UNIVERSITY of CALIFORNIA, SAN DIEGO The

Total Page:16

File Type:pdf, Size:1020Kb

UNIVERSITY of CALIFORNIA, SAN DIEGO The UNIVERSITY OF CALIFORNIA, SAN DIEGO The Characterization of Enhancer Elements Involved in the Spatial Patterning of the Skin A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Biology by Andrew Grainger Committee in charge: Professor Benjamin Yu, Chair Professor James Kadonaga, Co-chair Professor Ella Tour 2014 The Thesis of Andrew Grainger is approved and it is accepted in quality and form for publication on microfilm and electronically: _______________________________________________________________________ _______________________________________________________________________ Co-Chair _______________________________________________________________________ Chair University of California, San Diego 2014 iii Dedication To my parents Jim & Claire, for always providing the support and encouragement needed for my success. iv Table of Contents Signature Page ……………...............................................………………………………………..…………..iii Dedication ……………………………………………………………………………....………………...…..…...iv Table of Contents ………………………………………………………………....……………...….…………..v List of Figures ……………………………………………………………………………....………...…………..vi Acknowledgments ……………………………………………………………………………….……..……...vii Abstract of the Thesis .…………………………………………………………....……………….………...viii I. Introduction …………………………………….…………………………………………………….…………1 II. Results ………………………………….………………..…………………………………………..………...13 III. Discussion ………………………………………………...………………………………………………....37 IV. Materials and Methods ……………………………………...………………………………………….43 References …………………………………………………………………......………………………………....56 v List of Figures and Tables Figure 1. Evolutionary conservation of the Keratin Type II Cluster exons between humans, rhesus macaque, mouse, opossum, chicken, and fugu .....................21 Figure 2: p300 ChIP-Seq data from wild type mouse epidermis, E17.5 (n=1). (A) Initial and filtered read counts, total peaks, and filtered peaks. (B) Total and filtered peak counts at the three keratin cluster loci. .............................................................................22 Figure 3: LICR Histone modification data (h3k4me1, h3k27ac) for multiple tissues at the proposed negative site (qPCR probe in green at top) .................................23 Figure 4: Representative graphs of mice ChIP-qPCR at the Keratin Type II locus exons at E17.5 for h3k4me1 (B) and h3k27ac (C), and at E14.5 for h3k4me1 (D) and h3k27ac (E) .............................................................................................................................................24 Figure 5: Comparison of biological replicate data between e14.5 and e17.5 (n=3 for both) for h3k4me1 (A) and h3k27ac (B). ............................................................................30 Figure 6: CNV loss in psoriasis patients at the gene CDSN ..........................................32 Figure 7: Representative graphs of mice ChIP-qPCR for CDSN at E17.5 for h3k4me1 (A) and h3k27ac (B), and at E14.5 for h3k4me1 (C) and h3k27ac (D) ......33 vi Acknowledgements There are several people I would like to acknowledge for contributions to my research success. First and foremost, I would like to acknowledge my PI, Benjamin Yu, for guiding and mentoring me for the last three and a half years and helping me become a better scientist. Secondly, I’d like to acknowledge Shantanu Kumar, who has been invaluable as a person to troubleshoot with and get advice on experiments and protocols. I owe much of my success to his help. I’d also like to acknowledge Christopher Adase, who has helped me come up with a solid ChIP protocol when neither of us knew much of what we were doing in the beginning. Lastly, I’d like to acknowledge the rest of the Yu lab for making the lab an enjoyable and nurturing environment. vii ABSTRACT OF THE THESIS The Characterization of Enhancer Elements Involved in the Spatial Patterning of the Skin by Andrew Grainger Master of Science in Biology University of California, San Diego, 2014 Professor Benjamin Yu, Chair Professor James Kadonaga, Co-Chair The epidermis is an essential tissue in a large variety of organisms, and differential regulation of