New Records and Range Expansion of Lessepsian Migrants in The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Systematic Revision of the Asterinid Genus Aquilonastra O'loughlin
Memoirs of Museum Victoria 63(2): 257–287 (2006) ISSN 1447-2546 (Print) 1447-2554 (On-line) http://www.museum.vic.gov.au/memoirs/index.asp A systematic revision of the asterinid genus Aquilonastra OʼLoughlin, 2004 (Echinodermata: Asteroidea) P. M ARK OʼLOUGHLIN1 AND FRANCIS W.E. ROWE2 1Honorary Associate, Marine Biology Section, Museum Victoria, GPO Box 666, Melbourne, Vic. 3001, Australia ([email protected]) 2Research Associate, Australian Museum, Sydney, NSW, Australia ([email protected]). Private address: Beechcroft, Norwich Road, Scole, Diss, Norfolk, IP21 4DY, U.K. Abstract OʼLoughlin, P. Mark and Rowe, Francis W.E. A systematic revision of the asterinid genus Aquilonastra OʼLoughlin, 2004 (Echinodermata: Asteroidea). Memoirs of Museum Victoria 63(2): 257–287. The Indo-west Pacifi c Aquilonastra OʼLoughlin is reviewed. Eleven species are retained in Aquilonastra: A. anomala (H.L. Clark); A. batheri (Goto); A. burtonii (Gray); A. cepheus (Müller and Troschel); A. corallicola (Marsh); A. coronata (Martens); A. iranica (Mortensen); A. limboonkengi (Smith); A. minor (Hayashi); A. rosea (H.L. Clark); A. scobinata (Livingstone). Asterina lorioli Koehler is reassigned to Aquilonastra. Thirteen new species are described: A. byrneae; A. colemani; A. conandae; A. doranae; A. halseyae; A. marshae; A. moosleitneri; A. oharai; A. richmondi; A. rowleyi; A. samyni; A. watersi; A. yairi. The four subspecies of Asterina coronata Martens are junior synonyms: Asterina coronata cristata Fisher; Asterina coronata euerces Fisher; Asterina coronata fascicularis Fisher; Asterina coronata forma japonica Hayashi. The 13 fi ssiparous Red Sea specimens described by Perrier as Asteriscus wega are the syntypes. Asteriscus wega Perrier is a junior synonym of Asterina burtonii Gray. -
Lessepsian Migration and Parasitism: Richness, Prevalence and Intensity
Lessepsian migration and parasitism: richness, prevalence and intensity of parasites in the invasive fish Sphyraena chrysotaenia compared to its native congener Sphyraena sphyraena in Tunisian coastal waters Wiem Boussellaa1,2, Lassad Neifar1, M. Anouk Goedknegt2 and David W. Thieltges2 1 Department of Life Sciences, Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia 2 Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg Texel, Netherlands ABSTRACT Background. Parasites can play various roles in the invasion of non-native species, but these are still understudied in marine ecosystems. This also applies to invasions from the Red Sea to the Mediterranean Sea via the Suez Canal, the so-called Lessepsian migration. In this study, we investigated the role of parasites in the invasion of the Lessepsian migrant Sphyraena chrysotaenia in the Tunisian Mediterranean Sea. Methods. We compared metazoan parasite richness, prevalence and intensity of S. chrysotaenia (Perciformes: Sphyraenidae) with infections in its native congener Sphyraena sphyraena by sampling these fish species at seven locations along the Tunisian coast. Additionally, we reviewed the literature to identify native and invasive parasite species recorded in these two hosts. Results. Our results suggest the loss of at least two parasite species of the invasive fish. At the same time, the Lessepsian migrant has co-introduced three parasite species during Submitted 13 March 2018 Accepted 7 August 2018 the initial migration to the Mediterranean Sea, that are assumed to originate from the Published 14 September 2018 Red Sea of which only one parasite species has been reported during the spread to Corresponding author Tunisian waters. -
