EPSC2018-284, 2018 European Planetary Science Congress 2018 Eeuropeapn Planetarsy Science Ccongress C Author(S) 2018

Total Page:16

File Type:pdf, Size:1020Kb

EPSC2018-284, 2018 European Planetary Science Congress 2018 Eeuropeapn Planetarsy Science Ccongress C Author(S) 2018 EPSC Abstracts Vol. 12, EPSC2018-284, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Space weathering in enstatite single crystals: Femtosecond laser pulse experiments simulate micrometeoroid impacts Doreen Schmidt (1), Kilian Pollok (1), Gabor Matthäus (2), Harald Mutschke (3), Stefan Nolte (2) and Falko Langenhorst (1) (1) Institute of Geosciences, Friedrich Schiller University (FSU), Carl-Zeiss-Promenade 10, 07745 Jena, Germany (2) Institute of Applied Physics (IAP), FSU, Albert-Einstein-Str. 15, 07745 Jena, Germany (3) Astrophysical Institute and University Observatory (AIU), FSU, Schillergässchen 2-3, Jena 07745, Germany ([email protected]) Abstract sliced plane-parallel to a thickness between 0.5 and 1.0 mm and double sided polished. Oriented slices of enstatite single crystals were irradiated by femtosecond laser pulses. Reflectance Laser irradiation was performed on the polished -3 spectra of the irradiated surfaces show distinct surfaces under vacuum (10 mbar) using a darkening compared to the unprocessed surfaces as a Ti:sapphire laser at 800 nm wavelength. Each pulse 2 typical feature of space weathered material. The had a spot size of 38 µm (1/e ) and a duration of microcraters contain a glass layer at the surface, but 100 fs. We used a laser energy of 3 mJ resulting in a 15 2 there is no formation of iron nanoparticles. The crater laser intensity of 10 W/cm . This reproduces well surfaces show different fracturing depending on their the spatial and temporal conditions of natural orientation. Also, the microstructures in the depth of micrometeoroid impacts. 20 x 20 shots were the craters and therefore the deformation mechanisms executed with a spacing of 100 µm to produce a grid 2 differ according to the orientation. with an irradiated area of 2 mm . NUV-VIS-NIR spectral measurements were 1. Introduction performed in reflectance at near-normal incidence Space weathering, occurring on airless bodies in the with a Perkin Elmer Lambda 19 spectrometer. The solar system, alters the surfaces of planetary spectral range of 200-2,500 nm was measured with a scan speed of 120 nm/min and a 1 nm step size. The materials by micrometeoroid bombardment and solar acquired spectra were corrected with respect to a wind irradiation. The effects of space weathering are calibrated aluminum mirror. responsible for the differences in reflectance spectra between pristine and weathered planetary materials The recovered material was investigated with SEM such as darkening and reddening [1]. Pulsed laser (FEI Quanta3D FEG) and TEM (FEI Tecnai G 2 experiments are known to reproduce space FEG). Sample preparation for TEM was done with weathering effects on olivine like melting, the focused ion beam (FIB) technique by cutting 100 nm formation of iron nanoparticles and deformation thin lamellae perpendicular to the irradiated surface. features like dislocations [2] as well as other planar shock effects [3]. Comparable observations are made on natural olivines in lunar or asteroidal samples 3. Results [4,5]. In this context we pursued further laser 3.1 Surface Analysis of the Microcraters experiments on pyroxene, which is besides olivine one of the most important planetary minerals. The laser single shots produced mainly spherical to partly irregularly shaped microcraters with a distinct 2. Material and Methods splash-like layer. There are different amounts of radially ejected material. The samples parallel to Kilosa enstatite containing about 4 wt% Fe (En93) (001) and (210) show strong fracturing at the crater was cut perpendicular to the crystallographic axes, i.e. surfaces, subordinately also the (100) cut sample. parallel to the (100), (010) and (001) planes. The craters produced on the (001) plane have cracks Additionally, samples were prepared parallel to the mainly subparallel to