Mineral Chemistry and Mineralogy of the Lead Bearing Members of the Beudantite and Related Mineral Groups

Total Page:16

File Type:pdf, Size:1020Kb

Mineral Chemistry and Mineralogy of the Lead Bearing Members of the Beudantite and Related Mineral Groups MINERAL CHEMISTRY AND MINERALOGY OF THE LEAD BEARING MEMBERS OF THE BEUDANTITE AND RELATED MINERAL GROUPS. By W.E. BAKER B.Sc. Hon (Tas.), M.Aus.I.M.M. A thesis presented for the Degree of Master of Science, The University of New South Wales. September, 1962. PLATE 1 Dundas Pyromorphite showing pseudomorphous Hinsdalite, a Beudantite Group mineral, at low centre (x2). CONTENTS Page Summary 1 • Introduction 4. Part I - Mineral Synthesis 11. Part II - Studies of Mineral Equilibria 23* Part III - Mineralogical Studies 49. Part IV - Concluding Remarks 96. Appendix - Analytical Procedures and Detailed Results 104. References 124. (iii) SUMMARY. Following the recognition of a pseudomorph after pyro- morphite from Dundas, Tasmania, as being either hinsdalite PbAl^CPO^) (SO^) (OH)^ or plumbogummite PbAl^(P0jL+)2(0H) H^O, a general study of these and related minerals was under­ taken. The minerals, beudantite, PbFe^(AsO^)(SO^)(OH)^, cork- ite, PbFe^(PO^)(SO^)(OH)^, hinsdalite and hidalgoite PbAl^ (AsO^)(SO^)(OH)^, all members of the Beudantite Group, were synthesized as were also the compounds PbAl^CVO^)(SO^)(OH)^ and PbFe^CVO^)(SO^)(OH)^. Synthesis of plumbogummite and its iron analogue PbFe^(POi+)p(OH)^.H^O were also successful but attempts to produce the chromium analogues of these min­ erals and compounds related to plumbojarosite PbFe^CSG^)^ (0H)12 failed. Specimens of hinsdalite, plumbojarosite and the syn­ thetics were examined by means of X-ray diffraction and the rhombohedral cell constants found to be: Hinsdalite = 61°8 1 arh = 6,88 a Hidalgoite 6*97 60°43 Corkite 7.00 63°00 Beudantite 7.08 62°36 PbAl3(V04)(S04)(0H)6 7.00 60°20 PbFe3(V04)(S04)(0H)6 7-12 62°24 Plumbogummite 6.90 61 °8' 2. PbFe3(P04)2(0H)^.H20 7.04 63°36 Plumbojarosite 11.94 35°00 It was not found possible to distinguish between hinsdalite and plumbogummite on the basis of X-ray results. The pres­ ence of water in only the latter mineral indicated that differential thermal analysis might detect the difference and this was found to be the case. The formation of hinsdalite, corkite and pyromorphite was subjected to physico-chemical studies which enabled the calculation of the free energies of formation of these min­ erals as -1034.4, -669*8 and -842.3 k.cal. respectively. These values were used to test the feasibility of a volume constant reaction proposed to explain the alteration of pyromorphite to hinsdalite. -| # 9Pb?(P04) Cl + 72A13+ + 24S0^_ + 1440H“ (+ 24C1_) ^ 24PbAl (P04)(S01+)(0H)6 + 21Pb2+ + 3P0^_ + 9CI (+24C1-). The reaction was found to result in a decrease in free energy and would thus be a spontaneous process. Hence it is likely that the equation demonstrates the manner in which the alteration of pyromorphite took place in the oxidized zone. The genesis of either hinsdalite or plumbogummite re­ quires the presence of abundant aluminium which is not a 1. Bracketed chloride ions included only to preserve elec­ trical neutrality. • 3- common metal in either the hydrothermal or oxidation envir­ onment. The abundance of the eLement in the Dundas area is indicated by the widespread occurrence of gibbsite. The origin in this case is possibly to be found in the hydro- thermal alteration of the eugeosynclinal sediments with which the Dundas ore-bodies are associated. Since hinsdal- ite and plumbogummite both appear to be formed quite readily the mineral which is produced may depend largely upon the time of entry of the aluminium into the environment. If this occurs during the oxidation of the ore-body then the abundance of sulphate will favour the formation of hinsdal- ite. Once the sulphides have been oxidised down to the water table, the concentration of sulphate in the ground water will fall to a far lower level and, provided that sufficient phos­ phate is present, the formation of plumbogummite will be favoured. 