DNA Barcoding of Commercially Important Reef Fishes in Weh Island, Aceh, Indonesia
DNA barcoding of commercially important reef fishes in Weh Island, Aceh, Indonesia Nur Fadli1,*, Siti Azizah Mohd Nor2,3,*, Ahmad Sofiman Othman3, Hizir Sofyan4 and Zainal A. Muchlisin1 1 Faculty of Marine and Fisheries, Syiah Kuala University, Banda Aceh, Aceh, Indonesia 2 Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia 3 School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia 4 Faculty of Mathematics and Natural Science, Syiah Kuala University, Banda Aceh, Aceh, Indonesia * These authors contributed equally to this work. ABSTRACT Knowledge on the precise identification of fish resources is critical for sustainable fisheries management. This study employs the DNA barcoding approach to generate a molecular taxonomic catalogue of commercially important reef fishes in the waters of Weh Island (Aceh Province), the most northerly inhabited island in the biodiverse Indonesian Archipelago. The waters not only support artisanal fisheries but also a feeder for the industry in the greater island of Aceh. In total, 230 specimens from 72 species belonging to 32 genera and 17 families were DNA barcoded, representing a major segment of the captured reef fish taxa and a quarter of fish species diversity that had previously been recorded. The sequence read lengths were 639 bp revealing 359 conserved sites, 280 variable sites, 269 parsimony informative and 11 singletons. Our molecular findings paralleled the morphological identification with no evidence of cryptic species or new species discovery. This study is a significant contribution to the fisheries statistics of this area, which would facilitate assessment of species catch composition and hence for strategizing management plans. It is an important input to Submitted 6 August 2019 the DNA barcode library of Indonesian marine fishes and to the global DNA barcode Accepted 9 July 2020 entries in general. -
Spatial Distribution of Echinoderms in Littoral Area of Ambon Island, Eastern Indonesia
BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 5, September 2018 E-ISSN: 2085-4722 Pages: 1919-1925 DOI: 10.13057/biodiv/d190544 Spatial distribution of echinoderms in littoral area of Ambon Island, Eastern Indonesia ANA SETYASTUTI1,♥, WAHYU PURBIANTORO2, HADIYANTO1 1Research Center for Oceanography, Indonesian Institute of Sciences. Jl. Pasir Putih Raya No.1, North Jakarta 14430, Jakarta, Indonesia. Tel.: +62-21- 64713850, email: [email protected] 2Research Center for Deep Sea, Indonesian Institute of Sciences. Jl. Pasir Putih Raya No.1, North Jakarta 14430, Jakarta, Indonesia Manuscript received: 17 July 2018. Revision accepted: 27 September 2018. Abstract. Setyastuti A, Purbiantoro W, Hadiyanto. 2018. Spatial distribution of echinoderms in littoral area of Ambon Island, Eastern Indonesia. Biodiversitas 19: 1919-1925. Echinoderms samples were collected in Ambon Island as part of the marine resource inventories designed to study the biodiversity of Maluku Archipelago. The purpose of this works was to investigate the abundance and genus richness of echinoderms within the five sampling sites using single transect orthogonal to the coast consisted of 10-quadrat plot of 5x5m, the distance between plots was 10m at each site. Furthermore, this study also aimed to understand the relation of substrate type and community composition within those five sites. The substrate was classified into four types (sea-grass, macro-algae, sand, rocks and/or dead coral) noted by presence/absence mark at each plot. The differences in total abundance and genus richness among those sites were analyzed using an Analysis of Deviance following a Generalized Linear Models (GLMs) fitted by Poisson and log link. However, in term of genus composition, the data were visualized using a Principal Coordination Analysis (PCoA) plots calculated from Bray-Curtis dissimilarity based on the log (x+1) transformed abundance data. -