the traces of the cleavage (210), (211) and (301) planes. The samples were planes on {210} and (100) with smaller subspherical the Martian Meteorite Allan Hills 84001 [6]. We did cracks at the crater rim. The fractures of the (210) not observe the formation of iron nanoparticles, sample show a preferred orientation parallel to the which are generally regarded to be the main cause for [001] direction, whereas the (100) sample is fractured the spectral darkening and reddening in naturally mainly subparallel to [010] and [001]. There are no space weathered pyroxene [5] or have been observed fractures at the crater surfaces of the samples parallel in other experimentally irradiated pyroxene powder to the (010), (301) and (211). pellets [7]. 3.2 Spectroscopy Acknowledgements Reflectance spectra of the processed samples show a We thank the DFG for support within the Leibniz decrease in intensity with respect to the unprocessed program (LA830/14-1) and the research unit FOR surfaces. This is known as spectral darkening. If the 2285 “Debris Disk in Planetary Systems” reflectance at longer NIR wavelengths is less reduced (LA830/20-1). than in the shorter UV-VIS range, the spectrum gets redder. This effect is observed in most samples, but References the intensity of reddening varies strongly between the differently orientated samples. [1] Bennett, C. J. et al.: Space-Weathering of Solar System Bodies: A Laboratory Perspective, Chemical reviews 3.3 Microstructures 113:9086–9150, 2013. TEM investigations of the craters reveal a layered [2] Fazio, A. et al.: Femtosecond laser irradiation of olivine structure independent of the sample orientation. From single crystals: Experimental simulation of space weathering, Icarus 299:240–252, 2018. top to bottom there is a glass layer, a dominant mechanically deformed layer containing shock [3] Seydoux-Guillaume, A.-M. et al.: Dominance of defects and the undeformed substrate. All samples mechanical over thermally induced damage during show parallel planar lamellae, that are amorphous in femtosecond laser ablation of monazite, European Journal the upper part of the deformed layer and become of Mineralogy 22:235-244, 2010. thinner towards the bottom until they turn to microfractures or stacking faults. At the interface to [4] Noble, S. K. et al.: The Microstructure of a the glass layer there are always two conjugated Micrometeorite Impact into Lunar Olivine, Space directions of the amorphous features, which have an Weathering of Airless Bodies: An Integration of Remote angle of 30-50° to the surface normal. Deeper in the Sensing Data, Laboratory Experiments and Sample deformed layer the samples have either domains with Analysis Workshop, Houston, USA, 2-4 November 2015, subparallel lamellae in different orientations, or the LPI Contribution No. 1878, Abstract 2034. layer contains homogeneously lamellae with one [5] Noguchi T. et al.: Space weathered rims found on the dominant or two conjugated directions. Activated surfaces of the Itokawa dust particles, Meteoritics & cleavage planes can only be observed in the (210) Planetary Science 49:188-214, 2014. sample, where the lamellae are parallel to the (100) cleavage. The transformation to clinoenstatite can be [6] Barber, D.J. and Scott, E.R.D.: Shock and thermal seen in the (301) sample. It occurs in the lower part history of Martian meteorite Allan Hills 84001 from of the deformed layer associated with microfractures transmission electron microscopy, Meteoritics & Planetary and dislocations. Science 41: 643-662, 2006. [7] Nakamura, K. et al.: Laboratory Simulation of Space 4. Discussion Weathering: Comparison Study of Microstructures of the Laser Irradiated Olivine and Pyroxene, 65th Annual The main deformation features in our shocked Meeting of the Meteoritical Society, Los Angeles, USA, enstatite are microfractures and lamellae that 21-26 July 2002, Abstract 5186. probably represent shear planes. Frictional heating along these shear planes leads to amorphization. These experimentally produced structures are in good agreement with observations in natural samples like .
