Chemical Constituents and Pharmacological Activity of Agarwood and Aquilaria Plants

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Constituents and Pharmacological Activity of Agarwood and Aquilaria Plants molecules Review Chemical Constituents and Pharmacological Activity of Agarwood and Aquilaria Plants Shuai Wang 1,2,† ID , Zhangxin Yu 3,4,†, Canhong Wang 3,4, Chongming Wu 5, Peng Guo 5,* and Jianhe Wei 1,2,3,4,* 1 Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; [email protected] 2 Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China 3 Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China; [email protected] (Z.Y.); [email protected] (C.W.) 4 Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou 570311, China 5 Pharmacology and Toxicology Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; [email protected] * Correspondence: [email protected] (P.G.); [email protected] (J.W.); Tel.: +86-010-5783-3235 (P.G.); +86-010-5783-3016 (J.W.) † These authors contributed equally to this work. Received: 10 January 2018; Accepted: 31 January 2018; Published: 7 February 2018 Abstract: Agarwood, a highly precious non-timber fragrant wood of Aquilaria spp. (Thymelaeaceae), has been widely used in traditional medicine, religious rites, and cultural activities. Due to the inflated demanding and depleted natural resources, the yields of agarwood collected from the wild are shrinking, and the price is constantly rising, which restricts agarwood scientific research and wide application. With the sustainable planting and management of agarwood applied, and especially the artificial-inducing methods being used in China and Southeast Asian countries, agarwood yields are increasing, and the price is becoming more reasonable. Under this condition, illuminating the scientific nature of traditional agarwood application and developing new products and drugs from agarwood have become vitally important. Recently, the phytochemical investigations have achieved fruitful results, and more than 300 compounds have been isolated, including numerous new compounds that might be the characteristic constituents with physiological action. However, no one has focused on the new compounds and presented a summary until now. Alongside phytochemical advances, bioactivity screening and pharmacological investigation have also made a certain progress. Therefore, this review discussed the new compounds isolated after 2010, and summarized the pharmacological progress on agarwood and Aquilaria plants. Keywords: agarwood; Aquilaria plants; chemical constitutes; bioactive compounds; pharmacological function 1. Introduction Agarwood, known as chenxiang in Chinese and called aloeswood, agalloch, eaglewood, jinkoh, gaharu, or kanankoh in different regions, is a highly valuable non-timber fragrant wood of Aquilaria spp. (Thymelaeaceae) [1–4]. There are 31 species of Aquilaria found worldwide in Indonesia, Malaysia, Molecules 2018, 23, 342; doi:10.3390/molecules23020342 www.mdpi.com/journal/molecules Molecules 2018, 23, 342 2 of 21 China, India, Philippines, Cambodia, Vietnam, Laos, Thailand, Papua New Guinea, and Singapore [5,6], among which 19 species can produce agarwood after being attacked by physical force [7,8], insects [9], or bacteria/fungi infection [10–12]. Agarwood is used for incense, perfume, traditional medicine, and other products in the world market. In traditional Chinese medicine, agarwood is used as a qi-regulating drug and carminative medicine to relieve gastric problems, coughs, rheumatism, and high fever. It can promote qi circulation