Surveillance Des Espèces Envahissantes Marines Dans Les Aires Marines Protégées (AMP) Méditerranéennes Guide Pratique Et Stratégique À L'attention Des Gestionnaires
COLLECTION Surveillance des espèces envahissantes marines dans les aires marines protégées (AMP) méditerranéennes Guide pratique et stratégique à l'attention des gestionnaires Financé par: COLLECTION Surveillance des espèces envahissantes marines dans les aires marines protégées (AMP) méditerranéennes Guide pratique et stratégique à l'attention des gestionnaires Otero, M., Cebrian, E., Francour, P., Galil, B., Savini, D. À propos de l'UICN et le Centre de Coopération pour la Méditerranée L'UICN, Union Internationale pour la Conservation de la Nature, aide à trouver des solutions pragmatiques pour les principaux défits environnementaux et de développement auxquels fait face la planète. L'UICN est la plus ancienne et la plus importante organisation environnementale au monde, avec plus de 1200 membres, organisations gouvernementales et non gouvernementales, et près de 11.000 experts bénévoles dans quelque 160 pays. Le Centre de Coopération pour la Méditerranée de l'UICN a ouvert en 2001 avec le soutien du Ministère de l'Agriculture, de la Nourriture et de l'Environnement espagnol, de La Junta de Andalucia et de l'Agence Espagnole de Coopération Internationale pour le Développement (AECID). Au cours de ses 12 années d'existence, la mission du Centre a été d' influencer, encourager et aider les sociétés méditerranéennes pour assurer la conservation et l'utilisation durable des ressources naturelles ainsi qu'un développement durable dans la région méditerranéenne. www.uicn.org/mediterranee www.uicn.org www.facebook.com/iucn.org twitter.com/#!/IUCN/ COLLECTION COLLECTION La terminologie géographique employée dans cet ouvrage, de même que sa présentation, ne sont en aucune manière l’expression d’une opinion quelconque de la part de l’UICN sur le statut juridique ou l’autorité de quelque pays, territoire ou région que ce soit, ou sur la délimitation de ses frontières. -
Alien Species in the Mediterranean Sea by 2010
Mediterranean Marine Science Review Article Indexed in WoS (Web of Science, ISI Thomson) The journal is available on line at http://www.medit-mar-sc.net Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution A. ZENETOS 1, S. GOFAS 2, M. VERLAQUE 3, M.E. INAR 4, J.E. GARCI’A RASO 5, C.N. BIANCHI 6, C. MORRI 6, E. AZZURRO 7, M. BILECENOGLU 8, C. FROGLIA 9, I. SIOKOU 10 , D. VIOLANTI 11 , A. SFRISO 12 , G. SAN MART N 13 , A. GIANGRANDE 14 , T. KATA AN 4, E. BALLESTEROS 15 , A. RAMOS-ESPLA ’16 , F. MASTROTOTARO 17 , O. OCA A 18 , A. ZINGONE 19 , M.C. GAMBI 19 and N. STREFTARIS 10 1 Institute of Marine Biological Resources, Hellenic Centre for Marine Research, P.O. Box 712, 19013 Anavissos, Hellas 2 Departamento de Biologia Animal, Facultad de Ciencias, Universidad de Ma ’laga, E-29071 Ma ’laga, Spain 3 UMR 6540, DIMAR, COM, CNRS, Université de la Méditerranée, France 4 Ege University, Faculty of Fisheries, Department of Hydrobiology, 35100 Bornova, Izmir, Turkey 5 Departamento de Biologia Animal, Facultad de Ciencias, Universidad de Ma ’laga, E-29071 Ma ’laga, Spain 6 DipTeRis (Dipartimento per lo studio del Territorio e della sue Risorse), University of Genoa, Corso Europa 26, 16132 Genova, Italy 7 Institut de Ciències del Mar (CSIC) Passeig Mar tim de la Barceloneta, 37-49, E-08003 Barcelona, Spain 8 Adnan Menderes University, Faculty of Arts & Sciences, Department of Biology, 09010 Aydin, Turkey 9 c\o CNR-ISMAR, Sede Ancona, Largo Fiera della Pesca, 60125 Ancona, Italy 10 Institute of Oceanography, Hellenic Centre for Marine Research, P.O. -