Recommended publications
  • Survival of Refractory Presolar Grain Analogs During Stardust‐
    Meteoritics & Planetary Science 50, Nr 8, 1378–1391 (2015) doi: 10.1111/maps.12474 Survival of refractory presolar grain analogs during Stardust-like impact into Al foils: Implications for Wild 2 presolar grain abundances and study of the cometary fine fraction T. K. CROAT1,*, C. FLOSS1, B. A. HAAS1, M. J. BURCHELL2, and A. T. KEARSLEY2,3 1Laboratory for Space Sciences and Department of Physics, Washington University, St. Louis, Missouri 63130, USA 2Centre for Astrophysics and Planetary Science, School of Physical Sciences, University of Kent, Canterbury CT2 7NH, UK 3Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK *Corresponding author. E-mail: [email protected] (Received 02 February 2015; revision accepted 04 May 2015) Abstract–We present results of FIB–TEM studies of 12 Stardust analog Al foil craters which were created by firing refractory Si and Ti carbide and nitride grains into Al foils at 6.05 km sÀ1 with a light-gas gun to simulate capture of cometary grains by the Stardust mission. These foils were prepared primarily to understand the low presolar grain abundances (both SiC and silicates) measured by SIMS in Stardust Al foil samples. Our results demonstrate the intact survival of submicron SiC, TiC, TiN, and less-refractory Si3N4 grains. In small (<2 lm) craters that are formed by single grain impacts, the entire impacting crystalline grain is often preserved intact with minimal modification. While they also survive in crystalline form, grains at the bottom of larger craters (>5 lm) are typically fragmented and are somewhat flattened in the direction of impact due to partial melting and/or plastic deformation.
    [Show full text]
  • 1 the Mass Spectrum Analyzer (MSA) for the Martian Moons Explorat
    In Situ Observations of Ions and Magnetic Field Around Phobos: The Mass Spectrum Analyzer (MSA) for the Martian Moons eXploration (MMX) Mission Shoichiro Yokota ( [email protected] ) Osaka Univ. https://orcid.org/0000-0001-8851-9146 Naoki Terada Tohoku University Ayako Matsuoka Kyoto University: Kyoto Daigaku Naofumi Murata JAXA Yoshifumi Saito ISAS/JAXA Dominique Delcourt LPP-CNRS-Sorbonne Yoshifumi Futaana Swedish Institute of Space Physics Kanako Seki The University of Tokyo: Tokyo Daigaku Micah J Schaible Georgia Institute of Technology Kazushi Asamura ISAS/JAXA Satoshi Kasahara The University of Tokyo: Tokyo Daigaku Hiromu Nakagawa Tohoku University: Tohoku Daigaku Masaki N Nishino ISAS/JAXA Reiko Nomura ISAS/JAXA Kunihiro Keika The University of Tokyo: Tokyo Daigaku Yuki Harada Kyoto University: Kyoto Daigaku Shun Imajo Nagoya University: Nagoya Daigaku Full paper Keywords: Martian Moons eXploration (MMX), Phobos, Mars, mass spectrum analyzer, magnetometer Posted Date: December 21st, 2020 DOI: https://doi.org/10.21203/rs.3.rs-130696/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 In situ observations of ions and magnetic field around Phobos: 2 The Mass Spectrum Analyzer (MSA) for the Martian Moons eXploration (MMX) 3 mission 4 Shoichiro Yokota1, Naoki Terada2, Ayako Matsuoka3, Naofumi Murata4, Yoshifumi 5 Saito5, Dominique Delcourt6, Yoshifumi Futaana7, Kanako Seki8, Micah J. Schaible9, 6 Kazushi Asamura5, Satoshi Kasahara8, Hiromu Nakagawa2, Masaki
    [Show full text]
  • Finegrained Precursors Dominate the Micrometeorite Flux
    Meteoritics & Planetary Science 47, Nr 4, 550–564 (2012) doi: 10.1111/j.1945-5100.2011.01292.x Fine-grained precursors dominate the micrometeorite flux Susan TAYLOR1*, Graciela MATRAJT2, and Yunbin GUAN3 1Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, New Hampshire 03755–1290, USA 2University of Washington, Seattle, Washington 98105, USA 3Geological & Planetary Sciences MC 170-25, Caltech, Pasadena, California 91125, USA *Corresponding author. E-mail: [email protected] (Received 15 May 2011; revision accepted 22 September 2011) Abstract–We optically classified 5682 micrometeorites (MMs) from the 2000 South Pole collection into textural classes, imaged 2458 of these MMs with a scanning electron microscope, and made 200 elemental and eight isotopic measurements on those with unusual textures or relict phases. As textures provide information on both degree of heating and composition of MMs, we developed textural sequences that illustrate how fine-grained, coarse-grained, and single mineral MMs change with increased heating. We used this information to determine the percentage of matrix dominated to mineral dominated precursor materials (precursors) that produced the MMs. We find that at least 75% of the MMs in the collection derived from fine-grained precursors with compositions similar to CI and CM meteorites and consistent with dynamical models that indicate 85% of the mass influx of small particles to Earth comes from Jupiter family comets. A lower limit for ordinary chondrites is estimated at 2–8% based on MMs that contain Na-bearing plagioclase relicts. Less than 1% of the MMs have achondritic compositions, CAI components, or recognizable chondrules. Single mineral MMs often have magnetite zones around their peripheries.