to relieve pain, warm the middle energizer to arrest vomiting, and regulate respiration to relieve asthma [13]. In traditional Arabian medicine, agarwood essential oil is used for aromatherapy. Simultaneously, agarwood has also been widely used for centuries as incense in Buddhist, Hindu, and Islamic ceremonies. With the increasing demand for agarwood, the population of Aquilaria species is declining rapidly in the wild, and all species of Aquilaria have been placed on the Appendix II list of the Convention on International Trade in Endangered Species of Wild Fauna and Flora since 2004 [1]. In response to this situation, sustainable planting and management of agarwood with artificial methods are arising, and the agarwood yield is increasing. As a result, agarwood no longer needs to be obtained from wild natural resources, enabling its wider application and investigation, especially on pharmaceutical study. Based on the phytochemical studies, a number of new compounds have been isolated and identified from agarwood and Aquilaria plants. However, there is no literature concentrating on the new compounds, even though earlier literature have summarized the chemical constituents of agarwood and related plants [6,14,15]. Therefore, this review discussed the new compounds isolated after 2010, and summarized the pharmacological progress on agarwood and Aquilaria plants. 2. Results and Discussion 2.1. New Compounds from Agarwood and Aquilaria Plants The chemical constitutes of agarwood originating from the genus Aquilaria, include 2-(2-phenylethyl)-4H-chromen-4-one derivatives, terpenoids, flavonoids etc., in which 2-(2-phenylethyl)-4H-chromen-4-one derivatives and sesquiterpenes are the two predominant constituents in agarwood. There have been 154 new compounds (Table1) isolated from agarwood and genus Aquilaria trees since 132 compounds were summarized in June 2010 [14]. 2.1.1. 2-(2-Phenylethyl)chromones In total, 88 new 2-(2-phenylethyl)chromone compounds (1–88) have been isolated from agarwood and genus Aquilaria plants (Figures1–5). Yang et al. [ 16] carried out a bioassay-guided isolation strategy from A. sinensis, resulting in seven new 2-(2-phenylethl)chromone derivatives (1–7) and a new 2-(2-phenylethenyl)chromone (8) being obtained from an ethanol (EtOH) extract. The investigation of EtOH extract obtained another three 2-(2-phenylethl)chromones (9–11)[17,18] and eight derivatives (12–19) from different fractions [19]. Liao et al. [20] reported seven new 2-(2-phenylethyl)chromone derivatives (20–26), including a chlorinated one (23) from the ethyl acetate (EtOAc) fraction of artificial agarwood (A. sinensis). The EtOAc fraction also contained three 2-(2-phenylethyl)chromones (27–29)[8] and four new bi-phenylethylchromones (30–33)[21]. A phytochemical investigation of a resinous wood (A. sinensis) led to the isolation of nine new 2-(2-phenylethyl)chromone derivatives, aquilarones A–I (34–42) from a chloroform (CHCl3) fraction [22]. Liu et al. found four new 2-(2-phenylethyl)chromone derivatives (43–46) from Chinese agarwood produced via the whole-tree agarwood-inducing technique [23]. Huo et al. gained five new 2-(2-phenylethyl)chromone derivatives (47–51)[24] and sixteen dimeric 2-(2-phenylethyl)chromones (52–67) from the resinous wood of A. sinensis [25]. Liao et al. isolated thirteen 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromones (68–80)[26] from the artificial agarwood of A. sinensis. Additionally, one 2-(2-phenylethyl)chromone compound (81) was isolated from the stem bark EtOH extract of A. sinensis [27]. “Qi-Nan” is regarded as the highest quality agarwood, valued for its mysterious oriental odor that can be smelt without burning, unlike other kinds of agarwood. The investigation of EtOH extract of Molecules 2018, 23, x 3 of 24 Molecules 2018, 23, 342 3 of 21 “Qi-Nan” is regarded as the highest quality agarwood, valued for its mysterious oriental odor that can be smelt without burning, unlike other kinds of agarwood. The investigation of EtOH high-qualityextract Chinese of high-quality agarwood Chinese “Qi-Nan” agarwood (A. sinensis “Qi-Nan”) obtained (A. sevensinensis new) obtained 2-(2-phenylethl)chromone seven new derivatives2-(2-phenylethl)chromone (82–88)[28,29]. derivatives (82–88) [28,29]. NO. R1 R2 R3 R4 R5 R6 R7 R8 NO. R1 R2 R3 R4 R5 R6 R7 R8 1 H OH OCH3 H H H OH OCH3 1 H OH OCH H H H OH OCH 2 H OCH3 3OCH3 H H H OH OCH3 3 2 H OCH3 OCH3 H H H OH OCH3 3 H OCH3 OH H H H OH OCH3 3 H OCH3 OH H H H OH OCH3 4 H OCH3 OCH3 H H H OCH3 OH 4 H OCH3 OCH3 H H H OCH3 OH 5 H5 OHH OH OH OH HH H HH H H OCH3 H OCH3 6 H6 OHH OH OCH 3OCH3 HH H HH H H OH H OH 7 H7 OHH OHH H OHOH H HH OH H OCH3 OH OCH3 9 OH OH OH OH H H OH OCH 9 OH OH OH OH H H OH OCH3 3 10 H OH H Cl H H H H 10 H OH H Cl H H H H 11 H OH H Cl H H H OCH3 11 H OH H Cl H H H OCH3 12 H OCH3 OH H H H H OCH3 12 H OCH3 OH H H H H OCH3 20 H OH OCH3 H H H H OCH3 21 H20 OHH OH HOCH3 HH H HH H H OCH OCH3 3 OCH3 22 H21 OHH OH HH OHH H HH OCH H3 OCH3 H OCH3 23 H22 OHH OH HH ClOH H HH H H OCH3 OH OCH3 24 OCH OH H H H H OH OCH 3 23 H OH H Cl H H OH OCH3 3 25 H OCH3 OCH3 H a-OH H H H 24 OCH3 OH H H H H OH OCH3 26 H OCH3 OCH3 H b-OH H H H 25 H OCH3 OCH3 H α-OH H H H 27 H OCH3 H H H H OH OCH3 3 3 28 OH26 OCHH 3 OCHH OCH HH β-OH H H H H H OH OCH3 40 H27 OHH OCH OCH3 3 H HH H HH OH H OCH OCH3 3 OH 41 H28 OCHOH3 OCHH3 H HH H HH OH H OCH3 H OH 42 H40 OHH OH HOCH3 HH H HH OCH H3 OH OH OCH3 43 OH H OCH3 H H H H OCH3 41 H OCH3 H H H H H OH 44 OH OCH3 H OH H H H H 42 H OH H H H H OH OCH3 46 H OCH3 H H H OH OH OH 43 OH H OCH3 H H H H OCH3 47 OH OCH3 OCH3 H H H H OCH3 81 H44 OCHOH3 OCHOH3 H HOH H HH H H H H H 82 H46 HH OCH H3 H HH H HOH OH H OH OH OCH3 83 H47 OH H OCH H3 OCH3 HH H HH H H OCH OCH3 3 OH 84 H H H H H OH H OCH 81 H OCH3 OH H H H H H 3 85 H H H H H H H OH 82 H H H H H H OH OCH3 86 H H H H H H OH H 87 H83 HH H HH HH H HH OCH OH3 OH H H 88 H84 HH H HH HH H OHOH H H OCH3 H H 85 H H H H H H H OH 86Figure H 1.
Recommended publications
  • Vegetative and Reproductive Phenology of Aquilaria Malaccensis Lam
    OPEN ACCESS The Journal of Threatened Taxa is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use of articles in any medium, reproduction, and distribution by providing adequate credit to the authors and the source of publication. Journal of Threatened Taxa Building evidence for conservation globally www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) Communication Vegetative and reproductive phenology of Aquilaria malaccensis Lam. (Agarwood) in Cachar District, Assam, India Birkhungur Borogayary, Ashesh Kumar Das & Arun Jyoti Nath 26 July 2018 | Vol. 10 | No. 8 | Pages: 12064–12072 10.11609/jott.3825.10.8.12064-12072 For Focus, Scope, Aims, Policies and Guidelines visit http://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0 For Article Submission Guidelines visit http://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions For Policies against Scientific Misconduct visit http://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2 For reprints contact <[email protected]> Threatened Taxa Vegetative and reproductive phenology ofAquilaria Journal malaccensis of Threatened Taxa | www.threatenedtaxa.org | 26 July 2018 | 10(8): 12064–12072Borogayary et al. Vegetative and reproductive phenology