Metabarcoding Analysis on European Coastal Samples Reveals New
www.nature.com/scientificreports OPEN Metabarcoding analysis on European coastal samples reveals new molecular metazoan diversity Received: 8 November 2017 David López-Escardó1, Jordi Paps2, Colomban de Vargas3,4, Ramon Massana5, Accepted: 5 June 2018 Iñaki Ruiz-Trillo 1,6,7 & Javier del Campo1,5 Published: xx xx xxxx Although animals are among the best studied organisms, we still lack a full description of their diversity, especially for microscopic taxa. This is partly due to the time-consuming and costly nature of surveying animal diversity through morphological and molecular studies of individual taxa. A powerful alternative is the use of high-throughput environmental sequencing, providing molecular data from all organisms sampled. We here address the unknown diversity of animal phyla in marine environments using an extensive dataset designed to assess eukaryotic ribosomal diversity among European coastal locations. A multi-phylum assessment of marine animal diversity that includes water column and sediments, oxic and anoxic environments, and both DNA and RNA templates, revealed a high percentage of novel 18S rRNA sequences in most phyla, suggesting that marine environments have not yet been fully sampled at a molecular level. This novelty is especially high among Platyhelminthes, Acoelomorpha, and Nematoda, which are well studied from a morphological perspective and abundant in benthic environments. We also identifed, based on molecular data, a potentially novel group of widespread tunicates. Moreover, we recovered a high number of reads for Ctenophora and Cnidaria in the smaller fractions suggesting their gametes might play a greater ecological role than previously suspected. Te animal kingdom is one of the best-studied branches of the tree of life1, with more than 1.5 million species described in around 35 diferent phyla2. -
Marine Genomics Meets Ecology: Diversity and Divergence in South
Marine genomics meets ecology: Diversity and divergence in South African sea stars of the genus Parvulastra Katherine Dunbar Thesis submitted for the degree of Doctor of Philosophy Biodiversity and Ecological Processes Research Group School of Biosciences Cardiff University December 2006 UMI Number: U584961 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U584961 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 DECLARATION This work has not previously been substance for any degree and is not being concurrently submitted in c y degree. Signed ................................(candidate) Date.... 3 l . ™ MW. ... ..... STATEMENT 1 This thesis is the result of my own M ent work/investigation, except where otherwise stated. Other source* edged by footnotes giving explicit references. Signed (candidate) S.**: Q tife : ...... STATEMENT 2 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the tJfJSJa^^prrmqary to be made available to outside organisations Signed ................................................................... (candidate) Date............................. Abstract The coast of South Africa is situated between the warm Indian and the cold Atlantic Oceans, resulting in an extreme intertidal temperature gradient and potentially strong opposing selection pressures between the east and west coasts. -
Exotic Species in the Aegean, Marmara, Black, Azov and Caspian Seas