    [Show full text]
  • Cosmic-Ray Exposure Ages of Fossil Micrometeorites from Mid-Ordovi- Cian Sediments at Lynna River, Russia
    Meier et al., 2013 – Cosmic-ray exposure ages of fossil micrometeorites from Lynna River Cosmic-ray exposure ages of fossil micrometeorites from mid-Ordovi- cian sediments at Lynna River, Russia. M. M. M. Meiera*, B. Schmitzb, A. Lindskoga, C. Madenc and R. Wielerc aLund University, Department of Geology, Sölvegatan 12, SE-22362 Lund, Sweden bLund University, Department of Physics, SE-22100 Lund, Sweden cETH Zurich, Department of Earth Sciences, CH-8092 Zurich, Switzerland *Corresponding author: [email protected]; Submitted 12 July 2013; accepted in revised form 16 October 2013. Published in Geochimica et Cosmochimica Acta 125:338-350 (2014). References Meier et al. (2014) and Klačka et al. (2014) have been updated in this preprint. Abstract: We measured the He and Ne concentrations of 50 individual extraterrestrial chromite grains recovered from mid-Ordovician (lower Darriwilian) sediments from the Lynna River section near St. Petersburg, Russia. High concentrations of solar wind-like He and Ne found in most grains indicate that they were delivered to Earth as micrometeoritic dust, while their abundance, strati- graphic position and major element composition indicate an origin related to the L chondrite par- ent body (LCPB) break-up event, 470 Ma ago. Compared to sediment-dispersed extraterrestrial chromite (SEC) grains extracted from coeval sediments at other localities, the grains from Lynna River are both highly concentrated and well preserved. As in previous work, in most grains from Lynna River, high concentrations of solar wind-derived He and Ne impede a clear quantification of cosmic-ray produced He and Ne. However, we have found several SEC grains poor in solar wind Ne, showing a resolvable contribution of cosmogenic 21Ne.
    [Show full text]
  • PRESOLAR, INTERPLANETARY, and COMETARY DUST 6:00 P.M
    45th Lunar and Planetary Science Conference (2014) sess611.pdf Tuesday, March 18, 2014 [T611] POSTER SESSION: PRESOLAR, INTERPLANETARY, AND COMETARY DUST 6:00 p.m. Town Center Exhibit Area Davidson J. Nittler L. R. Alexander C. M. O’D. Stroud R. M. POSTER LOCATION #85 Presolar Materials and Nitrogen Isotope Anomalies in the Unique Carbonaceous Chondrite Miller Range 07687 [#1376] We report high presolar grain abundances (O- and C-anomalous) in the carbonaceous chondrite MIL 07687 indicating that it is of very low petrographic type. Liebig B. Liu M. C. POSTER LOCATION #86 A Search for Presolar Grains in the Murchison Meteorite [#1631] The recently established Cameca NanoSIMS 50L ion probe was used to search for grains of presolar origin in a slab of the Murchison meteorite. Jacquet E. Petitat M. Mostefaoui S. Gounelle M. Birck J.-L. et al. POSTER LOCATION #87 Chromium-54 Carriers in a Tagish Lake Residue: A NanoSIMS Study [#1195] We found four grains with 54Cr excesses up to five times solar in a Tagish Lake residue. They may account for the isotopic variations of chondrites. Liu N. Gallino R. Bisterzo S. Davis A. M. Savina M. R. et al. POSTER LOCATION #88 Zirconium Isotope Abundances in Single Mainstream SiC Grains and the 13C Pocket Structure in AGB Models [#1292] We compare previous single mainstream SiC grain data with postprocessing AGB nucleosynthesis model predictions with different 13C pockets for Zr-isotope ratios. Fujiya W. Hoppe P. Zinner E. Pignatari M. Herwig F. POSTER LOCATION #89 A Born-Again AGB Star Origin of Type AB Silicon Carbide Grains Inferred from Radiogenic Sulfur-32 [#1515] We found presolar SiC grains of Type AB with 32S enrichments.
