The Effect of the Regular Solution Model in the Condensation of Protoplanetary Dust

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of the Regular Solution Model in the Condensation of Protoplanetary Dust Mon. Not. R. Astron. Soc. 000, 1{?? (2010) Printed 4 June 2018 (MN LATEX style file v2.2) The effect of the regular solution model in the condensation of protoplanetary dust F. C. Pignatale1?, S. T. Maddison1;2, V. Taquet1;2;3, G. Brooks4, K. Liffman5 1Centre for Astrophysics & Supercomputing, Swinburne University, H39, PO Box 218, Hawthorn, VIC 3122, Australia 2Laboratoire d'Astrophysique de Grenoble, UMR 5571 Universit´eJoseph Fourier/CNRS, BP 53, 38041 Grenoble cedex 9, France 3Magistere de Physique Fondamentale d'Orsay, Universite Paris-11, France 4Mathematics Discipline, FEIS, Swinburne University, H38, PO Box 218, Hawthorn, VIC 3122, Australia 5CSIRO/MSE, PO Box 56, Heightt, VIC 3190, Australia Accepted 2011 February 16. Received 2011 February 14; in original form 2010 July 22 ABSTRACT We utilize a chemical equilibrium code in order to study the condensation process which occurs in protoplanetary discs during the formation of the first solids. The model specifically focuses on the thermodynamic behaviour on the solid species assuming the regular solution model. For each solution, we establish the relationship between the activity of the species, the composition and the temperature using experimental data from the literature. We then apply the Gibbs free energy minimization method and study the resulting condensation sequence for a range of temperatures and pressures within a protoplanetary disc. Our results using the regular solution model show that grains condense over a large temperature range and therefore throughout a large portion of the disc. In the high temperature region (T > 1400 K) hibonite and gehlenite dominate and we find that the formation of corundum is sensitive to the pressure. The mid-temperature region is dominated by Fe(s) and silicates such as Mg2SiO4 and MgSiO3. The chemistry of forsterite and enstatite are strictly related, and our simulations show a sequence of forsterite{enstatite{forsterite with decreasing temperature and the abundance of the first high temperature peak of forsterite is also pressure sensitive. In the low temperature regions (T 6 600 K) a range of iron compounds (FeS, Fe2SiO3, FeAl2O3) form. We find that all the condensation sequences move towards lower temperature as the pressure decreases. We also run simulations using the ideal solution model and see clear differences in the resulting condensation sequences with changing solution model. In particular, we find that the turning point in which forsterite replaces enstatite in the low temperature region is sensitive to the solution model. In this same temperature region, fayalite is arXiv:1102.5602v1 [astro-ph.EP] 28 Feb 2011 the most stable compound for the regular solution, while magnetite replaces fayalite in the ideal solution model at the lowest values of temperature. Our results show that the ideal solution model is often a poor approximation to experimental data at most temperatures important in protoplanetary discs. We find some important differences in the resulting condensation sequences when using the regular solution model, and suggest that this model should provide a more realistic condensation sequence. Key words: astrochemistry, planetary systems: protoplanetary discs, star: pre-main sequence, circumstellar matter 1 INTRODUCTION Studying protoplanetary discs, and more particularly their dust content, is crucial for understanding the creation of ? E-mail: [email protected] the solar system. Solar system bodies such as planets, me- c 2010 RAS 2 Pignatale et al. teorites and comets are all created from solids during the free energy minimization method to solve for the condensa- protoplanetary disc phase. tion sequence and the steps followed to determine our final The quantity and the quality of observations of proto- thermodynamic model. In section 3 we discuss the behavior planetary discs around young stars has increased substan- of solid solutions and present a range of activity-composition tially in the last years: Spitzer Space Telescope has provided relations derived from laboratory experiments. In section 4, a large amount of useful data whose interpretation provides we present the results of our simulations and we compare information on the composition, growth and thermal pro- them with the ideal solution models (section 5) and with cessing of dust grains in discs (Olofsson et al. 2009; Meeus previous modeling work and recent observations (section 6). et al. 2009; Bouwman et al. 2008; Kessler-Silacci et al. 2006; Conclusions are presented in section 7. Geers et al. 2006). The processes of grain formation are in- trinsically related to the chemistry of gas and dust. Indeed, the material in the discs is a mixture of condensates with 2 THE MODEL different chemical composition and properties (Henning & Meeus 2009; Bergin 2009). Protoplanetary discs results from conservation of the angu- The study of objects in our solar system, including