking. “System 1” cognition is unconscious, fast, and associative, while “System 2” involves effortful, conscious reasoning. Drawing on these insights, I describe the ways that unconscious processing and conscious reflection interact when jurors hear and decide cases. Most existing evidential models offer useful insights about the ways that juries use relevant information in deciding cases but fail to account for situations in which their decisions are likely to be affected by irrelevant stimuli. The dual-process approach, by contrast, is able to explain both probative and prejudicial influences on decision making.
    [Show full text]
  • Arxiv:2002.00269V2 [Cs.LG] 8 Mar 2021
    A Tutorial on Learning With Bayesian Networks David Heckerman [email protected] November 1996 (Revised January 2020) Abstract A Bayesian network is a graphical model that encodes probabilistic relationships among variables of interest. When used in conjunction with statistical techniques, the graphical model has several advantages for data analysis. One, because the model encodes dependencies among all variables, it readily handles situations where some data entries are missing. Two, a Bayesian network can be used to learn causal relationships, and hence can be used to gain understanding about a problem domain and to predict the consequences of intervention. Three, because the model has both a causal and probabilistic semantics, it is an ideal representation for combining prior knowledge (which often comes in causal form) and data. Four, Bayesian statistical methods in conjunction with Bayesian networks offer an efficient and principled approach for avoiding the overfitting of data. In this paper, we discuss methods for constructing Bayesian networks from prior knowledge and summarize Bayesian statistical methods for using data to improve these models. With regard to the latter task, we describe methods for learning both the parameters and structure of a Bayesian network, including techniques for learning with incomplete data. In addition, we relate Bayesian-network methods for learning to techniques for supervised and unsupervised learning. We illustrate the graphical-modeling approach using a real-world case study. 1 Introduction A Bayesian network is a graphical model for probabilistic relationships among a set of variables. arXiv:2002.00269v2 [cs.LG] 8 Mar 2021 Over the last decade, the Bayesian network has become a popular representation for encoding uncertain expert knowledge in expert systems (Heckerman et al., 1995a).
    [Show full text]