Maquetación 1

Total Page:16

File Type:pdf, Size:1020Kb

Maquetación 1 EARLY CRETACEOUS ORNITHOMIMOSAURS (DINOSAURIA: COELUROSAURIA) FROM AFRICA PAUL C. SERENO Department of Organismal Biology and Anatomy and Committee on Evolutionary Biology, University of Chicago, 1027 East 57th Street, Chicago, Illinois, 60637, U.S.A. Submitted: August 5 th , 2017 - Accepted: October 23 rd , 2017 - Published online: November 1 st , 2017 To cite this article: Paul C. Sereno (2017). Early Cretaceous ornithomimosaurs (Dinosauria: Coelurosauria) from Africa. Ameghiniana 54: 576–616. To link to this article: http://dx.doi.org/ 10.5710/AMGH.23.10.2017.3155 PLEASE SCROLL DOWN FOR ARTICLE Also appearing in this issue: Two new taxa unveil the A new ornithomimosaur taxon Murusraptor had a brain morphology previously unrecognized diversity from the Early Cretaceous of Niger similar to tyrannosaurids but of Coelophysidae in the Late Triassic and new anatomical data on neurosensorial capabilities of South America. Nqwebasaurus from South Africa. resembling that of allosauroids. ISSN 0002-7014 GONDWANAN PERSPECTIVES AMEGHINIANA - 2017 - Volume 54 (5): 576 – 616 EARLY CRETACEOUS ORNITHOMIMOSAURS (DINOSAURIA: COELUROSAURIA) FROM AFRICA PAUL C. SERENO Department of Organismal Biology and Anatomy and Committee on Evolutionary Biology, University of Chicago, 1027 East 57th Street, Chicago, Illinois, 60637, U.S.A. [email protected] Abstract . A new genus and species of ornithomimosaur, Afromimus tenerensis , is described based on a fragmentary skeleton from the Lower Cretaceous (Aptian–Albian) El Rhaz Formation of Niger. The holotype and only known individual preserves caudal vertebrae, chevrons and por - tions of the right hind limb. Derived ornithomimosaurian features include the broad, peanut-shaped articular surfaces of mid caudal centra, parasagittal fossae on mid caudal centra for reception of the postzygapophyses of the preceding vertebra, and a raised, subtriangular platform on the ventral aspect of the pedal phalanges. New information is given for, and comparisons made to, Nqwebasaurus thwazi from southern Africa, the oldest and most basal ornithomimosaur. Unlike other coelurosaurian clades that have expansive radiations on northern landmasses, the oldest ornithomimosaur and now another basal form are known from a southern landmass, Africa . Key words. Theropoda. Ornithomimosauria. Ornithomimid. Paleobiogeography. Gondwana. Afromimus . Nqwebasaurus . Resumen. ORNITHOMIMOSAURIOS DEL CRETÁCICO TEMPRANO (DINOSAURIA: COELUROSAURIA) DE ÁFRICA. Un nuevo género y especie de ornithomimosaurio, Afromimus tenerensis , es descrito en base a un esqueleto fragmentario de la Formación El Rhaz del Cretácico Temprano (Aptiano–Albiano) de Nigeria. El holotipo y único individuo conocido preserva vértebras caudales, chevrones, y portiones del miembro posterior derecho. Las características derivadas de ornithomimosaurios incluyen superficie articular de caudales medias en forma de maní, fosas parasa - gitales en centros de caudales medias para la recepción de postzygapófisis de la vértebra precedente, y una plataforma subtriangular elevada en la cara ventral de la falanges. La nueva información se da, y se compara con, Nqwebasaurus thwazi del sur de África, el ornitomimosaurio más antiguo y más basal. En contraposición a otros clados coelurosauriios que poseen una radiación expansiva en las masas continentales del he - misferio norte, el ornitomimosaurio más antiguo y ahora otra forma basal provienen de una masa continental del sur, África . Palabras clave. Theropoda. Ornithomimosauria. Ornitomímido. Oaleobiogeografía. Gondwana. Afromimus . Nqwebasaurus . ORNITHOMIMOSAURS are best known from Late Cretaceous postcrania from Valanginian-to-Berriasian-age rocks in deposits on northern landmasses. These well known genera southern England (Allain et al. , 2014), Nedcolbertia from include Gallimimus (Osmólska et al. , 1972), Garudimimus Berriasian-age rocks in Utah (Kirkland et al. , 1998; Brown - (Barsbold, 1981; Kobayashi and Barsbold, 2005a), Deino - stein, 2017), and