as- lar momentum of a collapsing, rotating cloud of gas and teroids, meteorites and comets provides more direct and ac- dust. Detailed studies have been made to define the struc- cessible evidence of the chemistry of the young solar system. ture of protoplanetary discs (Brauer et al. 2008; D'Alessio Meteorites are characterized by heterogeneous compositions et al. 2004, 1999, 1998; Gail 2004, 2001, 1998) and the (Krot et al. 2005) and petrographic and mineral analysis physics involved in the evolution of the resulting gas{dust show mixtures of compounds that are the result of conden- system (Birnstiel et al. 2010; Dullemond et al. 2008). In this sation processes in different environments and times during work, we calculate the condensation sequence for an initial the protoplanetary disc phase (Scott & Krot 2005). Even chemistry over a range of temperatures and at fixed values comets, among the oldest and most distant objects of our of pressure which are appropriate for protoplanetary discs. solar system, show this heterogeneity (Brownlee 2005). The In this section, we describe the conditions within our Stardust mission (Brownlee et al. 2003) returned samples model, the chemical equilibrium code used to study the con- from comet Wild 2 and studies of their composition (Naka- densation sequence, along with assumptions and limitations mura et al. 2008; Zolensky et al. 2006) show complex ther- of the code. modynamic and dynamic scenarios where particles proba- bly formed in the inner regions of the solar system (Liffman 2.1 Physical properties of the disc 2006) which experienced high temperature processes were found close to other material produced by cold thermody- Different disc models return different temperature and pres- namics. sure distributions. These can be described as functions of This paper is the first in a series in which we aim to the disc radius (r) in 1D models and both the radius and determine the composition of both the gas and solid phases the distance from the mid-plane (r,z) for 2D models. In this in various regions of protoplanetary discs in order to un- model, we do not subscribe to any specific disc model, but derstand their chemistry and study the dust content. We instead chosen range of temperatures and specific pressure assume thermodynamic equilibrium and solve for the con- values that are relevant in protoplanetary discs. These val- densation sequence using the regular solution model (DeHoff ues are not meant to represent specific locations in the disc 1993) for the behaviour of solid solutions. In this paper we but to constrain the values of temperature and pressure we present the regular solution model and compare the conden- use in the our simulations and define three main regions sation results with those obtained using an ideal solution for (high, middle, low temperatures) in the disc in which con- a range of temperatures at fixed pressures. In our next pa- densation occurs. Furthermore, condensation sequences cal- pers, we will apply this technique to specific 1D and 2D discs culated over a range of temperatures at fixed values of pres- models. sure allow us to compare our results with previous work and The Gibbs energy minimization technique for equilib- thermodynamical predictions. rium calculation is a powerful method for understanding the For this work, we use the disc model of D'Alessio et al. evolution of chemistry in a complex system (DeHoff 1993). (1998) to guide us to find suitable values of T and P . However, the predictions using this technique are sensitive D'Alessio et al. (1998) studied the vertical structure, tem- to providing rigorous mathematical descriptions of solution perature, and surface density of a disc whose heating pro- behaviour, in particular, providing allowances for the effect cesses include viscous dissipation, radioactive decay, cosmic of concentration and temperature on the activity of species rays, and stellar irradiation. They chose a typical T Tauri dissolved into a solid state solution (DeHoff 1993). In this star with M∗ = 0:5 M , R∗ = 2 R , T∗ = 4000 K, and −8 −1 study, we include the effect of temperature of solution be- M_ = 10 M yr . haviour by using the regular solution model, which is su- We assume an irradiated disc with a constant accre- perior to the assumption used in previous studies in which tion rate and consider only the inner 5 AU. Most of the ideal mixing is assumed for many of the solid phases and dust mass is located near the mid-plane of the disc, so the the effect of temperature on solution behaviour is ignored study of temperature and pressure was done at the mid- (e.g. Pasek et al. 2005; Gail 1998). It is well established that plane. D'Alessio et al. (1998) calculated the radial temper- these effects are important in complex phase equilibria. ature profile at the mid-plane, the surface density, and the The outline of this paper is as follows: in section 2 we different vertical heights above the mid-plane. The tempera- describe the physical and chemical conditions assumed to be ture at the mid-plane, Tc, ranges from 60 to 1900 K for radii present in protoplanetary discs.