keratin genes plays a vital role in maintaining its structural integrity and other various cellular processes. There are a number of diseases associated with changes in keratin gene expression, and so understanding how these keratins are regulated might help in our understanding of their functions in the epidermis. Recent studies have elucidated the large quantities of regulatory elements present in the human genome, many in places we would not have thought for them to exist. Exons of coding genes can contain regulatory elements within them, and might be having regulatory effects on proximal genes. Therefore, the viii keratin genes, which are collected into two distinctive clusters, could potentially contain regulatory elements in their exons. We investigated this possibility using ChIP-seq and ChIP-qPCR, and successfully identified 37 potential enhancer elements residing within the exons of keratin genes in the Keratin Cluster II (KCII). We also identified two novel enhancer elements in CDSN, another gene vital for epidermal structural integrity, and discovered that a loss of copy number of these enhancers could potentially contribute to the skin disease psoriasis. ix I. Introduction 1 2 The human epidermis is a stratified squamous epithelium, composed of proliferating basal and differentiated suprabasal keratinocytes, or the predominant type of cells that act as the body's major barrier against an inhospitable environment (McGrath et al., 2004). The epidermis is differentiated into distinctive layers, the most well studied of which are the basal and suprabasal, which contains the spinous, granular, and stratum corneum; the basal layer is the bottom or closest to the inside of the body and the stratum corneum is the layer exposed to the air. A group of genes identified as the keratin genes fundamentally influence the architecture and mitotic activity of epithelial cells, and are differentially expressed in different layers of the epidermis (Shetty et al., 2012). For example, Keratin 14 (K14) and Keratin 5 (K5) are expressed in the basal layer, while K1, K6, and K10 are expressed in the spinous layer. The original establishment of the different layers was mostly due to the mapping of changes in keratin gene expressions, and many of these keratin genes are used for immunostaining to observe one specific differentiated layer. Keratins are defined as intermediate filament forming proteins with specific physiochemical properties produced in any vertebrate epithelia (Bragulla et al., 2009). Intermediate filaments provide the general scaffold for most cytoskeletons, and in the case of the epidermis provide the structural integrity that maintains intercellular structure. Each keratin gene varies in length and properties, but each works as a means of keeping neighboring cells in a strict orientation. But, outside of this, keratins also perform a multitude of other functions. Aside from providing a 3 scaffold for these epithelial cells to keep a cohesive structure, they also provide a means for the epidermis to sustain various forms of mechanical stress and variations in hydrostatic pressure (Shetty et al., 2012). However, they also play a role in cellular functions as well, involving themselves in cell signaling, transport, compartmentalization, and differentiation (Vaidya and Kanojia, 2007), on top of influencing metabolic processes and cell growth (Coulombe and Wong, 2004; Gu and Coulombe, 2007). The fact that the various keratin genes are differentially expressed in the different layers of the human epidermis implies that these various keratin genes are carrying out varied, albeit not very well known, functions in each of these layers to help enforce differentiation. While the direct effects of keratin genes on differentiation remain unclear, there has been an exponential increase in the number of epidermal stem cell publications over the last 25 years, and our knowledge of how the epidermis proliferates and regulates itself is expanding (Ghadially, 2012). This started with the discovery of hematopoietic stem cells in 1961 and has rapidly expanded in the last decade or two to include the characterization of a multitude of signaling pathways involved in epidermal stem cell maintenance and cell fate