    [Show full text]
  • Chondrules in Antarctic Micrometeorites
    Chondrules in Antarctic micrometeorites Item Type Article; text Authors Genge, M. J.; Gileski, A.; Grady, M. M. Citation Genge, M. J., Gileski, A., & Grady, M. M. (2005). Chondrules in Antarctic micrometeorites. Meteoritics & Planetary Science, 40(2), 225-238. DOI 10.1111/j.1945-5100.2005.tb00377.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 02/10/2021 02:05:53 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/655963 Meteoritics & Planetary Science 40, Nr 2, 225–238 (2005) Abstract available online at http://meteoritics.org Chondrules in Antarctic micrometeorites M. J. GENGE1*, A. GILESKI2, and M. M. GRADY2 1Department of Earth Science and Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK 2Department of Mineralogy, The Natural History Museum, London SW7 5BD, UK *Corresponding author. E-mail: [email protected] (Received 17 December 2003; revision accepted 20 October 2004) Abstract–Previous studies of unmelted micrometeorites (>50 μm) recovered from Antarctic ice have concluded that chondrules, which are a major component of chondritic meteorites, are extremely rare among micrometeorites. We report the discovery of eight micrometeorites containing chondritic igneous objects, which strongly suggests that at least a portion of coarse-grained crystalline micrometeorites represent chondrule fragments. Six of the particles are identified as composite micrometeorites that contain chondritic igneous objects and fine-grained matrix. These particles suggest that at least some coarse-grained micrometeorites (cgMMs) may be derived from the same parent bodies as fine-grained micrometeorites.
    [Show full text]
  • MICROMETEOROID IMPACTS on the HUBBLE SPACE TELESCOPE WIDE FIELD and PLANETARY CAMERA 2: LARGER PARTICLES. A. T. Kearsley1, G. W
    MICROMETEOROID IMPACTS ON THE HUBBLE SPACE TELESCOPE WIDE FIELD AND PLANETARY CAMERA 2: LARGER PARTICLES. A. T. Kearsley 1, G. W. Grime 2, R. P. Webb 2, C. Jeynes 2, V. V. Palitsin 2, J. L. Colaux 2, D. K. Ross 3,4 , P. Anz-Meador 3,4 , J.C. Liou 4, J. Opiela 3,4 , G. T. Griffin 5, L. Gerlach 6, P. J. Wozniakiewicz 1,7, M. C. Price 7, M. J. Burchell 7 and M. J. Cole 7 1Natural History Museum (NHM), London, SW7 5BD, UK ( [email protected] ) 2Ion Beam Centre, University of Surrey, Guildford, 3Jacobs Technology, Houston, TX, USA 4NASA-JSC, Houston, TX, USA, 5NASA-GSFC, USA, 5consultant to European Space Agency, ESA-ESTEC, Noordwijk, The Netherlands 6School of Physical Science, University of Kent, Canterbury, CT2 7NH, UK. Introduction: The Wide Field and Planetary Cam- Results: 63 impact features > 700µm across, each with era 2 (WFPC2) was returned from the Hubble Space paint spallation > 300 µm, showed combinations of Telescope (HST) by shuttle mission STS-125 in 2009. five main components (e.g. Fig. 3): a) an exposed sur- In space for 16 years, the surface accumulated hun- face of Al alloy, often with adhering fragments of dreds of impact features [1] on the zinc orthotitanate paint; b) a bowl-shaped pit or field of compound pits, paint, some penetrating through into underlying metal. penetrating into the alloy; c) frothy impact melt, de- Larger impacts were seen in photographs taken from rived mainly from paint (Fig. 3); d) droplets/coatings within the shuttle orbiter during service missions [2], of alloy-dominated metal melt; and occasionally e) with spallation of paint in areas reaching 1.6 cm across, retained fragments of the impacting particle (Fig 4).