Recommended publications
  • THE MELILITE (Gh50) SKARNS of ORAVIT¸A, BANAT, ROMANIA: TRANSITION to GEHLENITE (Gh85) and to VESUVIANITE
    1255 The Canadian Mineralogist Vol. 41, pp. 1255-1270 (2003) THE MELILITE (Gh50) SKARNS OF ORAVIT¸A, BANAT, ROMANIA: TRANSITION TO GEHLENITE (Gh85) AND TO VESUVIANITE ILDIKO KATONA Laboratoire de Pétrologie, Modélisation des Matériaux et Processus, Université Pierre et Marie Curie, 4, Place Jussieu, F-75252 Paris, Cedex 05, France MARIE-LOLA PASCAL§ CNRS–ISTO (Institut des Sciences de la Terre d’Orléans), 1A, rue de la Férollerie, F-45071 Orléans, Cedex 02, France MICHEL FONTEILLES Laboratoire de Pétrologie, Modélisation des Matériaux et Processus, Université Pierre et Marie Curie, 4, Place Jussieu, F-75252 Paris, Cedex 05, France JEAN VERKAEREN Unité de Géologie, Université Catholique de Louvain-la-Neuve, Bâtiment Mercator, 3, Place Louis Pasteur, Louvain-la-Neuve, Belgium ABSTRACT Almost monomineralic Mg-rich gehlenite (~Gh50Ak46Na-mel4) skarns occur in a very restricted area along the contact of a diorite intrusion at Oravit¸a, Banat, in Romania, elsewhere characterized by more typical vesuvianite–garnet skarns. In the vein- like body of apparently unaltered gehlenite, the textural relations of the associated minerals (interstitial granditic garnet and, locally, monticellite, rare cases of exsolution of magnetite in the core zone of melilite grains) suggest that the original composi- tion of the gehlenite may have been different, richer in Si, Mg, Fe (and perhaps Na), in accordance with the fact that skarns are the only terrestrial type of occurrence of gehlenite-dominant melilite. The same minerals, monticellite and a granditic garnet, appear in the retrograde evolution of the Mg-rich gehlenite toward compositions richer in Al, the successive stages of which are clearly displayed, along with the final transformation to vesuvianite.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • The Efficiency of Quartz Addition on Electric Arc Furnace (EAF)
    The efficiency of quartz addition on electric arc furnace (EAF) carbon steel slag stability D. Mombelli a,∗, C. Mapelli a, S. Barella a, A. Gruttadauria a, G. Le Saout b, E. Garcia-Diaz b a Politecnico di Milano, Dipartimento di Meccanica, Via La Masa 1, 20156 Milano, Italy b Centre des Matériaux des Mines d’Alès (C2MA) —Ecole des Mines d’Alès (Institut Mines Telecom), Avenue de Clavières 6, 30100 Alès cedex, France h i g h l i g h t s • A method to stabilize EAF slag was implemented in an actual steel plant. • The stabilization treatment lead to the formation of slag with gehlenite matrix. • The stabilization process efficacy was confirmed by several leaching tests. • Gehlenite inhibits heavy metals leaching. a b s t r a c t Electric arc furnace slag (EAF) has the potential to be re-utilized as an alternative to stone material, however, only if it remains chemically stable on contact with water. The presence of hydraulic phases such as larnite (2CaO SiO2) could cause dangerous elements to be released into the environment, i.e. Ba, V, Cr. Chemical treatment appears to be the only way to guarantee a completely stable structure, especially for long-term applications. This study presents the efficiency of silica addition during the deslagging period. Microstructural characterization of modified slag was performed by SEM and XRD analysis. Elution tests were performed according to the EN 12457-2 standard, with the addition of silica and without, and the obtained results were compared. These results demonstrate the efficiency of the inertization process: the added silica induces the formation of gehlenite, which, even in caustic environments, does not exhibit hydraulic behaviour.