    [Show full text]
  • EIA & EC for Kathalchari Field Development, Block
    EIA & EC for Kathalchari Field Development, Block (AA-ONN-2002/1), Tripura Final EIA Report Prepared for: Jubilant Oil and Gas Private Limited Prepared by: SENES Consultants India Pvt. Ltd. June, 2016 EIA for development activities of hydrocarbon, installation of GGS & pipeline laying at Kathalchari FINAL REPORT EIA & EC for Kathalchari Field Development, Block (AA-ONN-2002/1), Tripura M/s Jubilant Oil and Gas Private Limited For on and behalf of SENES Consultants India Ltd Approved by Mr. Mangesh Dakhore Position held NABET-QCI Accredited EIA Coordinator for Offshore & Onshore Oil and Gas Development and Production Date 28.12.2015 Approved by Mr. Sunil Gupta Position held NABET-QCI Accredited EIA Coordinator for Offshore & Onshore Oil and Gas Development and Production Date February 2016 The EIA report preparation have been undertaken in compliance with the ToR issued by MoEF vide letter no. J-11011/248/2013-IA II (I) dated 28th January, 2014. Information and content provided in the report is factually correct for the purpose and objective for such study undertaken. SENES/M-ESM-20241/June, 2016 i JOGPL EIA for development activities of hydrocarbon, installation of GGS & pipeline laying at Kathalchari INFORMATION ABOUT EIA CONSULTANTS Brief Company Profile This Environmental Impact Assessment (EIA) report has been prepared by SENES Consultants India Pvt. Ltd. SENES India, registered with the Companies Act of 1956 (Ranked No. 1 in 1956), has been operating in the county for more than 11 years and holds expertise in conducting Environmental Impact Assessments, Social Impact Assessments, Environment Health and Safety Compliance Audits, Designing and Planning of Solid Waste Management Facilities and Carbon Advisory Services.
    [Show full text]
  • Cites Cites Listings of Tropical Tree Species
    Issue Number 2-9 May 2015 ITTO - PROGRAM FOR IMPLEMENTING CITES CITES LISTINGS OF TROPICAL TREE SPECIES Newsletter This Newsletter reports on activities under the second phase of the ITTO-CITES Program for Implementing CITES Listings of Tropical Tree Species. Following up on the successful first phase In this of the Program (2007-2011), this second phase is continuing work during 2012-2016 on the most important CITES-listed tropical tree species in trade. The Program is majority-funded through a grant from the European Union (via the European Commission), which also provides for part of the Issue available funds to be devoted to activities relevant to both the ITTO-CITES Program and the ITTO Thematic Program on Trade and Market Transparency (TMT). The Newsletter is published on a EDITORIAL ............................. 1 quarterly basis, in English, French and Spanish, and is made available to all Program stakeholders ITTO-CITES PROGRAM ........... 2 and other individuals interested in the progress of the ITTO–CITES Program. This issue covers a PROGRAM FUNDING ............ 2 summary of the Program activities up to April 2015. ACTIVITY PROGRESS Suggestions and contributions from Program stakeholders are essential to make future issues of REPORTS ................................. 2 this Newsletter as informative and interesting as possible. Please send any correspondence to the RELEVANT EVENTS/ relevant contact(s) listed on the last page. INITIATIVES ......................... 13 ARTICLE OF INTEREST .......... 14 UPCOMING EVENTS ...........