4. INTRODUCTION. The data presented in this thesis have resulted from the.study of a number of the less common secondary lead min­ erals. The investigations began in 1957 whilst the writer was a teaching fellow at the University of New South Wales and were completed at Broken Hill in 1961. The programme was initiated by the study of a specimen from the Comet 0 Mine, Dundas, Tasmania *. This consisted largely of a pale green mass of hexagonal prisms of pyromorphite distributed through a limonitic gossan. In parts of the specimen there were white pseudomorphs after pyromorphite, some of them occurring merely as thin shells of hexagonal outline. (Plate 1, frontispiece.) A qualitative spectrographic examination of the pseudo- morph showed that the dominant metals were aluminium and lead whilst silver was present as a minor constituent. X-ray powder diffraction data were obtained by means of a Phillips Model 1050 X-Ray Diffractometer. Comparison of these data with those available in the A.S.T.M. Card Index showed that plumbogummite, PbAl^(PO^)^(OH) H^O (Card 2-O683), gives a similar diffraction pattern and has a composition compatible with the spectrographic results for the pseudomorph. 2. Examination of the specimen was requested by Associate Professor L.J. Lawrence, then Senior Lecturer in charge of the Geological Section of the School of Mining Eng­ ineering and Applied Geology. .?• Plumbogummite is a member of one of three isostruct- ural groups of minerals, namely the Alunite, Plumbogummite and Beudantite Groups. As is the case with the Plumbo­ gummite Group the other two take their names from member minerals alunite, KAl^(SO^)^(OH)^, and beudantite, PbFe^ (AsO^) (SOj^) (OH)^. One member of the latter group, hinsdal- ite, PbAl^CPO^)(SO^)(OH)^, has a composition near to that of plumbogummite. No X-ray data were available for hinsdalite and a specimen was sought so that X-ray diffraction studies could be made. The Australian Museum in Sydney kindly don­ ated a specimen from the original locality of the Golden Fleece Mine, Hinsdale County, Colorado, U.S.A. The diffrac­ tion patterns of the pseudomorph, plumbogummite and hinsdal­ ite are given in Table 1 (page 6). From these data it can be seen that the identity of the pseudomorph cannot be re­ solved by X-ray diffraction methods alone. Solution of the problem was not attempted at this stage and the line of study was changed to investigate the genesis of the pseudomorph. By refluxing pyromorphite with a solution of aluminium sul­ phate, a material yielding a diffraction pattern similar to that of hinsdalite was produced. As a result of this success the writer decided to extend the studies to include the lead bearing members of the Beudantite, Plumbogummite and Alunite Groups. KENSI NGTON £ TABLE 1. Comparison of X-Rav Diffraction Patterns Hlnsdalite. Plumbogummite Dundas A.S.T.M. Card Hinsdalite Pseudomorph 2-0683 (Colorado) d d d 1/11 i/q 1/1 1 5-71 95 5.70 80 5.70 92 5-5 8 15 - 5-57 30 4.92 15 4.8V 4o 4.90 3 3-51 60 3-79 40 3-51 44 3.45 20 3.45 60 3-43 18 2.97 100 2.97 100 2.97 100 2.94 10 - 2.93 4 2.86 15 2.82 20 2.85 11 2.79 15 - 2.79 15 2.46 15 2.44 4o 2.45 10 + In Parts I and II of this thesis only a part of the diffraction patterns is given. Complete data are given in Part III - Mineralogical Studies. The minerals concerned are listed in Table 2 (page 8). In­ vestigations were planned in three fields, namely mineral synthesis, mineral equilibria and mineralogy. Mineral syntheses were undertaken to produce the 7 required minerals and other lead bearing compounds of sim­ ilar structure. It was also planned to examine the possibil­ ity that