EXOTIC SPECIES IN THE AEGEAN, MARMARA, BLACK, AZOV AND CASPIAN SEAS Edited by Yuvenaly ZAITSEV and Bayram ÖZTÜRK EXOTIC SPECIES IN THE AEGEAN, MARMARA, BLACK, AZOV AND CASPIAN SEAS All rights are reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the prior permission from the Turkish Marine Research Foundation (TÜDAV) Copyright :Türk Deniz Araştırmaları Vakfı (Turkish Marine Research Foundation) ISBN :975-97132-2-5 This publication should be cited as follows: Zaitsev Yu. and Öztürk B.(Eds) Exotic Species in the Aegean, Marmara, Black, Azov and Caspian Seas. Published by Turkish Marine Research Foundation, Istanbul, TURKEY, 2001, 267 pp. Türk Deniz Araştırmaları Vakfı (TÜDAV) P.K 10 Beykoz-İSTANBUL-TURKEY Tel:0216 424 07 72 Fax:0216 424 07 71 E-mail :[email protected] http://www.tudav.org Printed by Ofis Grafik Matbaa A.Ş. / İstanbul -Tel: 0212 266 54 56 Contributors Prof. Abdul Guseinali Kasymov, Caspian Biological Station, Institute of Zoology, Azerbaijan Academy of Sciences. Baku, Azerbaijan Dr. Ahmet Kıdeys, Middle East Technical University, Erdemli.İçel, Turkey Dr. Ahmet . N. Tarkan, University of Istanbul, Faculty of Fisheries. Istanbul, Turkey. Prof. Bayram Ozturk, University of Istanbul, Faculty of Fisheries and Turkish Marine Research Foundation, Istanbul, Turkey. Dr. Boris Alexandrov, Odessa Branch, Institute of Biology of Southern Seas, National Academy of Ukraine. Odessa, Ukraine. Dr. Firdauz Shakirova, National Institute of Deserts, Flora and Fauna, Ministry of Nature Use and Environmental Protection of Turkmenistan. Ashgabat, Turkmenistan. Dr. Galina Minicheva, Odessa Branch, Institute of Biology of Southern Seas, National Academy of Ukraine. -
Some Aspects of the Taxonomy, Biology, Possible Evolution and Biogeography of Nematodes of the Spirurine Genus Rhabdochona Raill
DOI: 10.2478/s11686-010-0017-3 © W. Stefan´ski Institute of Parasitology, PAS Acta Parasitologica, 2010, 55(2), 144–160; ISSN 1230-2821 Some aspects of the taxonomy, biology, possible evolution and biogeography of nematodes of the spirurine genus Rhabdochona Railliet, 1916 (Rhabdochonidae, Thelazioidea) František Moravec* Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic Abstract At present the nematode genus Rhabdochona Railliet, 1916 (Rhabdochonidae) comprises 92 possibly valid species, mostly in- testinal parasites of freshwater fishes in all zoogeographical regions. Because of the absence of any phylogenetic studies using molecular methods in this nematode group, an attempt to evaluate affinities among these parasites and their zoogeography on the basis of morphological features and host-parasite relationships has been carried out. Only true definitive hosts should be considered for such evaluation. It appears that, during the evolution of Rhabdochona spp., there occur an increase in the num- ber of anterior prostomal teeth, loss of lateral alae, the right spicule attains a boat-like shape and a dorsal barb develops on its distal tip, and the distal tip of the left spicule attains gradually a more complex structure; the eggs with a smooth surface are considered to be more primitive. Nematodes of this genus most probably originated in the region of present southern Asia at the beginning of Tertiary. Closest to the initial type appear to be members of the subgenus Globochona Moravec, 1972, from which lineages leading to the subgenera Globochonoides Moravec, 1975, Rhabdochona Railliet, 1916 and Sinonema Moravec, 1975 can be derived. -
M. Hichem KARA* and Nadjette BOUREHAIL