    [Show full text]
  • A SURVEY of DATA on MICROSCOPIC EXTRATERRESTRIAL PARTICLES (Revised June 1964) by Richard A
    NASA TECHNICAL NOTE A SURVEY OF DATA ON MICROSCOPIC EXTRATERRESTRIAL PARTICLES (Revised June 1964) by Richard A. Schmidt I Ames Research Celzter Mofett Field, Calzf; NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. MARCH 1965 1 I" TECH LIBRARY KAFB, NM I llllll111111111111111 lllll lllll llll Ill1 1111 0079702 NASA TN D-2719 A SURVEY OF DATA ON MICROSCOPIC EXTRATERRESTRIAL PARTICLES (Revised June 1964) By Richard A. Schmidt Ames Research Center Moffett Field, Calif. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Office of Technical Services, Department of Commerce, Washington, D.C. 20230 -- Price 84-00 A SURVEY OF WTA ON MICROSCOPIC MTRAT ERRESTR IAL PART ICLES (Revised June 1964) By Richard A. Schmidt Ames Research Center Moffett Field, Calif. PREFACE The problems of conducting a literature survey are many and varied. A major consideration is, of course, assembling pertinent books, reports, articles, and research notes dealing with the subject. In assembling the first edition of this work, the writer was ably assisted by Mrs. Elizabeth Boardman, Librarian of the Geophysical and Polar Research Center at the University of Wisconsin. Her untiring efforts and active interest in this project were of great value. With that strong foundation, the task of revis- ing the work was lessened considerably. Rapid recent progress in the study of microscopic extraterrestrial particles necessitated a complete revision of the 1963 survey. In many places, new data afford better understanding of problems encountered in the earlier work, Moreover, the new results suggest areas for further study to answer questions they raise about the nature and origin of the particles.
    [Show full text]
  • The Physical Propermes of Near Earth Asteroids
    The Physical Properes of Near Earth Asteroids Dan Bri University of Central Florida What Do We Need to Know About NEA Physical Proper/es? • Asteroid Structure – Rubble pile? – Coherent object? • Material Strength – Tough? Weak? • Mineralogy • Thermal Properes • Surface texture – Dusty regolith? – Boulder field? Sources of Data • Meteorites – Strong? Weak? • Observaons of Bolides • Meteorite Strewnfields • Observaons of NEAs – Rota/on rates – Binaries • Physics – Microgravity – Cohesion – Thermal cycles Lets Start with Meteorites Meteorite Types • Chondrites (ordinary, enstatite) – Stones, chondrules, olivine, pyroxene, metal, sulfides, usually strong • Volatile-rich Carbonaceous Chondrites (CI, CM) Farmington (L5) Farmville (H4) – Hydrated silicates, carbon compounds, refractory grains, very weak. • Other Carbonaceous (CO, CV, CK, CR, CH) – Highly variable, chondules, refractory grains, often as strong as ordinary Allende (CV3) chondrites • Achondrites – Igneous rocks from partial melts or melt residues Bununu (Howardite) • Irons – Almost all FeNi metal Thiel Mountains (pallasite) • Stony-irons Cape York (IIIAB) – Mix of silicates and metal Meteorite Density Meteorite Compressive Strength Material Meteorite Type Compressive Strength (MPa) Concrete (Unreinforced) Typical Sidewalk 20 (3000 psi) Charcoal Briquee ~2 Granite 100–140 Medium dirt clod 0.2-0.4 La Lande, NM L5 373.4 Tsarev L5 160-420 Covert (porosity 13%) H5 75.3 Krymka LL3 160 Seminole H4 173 Holbrook, AZ (porosity 11%) L6 6.2 Tagish Lake C2 0.25-1.2 Murchison CM ~50 Bolides ? 0.1-1
    [Show full text]
  • Detection and Measurement of Micrometeoroids with LISA Pathfinder
    A&A 586, A107 (2016) Astronomy DOI: 10.1051/0004-6361/201527658 & c ESO 2016 Astrophysics Detection and measurement of micrometeoroids with LISA Pathfinder J. I. Thorpe1, C. Parvini1,2, and J. M. Trigo-Rodríguez3 1 Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA e-mail: [email protected] 2 Department of Aerospace Engineering, The George Washington University, Washington, DC 20052, USA 3 Meteorites, Minor Bodies and Planetary Sciences Group, Institute of Space Sciences (CSIC-IEEC), Campus UAB Bellaterra, Carrer de Can Magrans, s/n 08193 Cerdanyola del Vallés Barcelona, Spain Received 28 October 2015 / Accepted 23 December 2015 ABSTRACT The Solar System contains a population of dust and small particles originating from asteroids, comets, and other bodies. These par- ticles have been studied using a number of techniques ranging from in-situ satellite detectors to analysis of lunar microcraters to ground-based observations of zodiacal light. In this paper, we describe an approach for using the LISA Pathfinder (LPF) mission as an instrument to detect and characterize the dynamics of dust particles in the vicinity of Earth-Sun L1. Launched on Dec. 3rd, 2015, LPF is a dedicated technology demonstrator mission that will validate several key technologies for a future space-based gravitational-wave observatory. The primary science instrument aboard LPF is a precision accelerometer which we show will be capable of sensing discrete momentum impulses as small as 4 × 10−8 N s. We then estimate the rate of such impulses resulting from impacts of microme- teoroids based on standard models of the micrometeoroid environment in the inner solar system.