determination. One such example is the Notch pathway. It is important in the determination of stem cell self-renewal versus differentiation. Expression of the Jagged 1 and 2 ligands as well as the Notch 1 and 2 receptors increases in differentiating keratinocytes of the suprabasal layers, and this is thought to be important for synchronization of differentiation, or the timing in which these layers differentiate, as well as epidermal 4 border formation (Luo et al., 1997; Rangarajan et al., 2001). But while the pathways involved have been identified, the specific changes in them that give rise to the differentiated layers have yet to be seen. The mechanisms that drive differentiation of the basal layer into the spinous, granular, and stratum corneum are not well known, and those responsible for the observed differential expression of the various keratin genes have yet to be discovered. However, this differential expression of keratin genes is not limited solely to the epidermis. There is differential expression of keratin genes depending on the specific keratinized tissue, as teeth and epidermis show distinctively unique
Recommended publications
  • Universidade Estadual De Campinas Instituto De Biologia
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA CAMPINAS 2016 1 VERÔNICA APARECIDA MONTEIRO SAIA CEREDA O PROTEOMA DO CORPO CALOSO DA ESQUIZOFRENIA THE PROTEOME OF THE CORPUS CALLOSUM IN SCHIZOPHRENIA Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Mestra em Biologia Funcional e Molecular na área de concentração de Bioquímica. Dissertation presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Master in Functional and Molecular Biology, in the area of Biochemistry. ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELA ALUNA VERÔNICA APARECIDA MONTEIRO SAIA CEREDA E ORIENTADA PELO DANIEL MARTINS-DE-SOUZA. Orientador: Daniel Martins-de-Souza CAMPINAS 2016 2 Agência(s) de fomento e nº(s) de processo(s): CNPq, 151787/2F2014-0 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Saia-Cereda, Verônica Aparecida Monteiro, 1988- Sa21p O proteoma do corpo caloso da esquizofrenia / Verônica Aparecida Monteiro Saia Cereda. – Campinas, SP : [s.n.], 2016. Orientador: Daniel Martins de Souza. Dissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia. 1. Esquizofrenia. 2. Espectrometria de massas. 3. Corpo caloso.
    [Show full text]
  • (Pnss) En Genes Candidatos Para Las Características De La Fibra En Alpacas
    Revista peruana de biología 26(1): 087 - 094 (2019) Identificación bioinformática de Polimorfismos de doi: http://dx.doi.org/10.15381/rpb.v26i1.15911 ISSN-L 1561-0837; eISSN: 1727-9933 Nucleótido Simple (PNSs) en genes candidatos para Universidad Nacional Mayor de San Marcos las características de la fibra en alpacas (Vicugna pacos) Bioinformatic identification of Single Nucleotide Polymor- Trabajos originales phisms (SNPs) in candidate genes for fiber characteristics in Presentado: 31/07/2018 alpacas (Vicugna pacos) Aceptado: 03/02/2019 Publicado online: 30/03/2019 Correspondencia: 1 *Autor para correspondencia Alvaro Gonzalo Fernández Suárez* , Gustavo Augusto Gutiérrez 1 Universidad Nacional Agraria La Molina. Av. La Reynoso 1, Federico Abel Ponce de León Bravo 2 Molina S/N, Lima 12. 2 University of Minnesota, St. Paul, MN 55108, 1 Universidad Nacional Agraria La Molina, Perú. United States. 2 University of Minnesota, United States. Email AGFS: [email protected] Email GAGR: [email protected] Email FAPLB: [email protected] ORCID FAPdLB: 0000-0001-8645-553X ORCID GAGR: 0000-0002-1896-0048 Citación: Resumen Fernández Suárez A.G., G.A. Gutiérrez Reynoso, El objetivo fue identificar y predecir la ubicación de polimorfismos de nucleótido F.A. Ponce de León Bravo. 2019. Bioinformatic simple (PNSs) en genes relacionados al crecimiento de la fibra. Se realizó el estudio identification of Single Nucleotide Polymorphisms con un total de 31 genes de queratina (KRT9, KRT12, KRT13, KRT14, KRT16, KRT18, (SNPs) in candidate genes for fiber characteristics KRT20, KRT25, KRT1, KRT3, KRT5, KRT6a, KRT6b, KRT6c, KRT7, KRT8, KRT71, KRT80, in alpacas (Vicugna pacos). Revista peruana de KRT31, KRT32, KIRT40, KRT81, KRT82, KRT10, KRT15, KRT17 KRT19, KRT2, KRT4, biología 26(1): 087 - 094 (Febrero 2019).