    [Show full text]
  • CITES Appendix II
    PC20 Inf. 7 Annex 9 INTRODUCTION TO CITES AND AGARWOOD OVERVIEW Asian Regional Workshop on Agarwood; 22-24 November 2011 By Milena Sosa Schmidt, CITES Secretariat: [email protected] A bit of history Several genera from the family Thymeleaceae are agarwood producing taxa. These are: Aquilaria, Enkleia, Aetoxylon, Gonystylus, Wikstroemia, Gyrinops. They produce different qualities of agarwood from which Aquilaria seems to be the best (see Indonesia report of 2003). From these six genera we have currently three listed on CITES Appendix II. The history of these listings is as follows: THYMELAEACEAE (AQUILARIACEAE) (E) Agarwood, ramin; (S) Madera de Agar, ramin; (F) Bois d'Agar, ramin Aquilaria spp. II 12/01/05 #1CoP13 II/r AE 12/01/05 Excludes Aquilaria malaccensis. Excluye Aquilaria malaccensis. Exclus Aquilaria malaccensis. II/r KW 12/01/05 Excludes Aquilaria malaccensis. Excluye Aquilaria malaccensis. Exclus Aquilaria malaccensis. II/r QA 12/01/05 Excludes Aquilaria malaccensis. Excluye Aquilaria malaccensis. Exclus Aquilaria malaccensis. II/r SY 12/01/05 Excludes Aquilaria malaccensis. Excluye Aquilaria malaccensis. Exclus Aquilaria malaccensis. II 13/09/07 #1CoP14 II 23/06/10 #4CoP15 Aquilaria malaccensis II 16/02/95 #1CoP9 II 12/01/05 Included in Aquilaria spp. Incluida en Aquilaria spp. Inclus dans Aquilaria spp. Gonystylus spp. III ID 06/08/01 #1CoP11 III/r MY 17/08/01 II 12/01/05 #1CoP13 II/r MY 12/01/05 II/w MY 07/06/05 II 13/09/07 #1CoP14 II 23/06/10 #4CoP15 Gyrinops spp. II 12/01/05 #1CoP13 II/r AE 12/01/05 II/r KW 12/01/05 II/r QA 12/01/05 II/r SY 12/01/05 II 13/09/07 #1CoP14 II 23/06/10 #4CoP15 The current annotation for these taxa is #4 and reads: All parts and derivatives, except: 1 PC20 Inf.
    [Show full text]
  • The Sesquiterpene Biosynthesis and Vessel-Occlusion Formation in Stems of Aquilaria Sinensis
    Int. J. Mol. Sci. 2014, 15, 23589-23603; doi:10.3390/ijms151223589 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article The Sesquiterpene Biosynthesis and Vessel-Occlusion Formation in Stems of Aquilaria sinensis (Lour.) Gilg Trees Induced by Wounding Treatments without Variation of Microbial Communities Zheng Zhang 1,2, Jianhe Wei 1,2,*, Xiaomin Han 1, Liang Liang 1, Yun Yang 2, Hui Meng 2, Yanhong Xu 1 and Zhihui Gao 1 1 National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; E-Mails: [email protected] (Z.Z.); [email protected] (X.H.); [email protected] (L.L.); [email protected] (Y.X.); [email protected] (Z.G.) 2 Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medicinal Sciences and Peking Union Medical College, Wanning 571533, China; E-Mails: [email protected] (Y.Y.); [email protected] (H.M.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +86-10-5783-3358. External Editor: Bing Yan Received: 17 September 2014; in revised form: 28 November 2014 / Accepted: 4 December 2014 / Published: 18 December 2014 Abstract: As widely recognized, agarwood formation in Aquilaria trees is induced by external wounding. Because agarwood usually harbors specific microbes, the function of microbes in agarwood formation has been debated for almost a century.
    [Show full text]
  • Volatile Constituents of Endophytic Fungi Isolated from Aquilaria Sinensis with Descriptions of Two New Species of Nemania
    life Article Volatile Constituents of Endophytic Fungi Isolated from Aquilaria sinensis with Descriptions of Two New Species of Nemania Saowaluck Tibpromma 1,2,3,†, Lu Zhang 4,†, Samantha C. Karunarathna 1,2,3, Tian-Ye Du 1,2,3, Chayanard Phukhamsakda 5,6 , Munikishore Rachakunta 7 , Nakarin Suwannarach 8,9 , Jianchu Xu 1,2,3,*, Peter E. Mortimer 1,2,3,* and Yue-Hu Wang 4,* 1 CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; [email protected] (S.T.); [email protected] (S.C.K.); [email protected] (T.-Y.D.) 2 World Agroforestry Centre, East and Central Asia, Kunming 650201, China 3 Centre for Mountain Futures, Kunming Institute of Botany, Kunming 650201, China 4 Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; [email protected] 5 Institute of Plant Protection, College of Agriculture, Jilin Agricultural University, Changchun 130118, China; [email protected] 6 Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China 7 State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; [email protected] Citation: Tibpromma, S.; Zhang, L.; 8 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Karunarathna, S.C.; Du, T.-Y.; [email protected] Phukhamsakda, C.; Rachakunta, M.; 9 Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Suwannarach, N.; Xu, J.; Mortimer, Chiang Mai 50200, Thailand P.E.; Wang, Y.-H.