    [Show full text]
  • Gehlenite Ca2al(Alsi)O7 C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Tetragonal
    Gehlenite Ca2Al(AlSi)O7 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Tetragonal. Point Group: 42m: Crystals are commonly short prismatic, resembling octahedrally modi¯ed cubes; granular, massive. Twinning: On 100 , 001 ; lamellar f g f g on 001 . f g Physical Properties: Cleavage: Distinct on 001 , poor on 110 . Fracture: Uneven, f g f g splintery to conchoidal. Tenacity: Brittle. Hardness = 5{6 D(meas.) = 3.038 D(calc.) = 3.03 Optical Properties: Transparent to translucent and opaque. Color: Colorless, brown, yellowish, greyish green; colorless to pale yellow in thin section. Streak: White to grayish white. Luster: Vitreous to resinous. Optical Class: Uniaxial ({). Pleochroism: May show anomalous Berlin blue interference colors. Absorption: Weak; O > E. ! = 1.669 (synthetic). ² = 1.658 Cell Data: Space Group: P 421m (synthetic). a = 7.6850(4) c = 5.0636(3) Z = 2 X-ray Powder Pattern: Crestmore, California, USA. 2.848 (100), 1.818 (75), 1.921 (64), 3.066 (43), 2.437 (38), 1.768 (36), 2.738 (32) Chemistry: (1) (2) (3) SiO2 30.09 22.86 21.91 TiO2 trace Al2O3 21.67 32.09 37.19 Fe2O3 1.36 3.03 FeO 2.14 MnO 0.04 MgO 3.87 0.85 CaO 38.36 41.25 40.90 Na2O 0.75 K2O 0.16 + H2O 1.64 Total 100.08 100.08 100.00 (1) Val di Fassa, Italy. (2) Carneal, Ireland; by electron microprobe. (3) Ca2Al(AlSi)O7: Polymorphism & Series: Forms a series with ºakermanite. Mineral Group: Melilite group. Occurrence: In contact metamorphosed impure limestones; in calcium-rich ultrama¯c volcanic rocks.
    [Show full text]
  • THE ~Lineralogy of the HATRURIM FORMATION, ISRAEL
    THE ~lINERALOGY OF THE HATRURIM FORMATION, ISRAEL ABSTRACT The l]atrurim Formation, (formerly known as the reported from only one locality. "Mottled Zone") is <1 unique rock complex, exposed Optical data, X-ray diffraction data, thermal analyses, mainly in the Judean Desert. It was apparently de­ chemical analyses and crystal morphology (by SEM) posited as a normal marine, chalky-marly sequence of of the minerals were obtained. Chemical analyses of Campanian to Neogene age, but is today largely com­ naturally occurring tricakium silicate (batrurite). nagel­ posed of high-temperature metamorphic minerals schmidtite, portlandite and 6CaO.2Fe2 0\.AI2O~ (un­ corresponding to the sanidinite and pyroxene-hornfels named) are reported for the first time. facies. No indication of contact metamorphism is, Most of the minerals were formed during one of the however, found in the area. One hundred fourteen following stages: low to high-grade metamorphism, minerals are described. Eight of them were previously retrograde metamorphism, hydrothermal alteration and known only as synthetic products and five others were weathering processes. INTRODUCfION age), and clays and marls of the Taqiye Forma­ tion (Dano-Paleocene Age), are found overlying A. The Hatrurim Formation: flint and phosphorite beds of the Mishash description and occurrence Formation (Campanian age). In many outcrops and in subsurface sections, these rocks are The present mineralogical investigation of the bituminous. The lower part of the Ghareb ijatrurim Formation (Gvirtzman and Buch­ Formation may contain up to 26% organic binder, 1966), formerly described as the Mottled matter and can be classified as oil shales (Shahar Zone Complex (Picard 1931; Bentor 1960), is and Wurzburger, 1967).