    [Show full text]
  • Deimination, Intermediate Filaments and Associated Proteins
    International Journal of Molecular Sciences Review Deimination, Intermediate Filaments and Associated Proteins Julie Briot, Michel Simon and Marie-Claire Méchin * UDEAR, Institut National de la Santé Et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Université Fédérale de Toulouse Midi-Pyrénées, U1056, 31059 Toulouse, France; [email protected] (J.B.); [email protected] (M.S.) * Correspondence: [email protected]; Tel.: +33-5-6115-8425 Received: 27 October 2020; Accepted: 16 November 2020; Published: 19 November 2020 Abstract: Deimination (or citrullination) is a post-translational modification catalyzed by a calcium-dependent enzyme family of five peptidylarginine deiminases (PADs). Deimination is involved in physiological processes (cell differentiation, embryogenesis, innate and adaptive immunity, etc.) and in autoimmune diseases (rheumatoid arthritis, multiple sclerosis and lupus), cancers and neurodegenerative diseases. Intermediate filaments (IF) and associated proteins (IFAP) are major substrates of PADs. Here, we focus on the effects of deimination on the polymerization and solubility properties of IF proteins and on the proteolysis and cross-linking of IFAP, to finally expose some features of interest and some limitations of citrullinomes. Keywords: citrullination; post-translational modification; cytoskeleton; keratin; filaggrin; peptidylarginine deiminase 1. Introduction Intermediate filaments (IF) constitute a unique macromolecular structure with a diameter (10 nm) intermediate between those of actin microfilaments (6 nm) and microtubules (25 nm). In humans, IF are found in all cell types and organize themselves into a complex network. They play an important role in the morphology of a cell (including the nucleus), are essential to its plasticity, its mobility, its adhesion and thus to its function.
    [Show full text]
  • Proteomic Expression Profile in Human Temporomandibular Joint
    diagnostics Article Proteomic Expression Profile in Human Temporomandibular Joint Dysfunction Andrea Duarte Doetzer 1,*, Roberto Hirochi Herai 1 , Marília Afonso Rabelo Buzalaf 2 and Paula Cristina Trevilatto 1 1 Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil; [email protected] (R.H.H.); [email protected] (P.C.T.) 2 Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-41-991-864-747 Abstract: Temporomandibular joint dysfunction (TMD) is a multifactorial condition that impairs human’s health and quality of life. Its etiology is still a challenge due to its complex development and the great number of different conditions it comprises. One of the most common forms of TMD is anterior disc displacement without reduction (DDWoR) and other TMDs with distinct origins are condylar hyperplasia (CH) and mandibular dislocation (MD). Thus, the aim of this study is to identify the protein expression profile of synovial fluid and the temporomandibular joint disc of patients diagnosed with DDWoR, CH and MD. Synovial fluid and a fraction of the temporomandibular joint disc were collected from nine patients diagnosed with DDWoR (n = 3), CH (n = 4) and MD (n = 2). Samples were subjected to label-free nLC-MS/MS for proteomic data extraction, and then bioinformatics analysis were conducted for protein identification and functional annotation. The three Citation: Doetzer, A.D.; Herai, R.H.; TMD conditions showed different protein expression profiles, and novel proteins were identified Buzalaf, M.A.R.; Trevilatto, P.C.
    [Show full text]
  • Onset of Taste Bud Cell Renewal Starts at Birth and Coincides with a Shift In
    RESEARCH ARTICLE Onset of taste bud cell renewal starts at birth and coincides with a shift in SHH function Erin J Golden1,2, Eric D Larson2,3, Lauren A Shechtman1,2, G Devon Trahan4, Dany Gaillard1,2, Timothy J Fellin1,2, Jennifer K Scott1,2, Kenneth L Jones4, Linda A Barlow1,2* 1Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States; 2The Rocky Mountain Taste and Smell Center, University of Colorado Anschutz Medical Campus, Aurora, United States; 3Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, United States; 4Department of Pediatrics, Section of Hematology, Oncology, and Bone Marrow Transplant, University of Colorado Anschutz Medical Campus, Aurora, United States Abstract Embryonic taste bud primordia are specified as taste placodes on the tongue surface and differentiate into the first taste receptor cells (TRCs) at birth. Throughout adult life, TRCs are continually regenerated from epithelial progenitors. Sonic hedgehog (SHH) signaling regulates TRC development and renewal, repressing taste fate embryonically, but promoting TRC differentiation in adults. Here, using mouse models, we show TRC renewal initiates at birth and coincides with onset of SHHs pro-taste function. Using transcriptional profiling to explore molecular regulators of renewal, we identified Foxa1 and Foxa2 as potential SHH target genes in lingual progenitors at birth and show that SHH overexpression in vivo alters FoxA1 and FoxA2 expression relevant to taste buds. We further bioinformatically identify genes relevant to cell adhesion and cell *For correspondence: locomotion likely regulated by FOXA1;FOXA2 and show that expression of these candidates is also LINDA.BARLOW@CUANSCHUTZ. altered by forced SHH expression.