other secondary lead minerals, like pyromorphite, were altered by the action of aluminium sulphate. Studies of mineral equilibria were designed to enable the determination of free energy of formation data which it was thought would allow a more accurate consideration of the alteration of pyromorphite in the presence of aluminium and sulphate ions. Mineralogical studies were undertaken mainly to obtain X-ray diffraction data for the minerals concerned since such data have been unavailable up to the present time. Because of the similarity between the diffraction patterns of hins- dalite and plumbogummite, other means of distinguishing these minerals were sought. Chemical spot-testing and differential thermal analysis were thought to be applicable to this prob­ lem. .8. TABLE 2. Lead Bearing Members of the Alunite. Plumbogummite and Beudantite Groups. ALUNITE GROUP Plumbojarosite PbFe6(S04)lf(0H)12 PLUMBOGUMMITE GROUP Plumbo gummit e PbAl3(P04)2(0H)?.H20 BEUDANTITE GROUP Beudantite PbFe3(As04)(S04)(0H)6 Corkite PbFe3(F04)(S04)(0H)6 Hinsdalite PbAl (P04)(S04)(0H)6 Hidalgoite PbAl3(As04)(S04)(0H)6 The minerals concerned have been studied by a number of workers. A chemical classification of the members of the three groups was proposed by Schaller (1911)* Morphological and optical studies of beudantite have been made by Lacroix (1915)5 of corkite by Miers (1900), of hinsdalite by Larsen and Schaller (1911) and of hidalgoite by Smith et al (1953)* Plumbogummite has been examined by Prior (1900) and plumbo- jarosite by Hillebrand and Penfield (1902) and Hillebrand and Wright (1910)• X-ray data have been published for hid­ algoite by Smith et al (Op.Cit.). Interplanar spacings and intensities for plumbogummite are listed in the A.S.T.M. Card Index (Op.Cit.), apparently derived from unpublished 9 records of the British Museum. The cell dimensions and structure of plumbojarosite have been elucidated by Henricks (1935) and interplanar spacings and intensities have been published by Kauffman et al (1950)* These data have been summarised by Palache et al (1951) and are presented in Table 3 (page 10).
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Hidalgoite from the Tsumeb Mine, Namibia, and Hydrogen 2+ 3+ 5+ Bonding in the D G3 (T O4)(TO3OH)(OH)6 Alunite Structures
    Mineralogical Magazine, August 2012, Vol. 76(4), pp. 839–849 Refinement of the crystal structure of zoned philipsbornite– hidalgoite from the Tsumeb mine, Namibia, and hydrogen 2+ 3+ 5+ bonding in the D G3 (T O4)(TO3OH)(OH)6 alunite structures M. A. COOPER AND F. C. HAWTHORNE* Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada [Received 19 January 2012; Accepted 19 March 2012; Associate Editor: G. Diego Gatta] ABSTRACT The crystal structure of zoned philipsborniteÀhidalgoite, hexagonal (rhombohedral), R3¯m, Z =3:a= ˚ ˚ 3 7.1142(4), c=17.0973(9) A, V=749.4(1) A , from the Tsumeb mine, Namibia, has been refined to R1 = 1.68% for 301 unique reflections collected on a Bruker D8 three-circle diffractometer equipped with a rotating-anode generator, multilayer optics and an APEX-II CCD detector. Chemical analysis by electron microprobe showed zoned crystals with a rim enriched in S and Fe relative to the core. The core composition is SO3 3.31, As2O5 30.57, Al2O3 23.05, FeO 1.44, PbO 33.94, H2Ocalc 9.58, total 2+ 2+ 101.79 wt.%, corresponding to Pb0.98(Al2.92Fe0.13)(AsO4)[(As0.72S0.27)O3.14(OH)0.85](OH)6; and the rim composition is SO3 8.88, As2O5 22.63, Al2O3 22.90, FeO 2.57, PbO 34.91, H2Ocalc 9.27, total 2+ 2+ 101.16 wt.%, corresponding to Pb0.99(Al2.85Fe0.23)(AsO4)[(As0.25S0.70)O3.30(OH)0.50](OH)6. PhilipsborniteÀhidalgoite has the alunite-type structure, sheets of corner-sharing octahedra, decorated on top and bottom by [(As,S)O4]and(AsO3OH) tetrahedra, that are linked into a three-dimensional structure by [12]-coordinated Pb2+ cations and hydrogen bonds.