    [Show full text]
  • Collisional Evolution of Small-Body Populations 545
    Davis et al.: Collisional Evolution of Small-Body Populations 545 Collisional Evolution of Small-Body Populations Donald R. Davis Planetary Science Institute Daniel D. Durda Southwest Research Institute Francesco Marzari Università di Padova Adriano Campo Bagatin Universidad de Alicante Ricardo Gil-Hutton Félix Aguilar Observatory Asteroid collisional evolution studies are aimed at understanding how collisions have shaped observed features of the asteroid population in order to further our understanding of the for- mation and evolution of our solar system. We review progress in developing more realistic colli- sional scaling laws, the effects of relaxing over-simplifying assumptions used in earlier colli- sional evolution studies, and the implications of including observables, such as collisionally produced families, on constraining the collisional history of main-belt asteroids. Also, colli- sional studies are extended to include Jupiter Trojans and the Hilda population. Results from collisional evolution models strongly suggest that the mass of main-belt asteroids was only modestly larger, by up to a factor of 5 or so, at the time that the present collisionally erosive environment was established, presumably early in solar system history. Major problems remain in identifying the appropriate scaling algorithm for determining the threshold for catastrophic disruption as well as understanding the resulting size and velocity distribution of fragments. Dynamical effects need to be combined with collisional simulations in order to understand the structure of the small asteroid size distribution. 1. INTRODUCTION mental to understanding asteroid collisional history; how- ever, a consensus has not yet developed among workers as The importance of collisions in shaping the present aster- to the appropriate methodology to go from laboratory-scale oid belt has been recognized for nearly 50 years, following experiments to giant collisions involving bodies to hundreds the pioneering work of Piotrowski (1953) on the frequency of kilometers in size.
    [Show full text]
  • Lunar Andplanetaryscience XXIII
    • 4 Lunar and Planetary Science XXIII J /'f/" / Abstracts of papers submitted to the Twenty- Third Lunar and Planetary Science Conference PRESSABSTRACTS NI A LPI/ National Aeronautics and LUNAR AND PLANETARYINSTIIUE Space Administration UNIVERSITIESSPACE RESEARCHASSOCIATION Lyndon B. Johnson Space Center Houston, Texas _92-]1222 LL._:'._r:"_:,',_'_L; PLANt:TAQY SC|c,%C_ --THRU-- C"'_?_ _!CF Oress ,',,:;str-tcts (Lunar N_Z-31237 Unc|as '_.... G]IQ6 00q1302 PRESS ABSTRACTS TWENTY-THIRD LUNAR AND PLANETARY SCIENCE CONFERENCE March 16 - 20, 1992 Compiled by the Lunar and Planetary Institute 3600 Bay Area Boulevard Houston Texas 77058-1113 LPI Contribution Number 781 Business Telephone Numbers of First Authors i T. J. Bernatowicz ................................................................... 314-935-6274 B. C. Bruno .......................................................................... 808-956-3160 C. Coombs ........................................................................... 505-243-2287 L. Crumpler ......................................................................... 401-863-3825 R. De Hon ........................................................................... 318-342-1894 M. Gaffey ............................................................................ 518-276-6300 C. L. Harper Jr ..................................................................... 617-495-8008 G. R. Huss ........................................................................... 818-356-6134 Y. Kim ..............................................................................
    [Show full text]