    [Show full text]
  • Transcriptome Profiling and Differential Gene Expression In
    G C A T T A C G G C A T genes Article Transcriptome Profiling and Differential Gene Expression in Canine Microdissected Anagen and Telogen Hair Follicles and Interfollicular Epidermis Dominique J. Wiener 1,* ,Kátia R. Groch 1 , Magdalena A.T. Brunner 2,3, Tosso Leeb 2,3 , Vidhya Jagannathan 2 and Monika M. Welle 3,4 1 Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Science, Texas A&M University, College Station, TX 77843, USA; [email protected] 2 Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; [email protected] (M.A.T.B.); [email protected] (T.L.); [email protected] (V.J.) 3 Dermfocus, Vetsuisse Faculty, University Hospital of Bern, 3010 Bern, Switzerland; [email protected] 4 Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland * Correspondence: [email protected]; Tel.: +1-979-862-1568 Received: 30 June 2020; Accepted: 3 August 2020; Published: 4 August 2020 Abstract: The transcriptome profile and differential gene expression in telogen and late anagen microdissected hair follicles and the interfollicular epidermis of healthy dogs was investigated by using RNAseq. The genes with the highest expression levels in each group were identified and genes known from studies in other species to be associated with structure and function of hair follicles and epidermis were evaluated. Transcriptome profiling revealed that late anagen follicles expressed mainly keratins and telogen follicles expressed GSN and KRT15. The interfollicular epidermis expressed predominately genes encoding for proteins associated with differentiation. All sample groups express genes encoding for proteins involved in cellular growth and signal transduction.
    [Show full text]
  • Damage of Hair Follicle Stem Cells and Alteration of Keratin Expression in External Radiation-Induced Acute Alopecia
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 30: 579-584, 2012 Damage of hair follicle stem cells and alteration of keratin expression in external radiation-induced acute alopecia NAOKI NANASHIMA, KOICHI ITO, TAKASHI ISHIKAWA, MANABU NAKANO and TOSHIYA NAKAMURA Department of Biomedical Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan Received April 4, 2012; Accepted May 28, 2012 DOI: 10.3892/ijmm.2012.1018 Abstract. Alopecia is known as a symptom of acute radia- disturbances and blood and bone marrow disorders are known tion, yet little is known concerning the mechanism of this to occur within several hours to several weeks after 1-6 Gy of phenomenon and the alteration of hair protein profiles. To radiation exposure (4,6). examine this, 6-week-old male C57/BL6 mice were exposed Hair loss is also an effect of ARS, but little is known to 6 Gy of X-ray irradiation, which caused acute alopecia. about the mechanism underlying radiation-induced hair loss. Their hair and skin were collected, and hair proteins were In humans, hair loss is caused by radiation of more than analyzed with liquid chromatography/electrospray-ionization 3 Gy, and almost complete hair loss occurs within weeks of mass spectrometry and immunohistochemistry. No change exposure to 6 Gy (4,6). Since blood stem cells are sensitive to was observed in the composition of major hair keratins, such radiation (7), hair loss is thought to be caused by irradiation- as Krt81, Krt83 and Krt86. However, cytokeratin Krt15 and induced stem cell damage, yet no studies have investigated CD34, which are known as hair follicle stem cell markers, this hypothesis.