    [Show full text]
  • Download the Scanned
    NEW MINERAL NAN,{ES Gallite H. SrnuNz, B. H. Grran, exo E. Snnr,rcrn. Gallit, cuGaS:, das erste selbstandige Galli- ummineral, und seine verbreitung in den Erzen der Tsumeb- uncl Kipushi-Mine. NeuesJahrb. Mineral , Monotslt- 1958, No. 1l-1'2,241-264. Galium has long been known to be present in amounts up to 1,.85/6in germanite from Tsumeb and various unidentified minerals have been thought to be gallium minerals. This is now proved to be the case. Analyses by W. Reiner gave Cu 23'52, 35 52; Pb 14.25,3.00; Zn 3'36' 2'76; Fe 3'41, 4.93; Ge 0 66, 0 45; Ga 23.O6,17.11; As 1.00,0 90; S 24.16,27.90;SiOr 4'05, 4 92, sum 97.+7, 97.4g7o. Recalculation, deducting (based on microscopic counts) quartz 4'0, 49; renierite 13.4, 8.0; tennantite 1 0, 0.4; galena 14.0, 1'7; bornite 5 6; chalcocite -,0.5; 2.0 give for , 5.3; digenite pyrite 0.8; and "arsenate" thegallite Cr-26.9,30.8;Pb 3.0,2.3;2n4.6,4.4;Fe2.7,4 9; Ga35.4,29.2;527.4,284/6' corresponclingto CuGaSr, with some substitution of Cu or Ga by Fe and Zn The mineral was also synthesized by passing HuS over an equimolar mixture of Ga:Or and CuzO at 400'; the product gave an r-ray pattern identical with that of the mineral' X-ray study by single crystal and powcler photographs shorvedgallite to be tetragonal, structure like that of chalcopyrite, space group probably Dzal2-142d.
    [Show full text]
  • Zinc-Rich Zincolibethenite from Broken Hill, New South Wales
    Zinc-rich zincolibethenite from Broken Hill, New South Wales Peter A. Williams', Peter Leverettl, William D. Birch: David E. Hibbs3, Uwe Kolitsch4 and Tamara Mihajlovic4 'School of Natural Sciences, University of Western Sydney, Locked Bag 1797, Penrith South DC NSW 1797 ZDepartmentof Geosciences, Museum Victoria, PO Box 666, Melbourne, VIC 3001 3School of Pharmacy, University of Sydney, Sydney, NSW 2006 41nstitutfiir Mineralogie und Kristallographie, Geozentrum, Universitat Wien, Althanstrasse 14, A-1090 Wien, Austria ABSTRACT Zinc-rich zincolibethenite with the empiricalformula (Zn,,,,,Cu,,) ,, l(P,,~s,,,,) ,, 0,IOHisimplifed formula (Zn,Cu),PO,OH), occurs inferruginousgossunfrom theNo 3 lens, 280RL lmel, Block 14 open cut, Broken Hill, New South Wales, Australia, associated with corkite-hinsdalite, tsumebite, pyromorphite, sampleite, torbernite, dufienite, strengite and beraunite. Zinc-rich libethenite and olivenite are also associated with the zone, together with members of the libethenite-olivenite series. It is possible that solid solution in thephosphateseriesextends to theorthorhombicpolymorphofcompositionZn,P040H.Thecrystalstructureofa B~okenHillsample has been refined to Rl(F) = 0.0227 (single-crystal X-ray intensity data; a = 8.323(1), b = 8.251(1), c = 5.861(1)A, V = 402.5(1)A3; structuralformula Zn(Cu,,,,Zn,,,)i(P,,,~s0,02~OPIOH~.Detailedphysical andchemical dataarepresented, someofwhich supplement the partially incomplete data for type zincolibethenitefiom Zambia. INTRODUCTION An extremely diverse suite of secondary arsenates and Pnnm, witha = 8.3263(3), b = 8.2601(3), c = 5.8771(2) P\, V = phosphates occurstowards thebase of the oxidised zone of 402.52(10)A3 (Z = 4). Synthetic studies by Braithwaiteet al. the Broken Hill ore body (Figure 1). Minerals, including (2005)showed that, in boilingaqueons solution, no excessZn this suite, from the Block 14 and Kintore open cuts have was accommodated by the lattice, despite the fact that the been described in detail by Birch and van der Heyden Pnnm polymorph of Zn2P040His known as a synthetic, (1997).