    [Show full text]
  • Application of New Thermodynamic Data to Grossular Phase Relations ~
    Contributions to Contrib. Mineral. Petrol. 64, 137-147 (1977) Mineralogy and Petrology by Springer-Verlag 1977 Application of New Thermodynamic Data to Grossular Phase Relations ~ Dexter Perkins, III 1., Eric J. Essene ~, Edgar F. Westrum, Jr. 2, and Victor J. Wall 3 1 University of Michigan, Department of Geology and Mineralogy, Ann Arbor, Michigan 48109, USA 2 University of Michigan, Department of Chemistry, Ann Arbor, Michigan 48109, USA 3 Monash University, Department of Geology, Clayton, Victoria, Australia Abstract. Recent low temperature, adiabatic calorimetric heat capacity mea- surements for grossular have been combined with DSC measurements to give entropies up to 1000 K. In conjunction with enthalpy of solution values for grossular, these data have yielded AH~f(298.15 K) and AG~ K) values of - 1583.2 _ 3.5 and - 1496.74 +_ 3.7 kcal mol- 1 respectively. For 15 reactions in the CaO - A1203 - SiO2 - I-I20 system, thermodynamically calculated P- T curves have been compared with experimental reversals and have shown good agreement in most cases. Calculations indicate that gehlenite is probably totally disordered. Estimates of zoisite and lawsonite entropies are consistent with the phase equilibrium and grossular data, but estimates of the entropies of pyrope and andradite show large discrepancies when compared with experimental reversals. Introduction The Ca-A1 garnet grossular (Ca3A12Si3012), one of the most common natural garnets, is characteristic of both contact and regionally metamorphosed rocks. Knowledge of its stability compared to that of other calcium aluminium silicates can yield valuable information about the pressure, temperature, and fluid com- position under which these rocks equilibrated.
    [Show full text]
  • New Occurrence of Rusinovite, Ca10(Si2o7)3Cl2
    minerals Article New Occurrence of Rusinovite, Ca10(Si2O7)3Cl2: Composition, Structure and Raman Data of Rusinovite from Shadil-Khokh Volcano, South Ossetia and Bellerberg Volcano, Germany Dorota Srodek´ 1,* , Rafał Juroszek 1 , Hannes Krüger 2 , Biljana Krüger 2 , Irina Galuskina 1 and Viktor Gazeev 3,4 1 Department of Geochemistry, Mineralogy and Petrography, Faculty of Earth Sciences, University of Silesia, B˛edzi´nska60, 41-200 Sosnowiec, Poland; [email protected] (R.J.); [email protected] (I.G.) 2 Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria; [email protected] (H.K.); [email protected] (B.K.) 3 Insitute of Geology of Ore Deposits, Petrography, Mineralogy and Biochemistry, RAS, Staromonetny 35, 119017 Moscow, Russia; [email protected] 4 Vladikavkaz Scientific Centre of the Russian Academy of Sciences, Markov str. 93a, 362008 Vladikavkaz, Republic of North Ossetia-Alania, Russia * Correspondence: [email protected]; Tel.: +48-693-404-979 Received: 28 August 2018; Accepted: 8 September 2018; Published: 10 September 2018 Abstract: Rusinovite, Ca10(Si2O7)3Cl2, was found at two new localities, including Shadil-Khokh volcano, South Ossetia and Bellerberg volcano, Caspar quarry, Germany. At both of these localities, rusinovite occurs in altered carbonate-silicate xenoliths embedded in volcanic rocks. The occurrence of this mineral is connected to specific zones of the xenolith characterized by a defined Ca:Si < 2 ratio. Chemical compositions, as well as the Raman spectra of the investigated rusinovite samples, correspond to the data from the locality of rusinovite holotype—Upper Chegem Caldera, Northern Caucasus, Russia.