    [Show full text]
  • The Inverse Agonist DG172 Triggers a Pparβ/Δ-Independent Myeloid Lineage Shift and Promotes GM-CSF/IL-4-Induced Dendritic Cell Differentiation
    Downloaded from molpharm.aspetjournals.org at ASPET Journals on September 26, 2021 1 MOL #94672 #94672 MOL -independent myeloid lineage shift and -independent myeloid lineage δ / β nagel, Wolfgang Meissner, Gavin Giehl, Cornelia Giehl, Cornelia Gavin Wolfgang Meissner, nagel, This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version.
    [Show full text]
  • Strand Breaks for P53 Exon 6 and 8 Among Different Time Course of Folate Depletion Or Repletion in the Rectosigmoid Mucosa
    SUPPLEMENTAL FIGURE COLON p53 EXONIC STRAND BREAKS DURING FOLATE DEPLETION-REPLETION INTERVENTION Supplemental Figure Legend Strand breaks for p53 exon 6 and 8 among different time course of folate depletion or repletion in the rectosigmoid mucosa. The input of DNA was controlled by GAPDH. The data is shown as ΔCt after normalized to GAPDH. The higher ΔCt the more strand breaks. The P value is shown in the figure. SUPPLEMENT S1 Genes that were significantly UPREGULATED after folate intervention (by unadjusted paired t-test), list is sorted by P value Gene Symbol Nucleotide P VALUE Description OLFM4 NM_006418 0.0000 Homo sapiens differentially expressed in hematopoietic lineages (GW112) mRNA. FMR1NB NM_152578 0.0000 Homo sapiens hypothetical protein FLJ25736 (FLJ25736) mRNA. IFI6 NM_002038 0.0001 Homo sapiens interferon alpha-inducible protein (clone IFI-6-16) (G1P3) transcript variant 1 mRNA. Homo sapiens UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 15 GALNTL5 NM_145292 0.0001 (GALNT15) mRNA. STIM2 NM_020860 0.0001 Homo sapiens stromal interaction molecule 2 (STIM2) mRNA. ZNF645 NM_152577 0.0002 Homo sapiens hypothetical protein FLJ25735 (FLJ25735) mRNA. ATP12A NM_001676 0.0002 Homo sapiens ATPase H+/K+ transporting nongastric alpha polypeptide (ATP12A) mRNA. U1SNRNPBP NM_007020 0.0003 Homo sapiens U1-snRNP binding protein homolog (U1SNRNPBP) transcript variant 1 mRNA. RNF125 NM_017831 0.0004 Homo sapiens ring finger protein 125 (RNF125) mRNA. FMNL1 NM_005892 0.0004 Homo sapiens formin-like (FMNL) mRNA. ISG15 NM_005101 0.0005 Homo sapiens interferon alpha-inducible protein (clone IFI-15K) (G1P2) mRNA. SLC6A14 NM_007231 0.0005 Homo sapiens solute carrier family 6 (neurotransmitter transporter) member 14 (SLC6A14) mRNA.
    [Show full text]
  • Perkinelmer Genomics to Request the Saliva Swab Collection Kit for Patients That Cannot Provide a Blood Sample As Whole Blood Is the Preferred Sample
    Autism and Intellectual Disability TRIO Panel Test Code TR002 Test Summary This test analyzes 2429 genes that have been associated with Autism and Intellectual Disability and/or disorders associated with Autism and Intellectual Disability with the analysis being performed as a TRIO Turn-Around-Time (TAT)* 3 - 5 weeks Acceptable Sample Types Whole Blood (EDTA) (Preferred sample type) DNA, Isolated Dried Blood Spots Saliva Acceptable Billing Types Self (patient) Payment Institutional Billing Commercial Insurance Indications for Testing Comprehensive test for patients with intellectual disability or global developmental delays (Moeschler et al 2014 PMID: 25157020). Comprehensive test for individuals with multiple congenital anomalies (Miller et al. 2010 PMID 20466091). Patients with autism/autism spectrum disorders (ASDs). Suspected autosomal recessive condition due to close familial relations Previously negative karyotyping and/or chromosomal microarray results. Test Description This panel analyzes 2429 genes that have been associated with Autism and ID and/or disorders associated with Autism and ID. Both sequencing and deletion/duplication (CNV) analysis will be performed on the coding regions of all genes included (unless otherwise marked). All analysis is performed utilizing Next Generation Sequencing (NGS) technology. CNV analysis is designed to detect the majority of deletions and duplications of three exons or greater in size. Smaller CNV events may also be detected and reported, but additional follow-up testing is recommended if a smaller CNV is suspected. All variants are classified according to ACMG guidelines. Condition Description Autism Spectrum Disorder (ASD) refers to a group of developmental disabilities that are typically associated with challenges of varying severity in the areas of social interaction, communication, and repetitive/restricted behaviors.