    [Show full text]
  • Provenance Variation in Growth and Genetic Potential of Aquilaria Malaccensis Under Nursery Condition
    Vol. 14(24), pp. 2005-2013, 17 June, 2015 DOI: 10.5897/AJB2013.13464 Article Number: 5BD56E353706 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Full Length Research Paper Provenance variation in growth and genetic potential of Aquilaria malaccensis under nursery condition M. B. Noor Mohamed*, K. T. Parthiban, R. Ravi and P. Kumar Forest College and Research Institute, Tamil Nadu Agricultural University, Mettupalayam, Tamil Nadu, 641 301, India. Received 11 November, 2013; Accepted 15 June, 2015 Aquilaria malaccensis Lam. is commonly known as Agarwood which is distributed in the Indo-malesian genus Aquilaria of family Thymelaeaceae known to produce resin-impregnated heartwood that is fragrant and highly valuable. Agarwood is reputed to be the most expensive wood in the world. Twenty two open pollinated families in A. malaccensis were selected and evaluated for growth attributes and genetic divergence. The experiment was conducted at Forest College and Research Institute, Tamil Nadu Agricultural University; Mettupalayam situated at 11° 19’ N longitude, 76° 56’ E latitude at 300 MSL during January - December 2010. The study indicates significant differences among the selected families for various growth attributes. Among the twenty two progenies evaluated, three progenies viz., NHJA, KHOW-1 and CHEK-1 exhibited consistent superiority over growth periods for shoot length, collar diameter and number of branches. Genetic divergence studies resulted in grouping of the selected families into six clusters which indicated the existence of adequate genetic divergence. Among the clusters, cluster VI was the largest with 9 progenies while the maximum intra clusters distance was recorded in cluster V.
    [Show full text]
  • Methane Mitigation Potential of Phyto-Sources from Northeast India and Their Effect on Rumen Fermentation Characteristics and Protozoa in Vitro
    Veterinary World, EISSN: 2231-0916 RESEARCH ARTICLE Available at www.veterinaryworld.org/Vol.11/June-2018/12.pdf Open Access Methane mitigation potential of phyto-sources from Northeast India and their effect on rumen fermentation characteristics and protozoa in vitro Luna Baruah1,2, Pradeep Kumar Malik1, Atul P. Kolte1, Arindam Dhali1 and Raghavendra Bhatta3 1. Energy Metabolism Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru - 560 030, Karnataka, India; 2. Faculty of Biotechnology, Jain University, Bengaluru, Karnataka, India. 3. ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru - 560 030, Karnataka, India. Corresponding author: Pradeep Kumar Malik, e-mail: [email protected] Co-authors: LB: [email protected], APK: [email protected], AD: [email protected], RB: [email protected] Received: 23-02-2018, Accepted: 01-05-2018, Published online: 19-06-2018 doi: 10.14202/vetworld.2018.809-818 How to cite this article: Baruah L, Malik PK, Kolte AP, Dhali A, Bhatta R (2018) Methane mitigation potential of phyto-sources from Northeast India and their effect on rumen fermentation characteristics and protozoa in vitro, Veterinary World, 11(6): 809-818. Abstract Aim: The aim of the study was to explore the anti-methanogenic potential of phyto-sources from Northeast region of the country and assess the effect on rumen fermentation characteristics and protozoa for their likely inclusion in animal diet to reduce methane emission. Materials and Methods: Twenty phyto-sources were collected from Northeast state, Assam, during March to April 2014. Phyto-sources were analyzed for their tannin content followed by screening for methane mitigation potential using in vitro system.