    [Show full text]
  • Joëlbruggerite, Pb3zn3(Sb5+,Te6+)
    American Mineralogist, Volume 94, pages 1012–1017, 2009 5+ 6+ 5+ Joëlbruggerite, Pb3Zn3(Sb ,Te )As2O13(OH,O), the Sb analog of dugganite, from the Black Pine mine, Montana STUART J. MILL S ,1,* UWE KOLIT S CH ,2 RIT S URO MIYAWA K I ,3 LEE A. GROAT ,1 AND GLENN POIRIER 4 1Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Road, Vancouver, British Columbia V6T 1Z4, Canada 2Mineralogisch-Petrographische Abteilung, Naturhistorisches Museum Wien, Burgring 7, A-1010 Wien, Austria 3Department of Geology, National Museum of Nature and Science, 3-23-1, Hyakunin-cho, Shinjuku, Tokyo 169-0073, Japan 4Mineral Sciences Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada AB S TRACT 5+ 6+ Joëlbruggerite, ideally Pb3Zn3(Sb ,Te )As2O13(OH,O), is a new arsenate mineral (IMA 2008-034) and the Sb5+ analog of dugganite, from the Black Pine mine, 14.5 km northwest of Philipsburg, Granite County, Montana. It is usually found perched on mimetite; other species that may be present include malachite, azurite, pseudomalachite, chalcocite, beudantite-corkite, duftite, dugganite, and kuksite, in milky quartz veins. Joëlbruggerite occurs as barrel-shaped or prismatic crystals up to about 50 µm across in various shades of purple. The crystals have an adamantine luster and a white streak. Mohs hardness is about 3. The fracture is irregular, and the tenacity is brittle. Joëlbruggerite crystals are uniaxial (–), with a calculated refractive index of n = 1.993, and weakly pleochroic: X = Y = gray, Z = purple; absorption: Z > X = Y. Crystals show straight extinction and are length-fast.
    [Show full text]
  • Joint Meeting
    Joint Meeting 19. Jahrestagung der Deutschen Gesellschaft für Kristallographie 89. Jahrestagung der Deutschen Mineralogischen Gesellschaft Jahrestagung der Österreichischen Mineralogischen Gesellschaft (MinPet 2011) 20.-24. September 2011 Salzburg Referate Oldenbourg Verlag – München Inhaltsverzeichnis Plenarvorträge ............................................................................................................................................................ 1 Goldschmidt Lecture .................................................................................................................................................. 3 Vorträge MS 1: Crystallography at High Pressure/Temperature ................................................................................................. 4 MS 2: Functional Materials I ........................................................................................................................................ 7 MS 3: Metamorphic and Magmatic Processes I ......................................................................................................... 11 MS 4: Computational Crystallography ....................................................................................................................... 14 MS 5: Synchrotron- and Neutron Diffraction ............................................................................................................. 17 MS 6: Functional Materials II and Ionic Conductors ................................................................................................