    [Show full text]
  • In Silico Analysis of Gene Expression Data from Bald Frontal and Haired Occipital Scalp to Identify Candidate Genes in Male Androgenetic Alopecia
    Archives of Dermatological Research (2019) 311:815–824 https://doi.org/10.1007/s00403-019-01973-2 ORIGINAL PAPER In silico analysis of gene expression data from bald frontal and haired occipital scalp to identify candidate genes in male androgenetic alopecia A. Premanand1 · B. Reena Rajkumari1 Received: 5 September 2018 / Revised: 6 July 2019 / Accepted: 30 August 2019 / Published online: 11 September 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Androgenetic alopecia (AGA) is a progressive dermatological disorder of frontal and vertex scalp hair loss leading to bald- ness in men. This study aimed to identify candidate genes involved in AGA through an in silico search strategy. The gene expression profle GS36169, which contains microarray gene expression data from bald frontal and haired occipital scalps of fve men with AGA, was downloaded from the Gene Expression Omnibus (GEO) database. The diferential gene expression analysis for all fve subjects was carried out separately by PUMA package in R and identifed 32 diferentially expressed genes (DEGs) common to all fve subjects. Gene ontology (GO) biological process and pathway- enrichment analyses of the DEGs were conducted separately for the up-regulated and down-regulated genes. ReactomeFIViz app was utilized to construct the protein functional interaction network for the DEGs. Through GO biological process and pathway analysis on the clusters of the Reactome FI network, we found that the down-regulated DEGs participate in Wnt signaling, TGF-beta signaling,
    [Show full text]
  • Role of Gigaxonin in the Regulation of Intermediate Filaments: a Study Using Giant Axonal Neuropathy Patient-Derived Induced Pluripotent Stem Cell-Motor Neurons
    Role of Gigaxonin in the Regulation of Intermediate Filaments: a Study Using Giant Axonal Neuropathy Patient-Derived Induced Pluripotent Stem Cell-Motor Neurons Bethany Johnson-Kerner Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2013 © 2012 Bethany Johnson-Kerner All rights reserved Abstract Role of Gigaxonin in the Regulation of Intermediate Filaments: a Study Using Giant Axonal Neuropathy Patient-Derived Induced Pluripotent Stem Cell-Motor Neurons Bethany Johnson-Kerner Patients with giant axonal neuropathy (GAN) exhibit loss of motor and sensory function and typically live for less than 30 years. GAN is caused by autosomal recessive mutations leading to low levels of gigaxonin, a ubiquitously-expressed cytoplasmic protein whose cellular roles are poorly understood. GAN pathology is characterized by aggregates of intermediate filaments (IFs) in multiple tissues. Disorganization of the neuronal intermediate filament (nIF) network is a feature of several neurodegenerative disorders, including amyotrophic lateral sclerosis, Parkinson’s disease and axonal Charcot-Marie-Tooth disease. In GAN such changes are often striking: peripheral nerve biopsies show enlarged axons with accumulations of neurofilaments; so called “giant axons.” Interestingly, IFs also accumulate in other cell types in patients. These include desmin in muscle fibers, GFAP (glial fibrillary acidic protein) in astrocytes, and vimentin in multiple cell types including primary cultures of biopsied fibroblasts. These findings suggest that gigaxonin may be a master regulator of IFs, and understanding its function(s) could shed light on GAN as well as the numerous other diseases in which IFs accumulate.
    [Show full text]