    [Show full text]
  • List of Mineral Symbols
    THE CANADIAN MINERALOGIST LIST OF SYMBOLS FOR ROCK- AND ORE-FORMING MINERALS (January 1, 2021) ____________________________________________________________________________________________________________ Ac acanthite Ado andorite Asp aspidolite Btr berthierite Act actinolite Adr andradite Ast astrophyllite Brl beryl Ae aegirine Ang angelaite At atokite Bll beryllonite AeAu aegirine-augite Agl anglesite Au gold Brz berzelianite Aen aenigmatite Anh anhydrite Aul augelite Bet betafite Aes aeschynite-(Y) Ani anilite Aug augite Bkh betekhtinite Aik aikinite Ank ankerite Aur auricupride Bdt beudantite Akg akaganeite Ann annite Aus aurostibite Beu beusite Ak åkermanite An anorthite Aut autunite Bch bicchulite Ala alabandite Anr anorthoclase Aw awaruite Bt biotite* Ab albite Atg antigorite Axn axinite-(Mn) Bsm bismite Alg algodonite Sb antimony Azu azurite Bi bismuth All allactite Ath anthophyllite Bdl baddeleyite Bmt bismuthinite Aln allanite Ap apatite* Bns banalsite Bod bohdanowiczite Alo alloclasite Arg aragonite Bbs barbosalite Bhm böhmite Ald alluaudite Ara aramayoite Brr barrerite Bor boralsilite Alm almandine Arf arfvedsonite Brs barroisite Bn bornite Alr almarudite Ard argentodufrénoysite Blt barylite Bou boulangerite Als alstonite Apn argentopentlandite Bsl barysilite Bnn bournonite Alt altaite Arp argentopyrite Brt baryte, barite Bow bowieite Aln alunite Agt argutite Bcl barytocalcite Brg braggite Alu alunogen Agy argyrodite Bss bassanite Brn brannerite Amb amblygonite Arm armangite Bsn bastnäsite Bra brannockite Ams amesite As arsenic
    [Show full text]
  • The Constitution of the Natural Silicates
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR BULLETIN 588 THE CONSTITUTION OF THE NATURAL SILICATES BY FRANK WIGGLESWORTH CLARKE WASHINGTON GOVERNMENT PRINTING OFFICE 1914 CONTENTS. CHAPTER I. Introduction................................................ 5 CHAPTER II. The silicic acids............................................. 10 CHAPTER III. The silicates of aluminum................................... 19 General relations...................................................... 19 The nephelite type ................................................... 21 The garnet type ....................................................... 24 The feldspars and scapolites .......................................... 34 The zeolites ......................................... r ................ 40 The micas and chlorites ............................................... 51 The aluminous borosilicates .......................................... 65 Miscellaneous species ................................................ 74 CHAPTER IV. Silicates of dyad bases....................................... 87 Orthosilicates ......................................................." 87 Metasilicates ........................................................ 94 Disilicates and trisilicates ............................................ 107 CHAPTER V. Silicates of tetrad bases, titanosilicates, and columbosilicates..... 113 APPENDIX ............................................................... 124 INDEX. .................................................................
    [Show full text]
  • Gehlenite from Three Occurrences of High-Temperature Skarns, Romania: New Mineralogical Data
    1001 The Canadian Mineralogist Vol. 49, pp. 1001-1014 (2011) DOI : 10.3749/canmin.49.4.1001 GEHLENITE FROM THREE OCCURRENCES OF HIGH-TEMPERATURE SKARNS, ROMANIA: NEW MINERALOGICAL DATA ŞTEFAN MARINCEA§, DELIA-GEORGETA DUMITRAŞ AND CRISTINA GHINEŢ Department INI, Geological Institute of Romania, 1 Caransebeş Street, RO–012271, Bucharest, Romania ANDRÉ-MATHIEU FRANSOLET, FRÉDÉRIC HATERT AND MÉLANIE RONDEAUX Laboratoire de Minéralogie, Université de Liège, Sart-Tilman, Bâtiment B 18, B–4000 Liège, Belgium ABSTRACT Gehlenite is a common mineral in three high-temperature calcic skarns in Romania: Măgureaua Vaţei and Cornet Hill in Apuseni Mountains and Oraviţa in Banat. In all three occurrences, a gehlenite zone occurs within the contact between dioritic or monzodioritic bodies of Upper Cretaceous age and carbonaceous sequences of Mesozoic age. The melilite solid-solutions vary from Ak34.1 to Ak51.2 (mean Ak41.2) at Oraviţa, from Ak30.4 to Ak42.9 (mean Ak38.3) at Măgureaua Vaţei, and from Ak24.3 to Ak41.7 (mean Ak32.9) at Cornet Hill, respectively. The content of “Na-melilite” is low, from up to 1.96 mol.% at Cornet Hill to up to 3.60 mol.% at Oraviţa. The cell parameter a ranges from 7.679(3) to 7.734(3) Å at Oraviţa, from 7.683(4) to 7.735(1) Å at Măgureaua Vaţei, and from 7.684(3) to 7.733(1) Å at Cornet Hill, whereas c varies from 5.043(3) to 5.065(3) Å at Oraviţa, from 5.040(1) to 5.070(3) Å at Măgureaua Vaţei, and from 5.044(1) to 5.067(4) Å at Cornet Hill.