    [Show full text]
  • Soluble Phosphate Amendments for Metal and Radionuclide
    SOLUBLE PHOSPHATE AMENDMENTS FOR METAL AND RADIONUCLIDE IMMOBILIZATION by FRANTISEK MAJS (Under the Direction of William P. Miller) ABSTRACT Intensive mining and processing of metals and radionuclides have resulted in significant soil and sediment contamination. Phosphate-based in-situ immobilization of the metals and radionuclides has been proposed as an alternative to disruptive and expensive cleanup strategies. This dissertation summarizes results of two experiments, which tested potential of four phosphate amendments [trisodium trimetaphosphate, dodecasodium phytate (Na-IP6), calcium phytate (Ca-IP6) and hydroxyapatite] to immobilize Cu, Zn, and Pb in soil and Ni and U in sediment. Stability of immobilized contaminants was tested by selective leaching and solid phase speciation techniques. Hydroxyapatite lowered trace metal and U solubility with increasing treatment level and Ca-IP6 behaved in general similarly, except for a slight increase in Ni and Cu solubilities at higher amendment levels, presumably due to the chelation potential of phytate. Application of metaphosphate and Na-IP6 were proven unsuitable due to dispersion of soil organic matter and colloidal particles, which had a negative impact on contaminant solubility. Leaching techniques revealed amendment-derived changes in element fractionation and indicated that HA was suitable for Cu, Zn, and Pb immobilization, whereas Ca-IP6 only for Pb and U immobilization, and brought into question the efficacy of applying phosphates for immobilization of Ni. Qualitative spectroscopy disclosed Pb speciation in solid phase in the untreated soil and mechanisms of its transformation upon phosphate addition, but failed to identify any crystalline form of U in the sediment. Unamended Pb-contaminated soil showed strong diffraction patterns for anglesite, cerussite, and plumbojarosite.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • Joëlbruggerite, Pb3zn3(Sb5+,Te6+)
    American Mineralogist, Volume 94, pages 1012–1017, 2009 5+ 6+ 5+ Joëlbruggerite, Pb3Zn3(Sb ,Te )As2O13(OH,O), the Sb analog of dugganite, from the Black Pine mine, Montana STUART J. MILLS ,1,* UWE KOLITSCH ,2 RITSURO MIYAWAKI ,3 LEE A. GROAT ,1 AND GLENN POIRIER 4 1Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Road, Vancouver, British Columbia V6T 1Z4, Canada 2Mineralogisch-Petrographische Abteilung, Naturhistorisches Museum Wien, Burgring 7, A-1010 Wien, Austria 3Department of Geology, National Museum of Nature and Science, 3-23-1, Hyakunin-cho, Shinjuku, Tokyo 169-0073, Japan 4Mineral Sciences Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada ABSTRACT 5+ 6+ Joëlbruggerite, ideally Pb3Zn3(Sb ,Te )As2O13(OH,O), is a new arsenate mineral (IMA 2008-034) and the Sb5+ analog of dugganite, from the Black Pine mine, 14.5 km northwest of Philipsburg, Granite County, Montana. It is usually found perched on mimetite; other species that may be present include malachite, azurite, pseudomalachite, chalcocite, beudantite-corkite, duftite, dugganite, and kuksite, in milky quartz veins. Joëlbruggerite occurs as barrel-shaped or prismatic crystals up to about 50 µm across in various shades of purple. The crystals have an adamantine luster and a white streak. Mohs hardness is about 3. The fracture is irregular, and the tenacity is brittle. Joëlbruggerite crystals are uniaxial (–), with a calculated refractive index of n = 1.993, and weakly pleochroic: X = Y = gray, Z = purple; absorption: Z > X = Y. Crystals show straight extinction and are length-fast. The empirical chemical formula (mean of 5 electron microprobe analyses) calculated on the basis of 14 [O + OH] 2+ 5+ 6+ anions is Pb3.112(Zn2.689Fe0.185)Σ2.874(Sb0.650Te 0.451)Σ1.101(As1.551P0.203Si0.160)Σ1.914O13.335(OH)0.665.