ACTA ICHTHYOLOGICA ET PISCATORIA (2020) 50 (3): 363–366 DOI: 10.3750/AIEP/02987 FIRST RECORD OF THE INDO-PACIFIC YELLOWTAIL BARRACUDA, SPHYRAENA FLAVICAUDA (ACTINOPTERYGII: PERCIFORMES: SPHYRAENIDAE), IN THE WESTERN MEDITERRANEAN M. Hichem KARA* and Nadjette BOUREHAIL Laboratoire Bioressources Marines, Université d’Annaba Badji Mokhtar, Annaba, Algérie Kara M.H., Bourehail N. 2020. First record of the Indo-Pacific yellowtail barracuda, Sphyraena flavicauda (Actinopterygii: Perciformes: Sphyraenidae), in the Western Mediterranean. Acta Ichthyol. Piscat. 50 (3): 363–366. Abstract. One specimen of the yellowtail barracuda, Sphyraena flavicauda Rüppell, 1838, is recorded for the first time in the Western Mediterranean, on the eastern coast of Algeria. The specimen had a TL of 39.5 cm and was caught in February 2019. Its morphometric characteristics are described and the chronology of its spread in the Mediterranean is given. This species is the ninth Lessepsian migrant fish reported from Algeria. Keywords: yellowtail barracuda, Sphyraena flavicauda, Lessepsian migration, Mediterranean, Algeria. INTRODUCTION Inshore-pelagic S. flavicauda is a commercially The family Sphyraenidae is represented by a single important species throughout its native geographical genus that accommodates 28 species (Froese and Pauly distribution area where it can reach 60 cm TL (common 2019). Five species are found in the Mediterranean: size = 40 cm TL). Inhabiting coral reefs or bays, it is Sphyraena sphyraena (Linnaeus, 1758), Sphyraena usually seen during the day in large schools (Senou 2001) viridensis Cuvier, 1829, Sphyraena chrysotaenia eating fish and large invertebrates (Golani et al. 2002, Klunzinger, 1884, Sphyraena flavicauda Rüppell, 1838, Osman et al. 2019). In Egyptian Mediterranean waters, and Sphyraena obtusata Cuvier, 1829. -
Echinodermata of Lakshadweep, Arabian Sea with the Description of a New Genus and a Species
Rec. zool. Surv. India: Vol 119(4)/ 348-372, 2019 ISSN (Online) : 2581-8686 DOI: 10.26515/rzsi/v119/i4/2019/144963 ISSN (Print) : 0375-1511 Echinodermata of Lakshadweep, Arabian Sea with the description of a new genus and a species D. R. K. Sastry1*, N. Marimuthu2* and Rajkumar Rajan3 1Erstwhile Scientist, Zoological Survey of India (Ministry of Environment, Forest and Climate Change), FPS Building, Indian Museum Complex, Kolkata – 700016 and S-2 Saitejaswini Enclave, 22-1-7 Veerabhadrapuram, Rajahmundry – 533105, India; [email protected] 2Zoological Survey of India (Ministry of Environment, Forest and Climate Change), FPS Building, Indian Museum Complex, Kolkata – 700016, India; [email protected] 3Marine Biology Regional Centre, Zoological Survey of India (Ministry of Environment, Forest and Climate Change), 130, Santhome High Road, Chennai – 600028, India Zoobank: http://zoobank.org/urn:lsid:zoobank.org:act:85CF1D23-335E-4B3FB27B-2911BCEBE07E http://zoobank.org/urn:lsid:zoobank.org:act:B87403E6-D6B8-4ED7-B90A-164911587AB7 Abstract During the recent dives around reef slopes of some islands in the Lakshadweep, a total of 52 species of echinoderms, including four unidentified holothurians, were encountered. These included 12 species each of Crinoidea, Asteroidea, Ophiuroidea and eightspecies each of Echinoidea and Holothuroidea. Of these 11 species of Crinoidea [Capillaster multiradiatus (Linnaeus), Comaster multifidus (Müller), Phanogenia distincta (Carpenter), Phanogenia gracilis (Hartlaub), Phanogenia multibrachiata (Carpenter), Himerometra robustipinna (Carpenter), Lamprometra palmata (Müller), Stephanometra indica (Smith), Stephanometra tenuipinna (Hartlaub), Cenometra bella (Hartlaub) and Tropiometra carinata (Lamarck)], four species of Asteroidea [Fromia pacifica H.L. Clark, F. nodosa A.M. Clark, Choriaster granulatus Lütken and Echinaster luzonicus (Gray)] and four species of Ophiuroidea [Gymnolophus obscura (Ljungman), Ophiothrix (Ophiothrix) marginata Koehler, Ophiomastix elegans Peters and Indophioderma ganapatii gen et.