    [Show full text]
  • Notification Regarding Guidelines For
    GOVERNMENT OF TRIPURA FOREST DEPARTMENT No. F. 7(t4O)tFottFP-2021-22t lTt4g5 - 584 Dated....1.3..../ o8 I 2o2r NOTIFICATION Guidelines ior Sustainable extractiorVutilization of Agar trees avaiiabie in Private lands in Tripura were notified vide number F.7(140)lForiFP-2015141480-555 dated 4t1'January, 20t9. Subsequently, vide notification number F.7(140)/ForlFP-2021-22114159-219 dated,2610llz02l, Agar (Aquilaria malaccensis) was added to the list of tree species for which permission for extraction from the Forest Department is not required under the Guidelines for extraction of trees from non-forest areas, thereby rendering the Guidelines for Sustainable extractiott/utilization of Agar trees available in Private lands in Tripura redundant. In view of the above, the Guidelines for Sustainable extraction/utilization of Agar trees available in Private lands in Tripura, notified vide number F. 7(140)lForlFP-2015/41480-555 dated 4th January, 20i9 of Forest Department is hereby repealed. This comes into force with immediate effect , By order of the Governor (Sanjib Das,IFS) Joint Secretary to the Government of Tripura Copy to:- i) The Principal Chief Conservator of Forests & HoFF, Tripura. 2) The PCCF & Chief Wildlife Warden, Tripura. 3) The Member-Secretary, Tripura Biodiversity Board (TBB). 4) The APCCF (APR), FHQ. 5) The APCCF & Director, NCE, Gandhigram. 6) The CEO, Tripura CAMPA, FHQ. 7) The CEO & PD, SCATFORM, Tripura JICA Project, Gandhigram. 8) The Nodal Officer, FCA, FHQ. 9) The Chief Conservator of Forests, Protection/Territorial/P&D/IT & Stat./ Vigilance/Legal. 10) The Conservator of Forests, Territorial / Wildlife / TBB. 11) The Deputy Conservator of Forests, Protection / HQ / PBD / IT & Stat.
    [Show full text]
  • Aquilaria Crassna Pierre Ex Lecomte En Guyane : Approches Métagénomique, Biochimique Et Histologique
    Présentée et soutenue publiquement le 20 avril 2016 par : Auteur du mémoire Titre du mémoire, v.1.10 Thèse En vue de l’obtention du grade de Docteur de l’université de Guyane Discipline : Sciences agronomiques et écologiques Spécialité : Biologie des organismes, biologies animales, végétales et microbiennes. Présentée et soutenue publiquement le 4 février 2020 par : CLARA ZAREMSKI Pour une production contrôlée d’agarwood d’Aquilaria crassna Pierre ex Lecomte en Guyane : Approches métagénomique, biochimique et histologique. JURY Nadine Amusant Chercheure Co-encadrante de Thèse Amadou Bâ PU, HDR Président du Jury, Rapporteur Jacques Beauchêne Chercheur Examinateur Marc Ducousso DR, HDR Directeur de Thèse Marie Fleury MCF Examinatrice Christine Gérardin PU, HDR Rapporteur Franck Roubaud MCF Membre invité Ecole Doctorale n°587 : Diversités, Santé et développement en Amazonie « Tout ce qui arrive est le résultat d’une confluence. » Dr. Norin Chai « Les idées provocatrices sont légitimes, au moins pour s’assurer que ce n’est pas par habitude mentale qu’on exclut certaines possibilités. » Pr. Thibault Damour « Alba embarqua pour Tahiti le 13 Novembre 1851. » D’après Elizabeth Gilbert, The Signature of All Things. i ii RAPPEL DU TITRE Pour une production contrôlée d’agarwood d’Aquilaria crassna Pierre ex Lecomte en Guyane : Approches métagénomique, biochimique et histologique. iii iv RESUME Aquilaria Lam. est un genre d’arbre tropical de la famille des Thymelaeaceae, origi- naire de l’Asie du Sud-Est. Ce genre compte actuellement vingt et une espèces dont le bois sain est de couleur blanche. Lorsque l’arbre est blessé, en interaction avec des micro-organismes environnementaux, l’arbre produit un bois transformé par sa forte teneur en composés secondaires.
