Mars Scientists Push for 'Mega-Mission'
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Step Toward Mars University of Dayton
University of Dayton eCommons News Releases Marketing and Communications 4-26-2017 A Step Toward Mars University of Dayton Follow this and additional works at: https://ecommons.udayton.edu/news_rls Recommended Citation University of Dayton, "A Step Toward Mars" (2017). News Releases. 10986. https://ecommons.udayton.edu/news_rls/10986 This News Article is brought to you for free and open access by the Marketing and Communications at eCommons. It has been accepted for inclusion in News Releases by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. Wednesday April 26, 2017 R E L A T E D A STEp TOWARD MARS A R T I C L E S A highly successful test of a prototype power generator Come on at the University of Dayton Research Institute bodes well for NASA's plans to expand its exploration of Mars over Mars with the next rover mission. Rover In early February, NASA scientists narrowed down potential landing sites for Mars 2020 to three — Northeast Syrtis, Jezero Crater and Columbia Hills — at least one of which is likely to be warmer than sites where previous rovers landed. Simultaneously, researchers in Dayton performed a high-temperature qualifying test on a power generator prototype to see if it would operate successfully at the higher temperatures that may be experienced by the generator powering the next rover. The Mars 2020 rover will be powered by a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) — similar to the unit currently providing power to Curiosity in Gale Crater — which converts heat created by naturally decaying plutonium radioisotopes into electricity to power the rover's instruments, computers, wheels, robotic arm and radio. -
The Water on Mars Vanished. This Might Be Where It Went
The water on Mars vanished. This might be where it went. timesofindia.indiatimes.com/home/science/the-water-on-mars-vanished-this-might-be-where- it-went-/articleshow/81599751.cms NYT News Service | Mar 20, 2021, 10:32 IST Mars was once wet, with an ocean’s worth of water on its surface. Today, most of Mars is as dry as a desert except for ice deposits in its polar regions. Where did the rest of the water go? Some of it disappeared into space. Water molecules, pummeled by particles of solar wind, broke apart into hydrogen and oxygen atoms, and those, especially the lighter hydrogen atoms, sped out of the atmosphere, lost to outer space. A tall outcropping of rock, with layered deposits of sediments in the distance, marking a remnant of an ancient, long-vanished river delta in Jezero Crater, are pictured in this undated image taken by NASA's Mars rover Perseverance. (Reuters) But most of the water, a new study concludes, went down, sucked into the red planet’s rocks. And there it remains, trapped within minerals and salts. Indeed, as much as 99% of the water that once flowed on Mars could still be there, the researchers estimated in a paper published this week in the journal Science. Data from the past two decades of robotic missions to Mars, including NASA ’s Curiosity rover and the Mars Reconnaissance Orbiter, showed a wide distribution of what geologists call hydrated minerals. “It became very, very clear that it was common and not rare to find evidence of water alteration,” said Bethany Ehlmann, a professor of planetary science at the California Institute of Technology and one of the authors of the paper. -
The Deposition and Alteration History of the Northeast Syrtis Major Layered Sulfates
The deposition and alteration history of the northeast Syrtis Major layered sulfates Daven P. Quinn1 and B.L. Ehlmann1,2 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA October 12, 2018 Abstract The ancient stratigraphy on the western margin of the Isidis basin records the history of wateron early Mars. Noachian units are overlain by layered, basaltic-composition sedimentary rocks that are enriched in polyhydrated sulfates and capped by more resistant units. The layered sulfates – uniquely exposed at northeast Syrtis Major – comprise a sedimentary sequence up to 600-m thick that has undergone a multi-stage history of deposition, alteration, and erosion. Siliciclastic sed- iments enriched in polyhydrated sulfates are bedded at m-scale and were deposited on slopes up to 10°, embaying and thinning against pre-existing Noachian highlands around the Isidis basin rim. The layered sulfates were then modified by volume-loss fracturing during diagenesis, and the fractures hosted channelized flow and jarosite mineral precipitation to form resistant ridges upon erosion. The depositional form and diagenetic volume-loss recorded by the layered sulfates suggest deposition in a deepwater basin. After their formation, the layered sulfates were first capped by a “smooth capping unit” and then eroded to form paleovalleys. Hesperian Syrtis Ma- jor lavas were channelized by this paleotopography, capping it in some places and filling it in others. Later fluvial features and phyllosilicate-bearing lacustrine deposits, which share a con- sistent regional base level (~-2300 m), were superimposed on the sulfate-lava stratigraphy. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
Concepts and Approaches for Mars Exploration1
June 24, 2012 Concepts and Approaches for Mars Exploration1 ‐ Report of a Workshop at LPI, June 12‐14, 2012 – Stephen Mackwell2 (LPI) Michael Amato (NASA Goddard), Bobby Braun (Georgia Institute of Technology), Steve Clifford (LPI), John Connolly (NASA Johnson), Marcello Coradini (ESA), Bethany Ehlmann (Caltech), Vicky Hamilton (SwRI), John Karcz (NASA Ames), Chris McKay (NASA Ames), Michael Meyer (NASA HQ), Brian Mulac (NASA Marshall), Doug Stetson (SSECG), Dale Thomas (NASA Marshall), and Jorge Vago (ESA) Executive Summary Recent deep cuts in the budget for Mars exploration at NASA necessitate a reconsideration of the Mars robotic exploration program within NASA’s Science Mission Directorate (SMD), especially in light of overlapping requirements with future planning for human missions to the Mars environment. As part of that reconsideration, a workshop on “Concepts and Approaches for Mars Exploration” was held at the USRA Lunar and Planetary Institute in Houston, TX, on June 12‐14, 2012. Details of the meeting, including abstracts, video recordings of all sessions, and plenary presentations, can be found at http://www.lpi.usra.edu/meetings/marsconcepts2012/. Participation in the workshop included scientists, engineers, and graduate students from academia, NASA Centers, Federal Laboratories, industry, and international partner organizations. Attendance was limited to 185 participants in order to facilitate open discussion of the critical issues for Mars exploration in the coming decades. As 390 abstracts were submitted by individuals interested in participating in the workshop, the Workshop Planning Team carefully selected a subset of the abstracts for presentation based on their appropriateness to the workshop goals, and ensuring that a broad diverse suite of concepts and ideas was presented. -
Bethany L. Ehlmann California Institute of Technology 1200 E. California Blvd. MC 150-21 Pasadena, CA 91125 USA Ehlmann@Caltech
Bethany L. Ehlmann California Institute of Technology [email protected] 1200 E. California Blvd. Caltech office: +1 626.395.6720 MC 150-21 JPL office: +1 818.354.2027 Pasadena, CA 91125 USA Fax: +1 626.568.0935 EDUCATION Ph.D., 2010; Sc. M., 2008, Brown University, Geological Sciences (advisor, J. Mustard) M.Sc. by research, 2007, University of Oxford, Geography (Geomorphology; advisor, H. Viles) M.Sc. with distinction, 2005, Univ. of Oxford, Environ. Change & Management (advisor, J. Boardman) A.B. summa cum laude, 2004, Washington University in St. Louis (advisor, R. Arvidson) Majors: Earth & Planetary Sciences, Environmental Studies; Minor: Mathematics International Baccalaureate Diploma, Rickards High School, Tallahassee, Florida, 2000 Additional Training: Nordic/NASA Summer School: Water, Ice and the Origin of Life in the Universe, Iceland, 2009 Vatican Observatory Summer School in Astronomy &Astrophysics, Castel Gandolfo, Italy, 2005 Rainforest to Reef Program: Marine Geology, Coastal Sedimentology, James Cook Univ., Australia, 2004 School for International Training, Development and Conservation Program, Panamá, Sept-Dec 2002 PROFESSIONAL EXPERIENCE Professor of Planetary Science, Division of Geological & Planetary Sciences, California Institute of Technology, Assistant Professor 2011-2017, Professor 2017-present; Associate Director, Keck Institute for Space Studies 2018-present Research Scientist, Jet Propulsion Laboratory, California Institute of Technology, 2011-2020 Lunar Trailblazer, Principal Investigator, 2019-present MaMISS -
I Identification and Characterization of Martian Acid-Sulfate Hydrothermal