    [Show full text]
  • [Thesis Title Goes Here]
    CHEMICAL TUNING OF THERMAL EXPANSION IN OXIDES A Thesis Presented to The Academic Faculty by Chad Ruschman In Partial Fulfillment of the Requirements for the Degree Master’s of Science in Chemistry School of Chemistry and Biochemistry Georgia Institute of Technology August 2010 CHEMICAL TUNING OF THERMAL EXPANSION IN OXIDES Approved by: Dr. Angus P. Wilkinson, Advisor School of Chemistry and Biochemistry Georgia Institute of Technology Dr. Z. John Zhang School of Chemistry and Biochemistry Georgia Institute of Technology Dr. E. Kent Barefield School of Chemistry and Biochemistry Georgia Institute of Technology Date Approved: May 19, 2010 To my mother and my wife Lindsay ACKNOWLEDGEMENTS First and foremost, I would like to give thanks to my advisor, Dr. Angus P. Wilkinson. He has been an exceptional advisor, from whom I have learned much. His constant support and guidance have helped me in my endeavor at Georgia Tech, and I will forever be grateful for his help. I would also like to take the time to thank my committee members Dr. Z. John Zhang and Dr. E. Kent Barefield for taking their time to provide feedback and help me improve this thesis. I would like to thank the past and present members of the Wilkinson group whose attitudes and friendship have made my time at Georgia Tech much more enjoyable. I especially like to thank Dr. Andrew C. Jupe, for his assistance in data collection and analysis of some of our synchrotron data and teaching me a little about program writing. I would also like to thank Benjamin Greve for staying up with me for those long shifts at Argonne National Lab while collecting data on these samples.
    [Show full text]
  • 1 REVISION 1 1 2 the Crystal Structure
    This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4486 6/5 1 REVISION 1 2 3 The crystal structure and vibrational spectroscopy of jarosite and alunite minerals: A 4 review 5 6 Henry J. Spratt,1 Llew Rintoul,1 Maxim Avdeev2 and Wayde N. Martens1,* 7 8 1Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, 9 Queensland University of Technology, Brisbane, Queensland 4001, Australia 10 2Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, 11 New South Wales 2234, Australia 12 13 *Corresponding author, email: [email protected] 14 15 Abstract 16 The alunite supergroup of minerals are a large hydroxy-sulfate mineral group which has seen 17 renewed interest following their discovery on Mars. Numerous reviews exist which are 18 concerned with the nomenclature, formation and natural occurrence of this mineral group. 19 Sulfate minerals in general are widely studied and their vibrational spectra are well 20 characterized. However, no specific review concerning alunite and jarosite spectroscopy and 21 crystal structure has been forthcoming. This review focuses on the controversial aspects of 22 the crystal structure and vibrational spectroscopy of jarosite and alunite minerals. 23 Inconsistencies regarding band assignments especially in the 1000-400 cm-1 region plague 24 these two mineral groups and result in different band assignments amongst the various 25 spectroscopic studies. There are significant crystallographic and magnetic structure 1 Always consult and cite the final, published document.
    [Show full text]
  • 12. Supergene Ore and Gangue Characteristics
    12. Supergene Ore and Gangue Characteristics By Randolph A. Koski 12 of 21 Volcanogenic Massive Sulfide Occurrence Model Scientific Investigations Report 2010–5070–C U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Koski, R.A., 2012, Supergene ore and gangue characteristics in volcanogenic massive sulfide occurrence model: U.S. Geological Survey Scientific Investigations Report 2010–5070 –C, chap. 12, 6 p. 183 Contents Mineralogy and Mineral Assemblages ..................................................................................................185 Paragenesis and Zoning Patterns ...........................................................................................................185
    [Show full text]