    [Show full text]
  • New Mineral Names 1331
    American Mineralogist, Volume 59, pages 1330-1332, 1974 NEWMINERAL NAMES MrcnnBr,FrsrscHrn Allemontite Analyses are given of 2 samples from Tuka, the first con- Discredited;see Stibarsen. (B. F. Leonard) taining vesuvianite, the second small amounts of gehlenite, vesuvianite, and hydrogrossular. The X-ray powder data are Atheneite* given for Tuka and Carneal material. Tbe strongest lines given) A. M. Crenr, A. J. Cnronre, eNo E. E. FB.rBn (1974) (16 are, respectively, Palladium arsenide-antimonides from ltabira. Minas 211 310 222 Gerais, Brazil. Mineral. Mag. 39, S2B-543. Tuka 3.60 90 2.786 r00 2.547 30 pd Electron microprobe analyses of 2 grains gave 66.0, Carneal 3.60 100 2.787 100 2.545 20 65.6;Cu 0.1, 0.1; Hs 14.9,16.1; Au 0.5, 0.3; As 19.0,19.0; Sb 0.1, 0.3; sum 100.6, 101.4 percent, corresponding (av.) 321 411.330 440 (Pdzo to Cuoo'Hgo*) (Asr*Sbor), or (pd,Hg)" As. Tuka 2.345 34 2.O79 40 1.559 50 The mineral is hexagonal, space group p6/mmm, a 6.799, Carneal 2.38(b) 2.081 - 30 1.558 40 c 3.483 A,Z 2, G. calc 10.16, meas 10.2. The strongest X-ray lines (48 given) are 2.423 (vvs) (1lzt), 2.246 (vs) The a edge equals 8.829 (Tuka), 8.82 (Carneal), 8.837 (202r), 1.87r (ms) QllD, r.37r (s) (2132),1.302 (synthetic "gehlenite hydrate", Ca"Al,SiOz.H,O); Carlson (s)(3032),1.259 (s) ezSD, t.034(ms), GrS2\.
    [Show full text]
  • New Mineral Names*,†
    American Mineralogist, Volume 101, pages 2123–2131, 2016 New Mineral Names*,† FERNANDO CÁMARA1, OLIVIER C. GAGNE2, YULIA UVAROVA3 AND DMITRIY I. BELAKOVSKIY4 1Dipartimento di Scienze della Terra, Università di degli Studi di Torino, Via Valperga Caluso, 35-10125 Torino, Italy 2Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada 3CSIRO Mineral Resources, CSIRO, ARRC, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia 4Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia IN THIS ISSUE This New Mineral Names has entries for 15 new minerals, including antipinite, anzaite-(Ce), bettertonite, bobshannonite, calcinaksite, khvorovite, leguernite, lukkulaisvaaraite, minjiangite, möhnite, moraskoite, nickelpicromerite, pilawite-(Ce), ralphcannonite, and yeomanite. ANTIPINITE* tron probe analyses is [wt%, (range)]: Na 11.83 (11.42–12.24), N.V. Chukanov, S.M. Aksenov, R.K. Rastsvetaeva, K.A. Lysenko, K 6.35 (5.97–6.95), Cu 21.84 (21.34–22.18), C (by gas chro- D.I. Belakovskiy, G. Färber, G. Möhn and K.V. Van (2015) matography) 16.22; total for all cations 56.24. The empirical formula of antipinite K0.96Na3.04Cu2.03(C2.00O4)4 based on 16 O Antipinite, KNa3Cu2(C2O4)4, a new mineral species from a guano deposit at Pabellón de Pica, Chile. Mineralogical pfu. The strongest lines of the X-ray powder diffraction pattern Magazine, 79(5), 1111–1121. are [dobs Å (Iobs%; hkl)]: 5.22 (40; 111), 3.47 (100; 032), 3.39 (80; 210), 3.01 (30; 033,220), 2.543 (40; 122,034,104), 2.481 (30; 213), 2.315 (30; 143,310), 1.629 (30; 146,4 14,243,160).
    [Show full text]