    [Show full text]
  • Aquilaria Malaccensis (Agarwood- Producing Species): Has the Listing in Appendix II Come Too Late?
    Aquilaria malaccensis (agarwood- producing species): Has the listing in Appendix II come too late? L.S.L.Chua, S.L. Lee, K.H. Lau & Z. Nurul Farhanah ISO 9001 : 2008 www.frim.gov.my 16 September 2015 Aquilaria products and derivatives in trade www.frim.gov.my List of projects where data has been used Reproductive and genetic studies towards the conservation and management of Aquilaria malaccensis in Peninsular Malaysia, 2013−2015; CTFS-ForestGEO network of forest research plots, 1980− ; National Forest Inventory 1993− ; Kajian pemuliharaan dan pembangunan mikrosatelit DNA ke atas Aquilaria malaccensis (karas) di Semenanjung Malaysia, 2011−2012; and In vitro technology for mass propagation and phytochemical analysis of Aquilaria malaccensis and A. hirta (endangered gaharu producing species), Project No. MINT0000089, 2007−2008. www.frim.gov.my Preliminary results mortality rates have been consistently higher than recruitment rates; a declining abundance of trees in various diameter categories; high floral abortion rates; wild populations suffer from a declining of rate of population change; and several of its life history traits are thought to be natural evolutionary constraints. www.frim.gov.my Species biology and life cycle characteristics clear nomenclature concept, taxonomic description widely available; supra-annual reproductive behaviour; infrequent flowering episodes, high floral abortion rate during masting; High levels of genetic diversity within populations but low low levels among populations; and lower rates of recruitment compared to mortality. www.frim.gov.my www.frim.gov.my Species range Global Malaysia www.frim.gov.my Cont. It has no habitat preference and is found in a variety of soils from sea level to 1700 m altitude in the primary and logged-over natural forests; In a forest, individuals are scattered and nowhere abundant.
    [Show full text]
  • Pollination and Seed Dispersal of Aquilaria Sinensis (Lour.) Gilg (Thymelaeaceae): an Economic Plant Species with Extremely Small Populations in China
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Plant Diversity 38 (2016) 227e232 Contents lists available at ScienceDirect Plant Diversity journal homepage: http://www.keaipublishing.com/en/journals/plant-diversity/ http://journal.kib.ac.cn Pollination and seed dispersal of Aquilaria sinensis (Lour.) Gilg (Thymelaeaceae): An economic plant species with extremely small populations in China ** * Gao Chen a, b, , Changqiu Liu b, Weibang Sun a, b, a Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China b Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China article info abstract Article history: Pollination and seed dispersal in angiosperms have long been investigated in order to understand the Received 14 June 2016 coevolution of plants and animals. However, the signals from flowers and/or seeds to attract pollinators Received in revised form and/or seed dispersers have received comparatively little attention. In this study, the pollination biology 27 September 2016 and seed dispersal of the vulnerable agarwood plant Aquilaria sinensis (Lour.) Gilg, a traditional medicinal Accepted 29 September 2016 plant in China, was studied in its natural distribution range. The reproductive tactics of A. sinensis were Available online 5 October 2016 studied in detail by employing various tests dealing with fruit set and also seed dispersal. Dynamic (Editor: Zhekun Zhou) headspace extraction followed by GC-MS analysis was also performed in order to reveal the composition of floral scent. The results showed that noctuids and pyralids are the most effective pollinators of Keywords: pollinator-dependent A.
    [Show full text]