Identification and Characterization of Martian Acid-Sulfate Hydrothermal Alteration: An Investigation of Instrumentation Techniques and Geochemical Processes Through Laboratory Experiments and Terrestrial Analog Studies by Sarah Rose Black B.A., State University of New York at Buffalo, 2004 M.S., State University of New York at Buffalo, 2006 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Geological Sciences 2018 i This thesis entitled: Identification and Characterization of Martian Acid-Sulfate Hydrothermal Alteration: An Investigation of Instrumentation Techniques and Geochemical Processes Through Laboratory Experiments and Terrestrial Analog Studies written by Sarah Rose Black has been approved for the Department of Geological Sciences ______________________________________ Dr. Brian M. Hynek ______________________________________ Dr. Alexis Templeton ______________________________________ Dr. Stephen Mojzsis ______________________________________ Dr. Thomas McCollom ______________________________________ Dr. Raina Gough Date: _________________________ The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii Black, Sarah Rose (Ph.D., Geological Sciences) Identification and Characterization of Martian Acid-Sulfate Hydrothermal Alteration: An Investigation -
The Sustainability of Habitability on Terrestrial Planets
PUBLICATIONS Journal of Geophysical Research: Planets REVIEW ARTICLE The sustainability of habitability on terrestrial planets: 10.1002/2016JE005134 Insights, questions, and needed measurements from Mars Special Section: for understanding the evolution of Earth-like worlds JGR-Planets 25th Anniversary B. L. Ehlmann1,2, F. S. Anderson3, J. Andrews-Hanna3, D. C. Catling4, P. R. Christensen5, B. A. Cohen6, C. D. Dressing1,7, C. S. Edwards8, L. T. Elkins-Tanton5, K. A. Farley1, C. I. Fassett6, W. W. Fischer1, Key Points: 2 2 3 9 10 11 2 • Understanding the solar system A. A. Fraeman , M. P. Golombek , V. E. Hamilton , A. G. Hayes , C. D. K. Herd , B. Horgan ,R.Hu , terrestrial planets is crucial for B. M. Jakosky12, J. R. Johnson13, J. F. Kasting14, L. Kerber2, K. M. Kinch15, E. S. Kite16, H. A. Knutson1, interpretation of the history and J. I. Lunine9, P. R. Mahaffy17, N. Mangold18, F. M. McCubbin19, J. F. Mustard20, P. B. Niles19, habitability of rocky exoplanets 21 22 2 1 23 24 25 • Mars’ accessible geologic record C. Quantin-Nataf , M. S. Rice , K. M. Stack , D. J. Stevenson , S. T. Stewart , M. J. Toplis , T. Usui , extends back past 4 Ga and possibly B. P. Weiss26, S. C. Werner27, R. D. Wordsworth28,29, J. J. Wray30, R. A. Yingst31, Y. L. Yung1,2, and to as long ago as 5 Myr after solar K. J. Zahnle32 system formation • Mars is key for testing theories of 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 2Jet Propulsion planetary evolution and processes 3 that sustain habitability -
The Mars 2020 Candidate Landing Sites: a Magnetic Field Perspective
The Mars 2020 Candidate Landing Sites: A Magnetic Field Perspective The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Mittelholz, Anna et al. “The Mars 2020 Candidate Landing Sites: A Magnetic Field Perspective.” Earth and Space Science 5, 9 (September 2018): 410-424 © 2018 The Authors As Published http://dx.doi.org/10.1029/2018EA000420 Publisher American Geophysical Union (AGU) Version Final published version Citable link http://hdl.handle.net/1721.1/118846 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ Earth and Space Science RESEARCH ARTICLE The Mars 2020 Candidate Landing Sites: A Magnetic 10.1029/2018EA000420 Field Perspective Key Points: • Mars 2020 offers the opportunity Anna Mittelholz1 , Achim Morschhauser2 , Catherine L. Johnson1,3, to acquire samples that record the Benoit Langlais4 , Robert J. Lillis5 , Foteini Vervelidou2 , and Benjamin P. Weiss6 intensity and direction of the ancient Martian magnetic field 1 • Laboratory paleomagnetic Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, 2 3 measurements of returned samples Canada, GFZ German Research Center for Geosciences, Potsdam, Germany, Planetary Science Institute, Tucson, AZ, USA, can address questions about the 4Laboratoire de Planétologie et Geodynamique, UMR 6112 CNRS & Université de Nantes, Nantes, France, 5Space Science history of the -
Visible-To-Near-Infrared Spectral Variability of Hydrated Sulfates and Candidate Mars Landing Sites
Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship Winter 2018 Visible-to-Near-Infrared Spectral Variability of Hydrated Sulfates and Candidate Mars Landing Sites: Implications for the Mastcam- Z Investigation on NASA’s Mars-2020 Rover Mission Darian Dixon Western Washington University, [email protected] Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Geology Commons Recommended Citation Dixon, Darian, "Visible-to-Near-Infrared Spectral Variability of Hydrated Sulfates and Candidate Mars Landing Sites: Implications for the Mastcam-Z Investigation on NASA’s Mars-2020 Rover Mission" (2018). WWU Graduate School Collection. 638. https://cedar.wwu.edu/wwuet/638 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Visible-to-Near-Infrared Spectral Variability of Hydrated Sulfates and Candidate Mars Landing Sites: Implications for the Mastcam-Z Investigation on NASA’s Mars-2020 Rover Mission By Darian Dixon Accepted in Partial Completion of the Requirements for the Degree Master of Science Kathleen L. Kitto, Dean of the Graduate School ADVISORY COMMITTEE Chair, Dr. Melissa Rice Dr. Pete Stelling Dr. Michael Kraft MASTER’S THESIS In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU. -
Role of Glaciers in Halting Syrtis Major Lava Flows to Preserve and Divert a Fluvial System
ROLE OF GLACIERS IN HALTING SYRTIS MAJOR LAVA FLOWS TO PRESERVE AND DIVERT A FLUVIAL SYSTEM A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Geology in The Department of Geology and Geophysics by Connor Michael Matherne B.S., Louisiana State University, 2017 December 2019 ACKNOWLEDGMENTS Special thanks to J.R. Skok and Jack Mustard for conceiving the initial ideas behind this project and to Suniti Karunatillake and J.R. Skok for their guidance. Additionally, thank you to my committee members Darrell Henry and Peter Doran for aid in understanding the complex volcanic and climate history for this location. This work has benefited from reviews and discussions with Tim Goudge, Steven Ruff, Jim Head, and Bethany Ehlmann. We thank Caleb Fassett for providing the CTX DEM processing of the outlet fan and Tim Goudge for providing the basin Depression CTX DEM. All data and observations used in this study are publically available from the NASA PDS. Derived products such as produced CTX DEMs can be attained through processing or contacting the primary author. Connor Matherne was supported by the Frank’s Chair funds, W.L. Calvert Memorial Scholarship, NASA-EPSCoR funded LASpace Graduate Student Research Assistantship grant, and Louisiana Board of Regents Research Award Program grant LEQSF-EPS(2017)-RAP-22 awarded to Karunatillake. J.R. Skok was supported with the MDAP award NNX14AR93G. Suniti Karunatillake’s work was supported by NASA- MDAP grant 80NSSC18K1375. ii TABLE OF CONTENTS Acknowledgments.............................................................................................................. -
Petrology on Mars†K
American Mineralogist, Volume 100, pages 2380–2395, 2015 INVITED CENTENNIAL ARTICLE REVIEW Petrology on Mars†k HARRY Y. MCSWEEN JR.1,* 1Department of Earth and Planetary Sciences and Planetary Geoscience Institute, University of Tennessee, Knoxville, Tennessee 37996-1410, U.S.A. ABSTRACT Petrologic investigations of martian rocks have been accomplished by mineralogical, geochemical, and textural analyses from Mars rov- ers (with geologic context provided by orbiters), and by laboratory analyses of martian meteorites. Igneous rocks are primarily lavas and volcaniclastic rocks of basaltic composition, and ultramafic cumulates; alkaline rocks are common in ancient terranes and tholeiitic rocks occur in younger terranes, suggesting global magmatic evolution. Relatively uncommon feldspathic rocks represent the ultimate fractionation prod- ucts, and granitic rocks are unknown. Sedimentary rocks are of both clastic (mudstone, sandstone, conglomerate, all containing significant igneous detritus) and chemical (evaporitic sulfate and less common carbonate) origin. High-silica sediments formed by hydrothermal activity. Sediments on Mars formed from different protoliths and were weathered under different environmental conditions from terrestrial sediments. Metamorphic rocks have only been inferred from orbital remote-sensing measurements. Metabasalt and serpentinite have mineral assemblages consistent with those predicted from low-pressure phase equilibria and likely formed in geothermal systems. Shock effects are com- mon in martian meteorites, and impact breccias are probably widespread in the planet’s crustal rocks. The martian rock cycle during early periods was similar in many respects to that of Earth. However, without plate tectonics Mars did not experience the thermal metamorphism and flux melting associated with subduction, nor deposition in subsided basins and rapid erosion resulting from tectonic uplift.