Kinnareemimus from ?Berriasian-age rocks cheirus (Osmólska and Roniewicz, 1970; Lee et al. , 2014), in Thailand (Buffetaut et al. , 2009). Together, these wide - and Sinornithomimus (Kobayashi and Lü, 2003) from Asia and spread, fragmentary materials suggest that Early Creta - Ornithomimus (Sternberg, 1933) and Struthiomimus (Osborn, ceous strata on Laurasia will eventually reveal important 1917) from Laramidia. Similarly, older ornithomimosaurs of early stages in the evolution of Ornithomimosauria. late Early Cretaceous age (Berriasian to Aptian) also are Other taxa from Laurasian landmasses have been des- found only on northern landmassses. The most complete cribed recently as ornithomimosaurs, although their mor - of these include Harpymimus (Barsbold and Perle, 1984; phology and affinity remain poorly established. These Kobayashi and Barsbold, 2005b) and Shenzhosaurus (Ji et al. , include Hexing from ?Berriasian rocks in northern China (Jin 2003) from Asia, and Pelecanimimus (Perz-Moreno et al., et al. , 2012) and Lepidocheirosaurus from Late Jurassic 1994) and the Angeac ornithomimosaur (Allain et al. , 2014) (?Tithonian) rocks in Transbaikal Siberia (Alifanov and from western Europe. Saveliev, 2015). The partial holotypic skeleton of Hexing is Other fragmentary Early Cretaceous ornithomimosaurs very poorly preserved with some portions of the skeleton, from Laurasian rocks include Valdoraptor and other isolated such as the manus, exhibiting morphology and phalangeal 576 AMGHB2-0002-7014/12$00.00+.50 SERENO: EARLY AFRICAN ORNITHOMIMOSAURS formula unlike that of any ornithomimosaur. These same terms are used here as opposed to veterinarian directional deposits, it should be noted, yielded the well-preserved (e.g. , “rostral”) and anatomical ( e.g. , “alular digit”) terms used or nithomimosaur Shenzhousaurus (Ji et al. , 2003). The re - within the crown group Aves (see Wilson, 2006). Regarding mains of Lepidocheirosaurus are extremely fragmentary, the taxonomic terminology, Ornithomimosauria and Ornithomi - holotype limited to portions of the left manus and referred midae, are used as defined by Sereno (2005a,b), the former material to a few isolated caudal vertebrae. Its identifica - a stem-based taxon including Nqwebasaurus thwazi and all tion as an ornithomimosaur and the diagnosis of the species species closer to Ornithomimus edmontonicus than a range are not based on synapomorphies and autapomorphies, of other coelurosaurian clades (Tab. 2). Ornithomimidae is re spectively, and so the affinity and basis for this taxon re - also a stem-based taxon circumscribing the best known Late main problematic. Cretaceous species, while excluding the more basal Early Southern “ornithomimosaurs” reassigned . Initial reports of Cretaceous species Shenzhousaurus orientalis, Harpymimus or nithomimosaurs from southern landmasses have been okladnikovi, Pelecanimimis polyodon , and Garudimimus bre - reassigned to other theropod clades or questioned as or - vipes (Tab. 2). nithomimosaurs. The Late Jurassic Elaphosaurus bambergi Ornithomimoidea Marsh 1890, following traditional use from Tanzania, formerly interpreted as an ornithomimosaur of suffixes in Linnean taxonomy, should circumscribe a clade (Galton, 1982), has been reevaluated as an abelisauroid more inclusive than Ornithomimidae but less inclusive (noasaurid) theropod (Holtz, 1994; Rauhut and Caranno, than Ornithomimosauria, a suprafamilial taxon. As is ap - 2016). The Early Cretaceous (Aptian–Albian) Timimus her - par ent below, Nqwebasaurus thwazi is decisively more prim - mani from the southern coast of Australia (Rich and Rich, itive in many skeletal features than other species of Early 1994) was based on isolated femora more likely referable Cretaceous age ( e.g. , Shenzhousaurus oreintalis , Harpymimus to Dromaeosauridae (Agnolin et al. , 2010). okladnikovi and Pelecanimimis polyodon ). The taxon Ornitho - Nqwebasaurus , southern basal ornithomimosaur . The south - mimoidea, thus, could be a heuristic stem-based clade to ern African genus Nqwebasaurus (de Klerk et al. , 2000; encompass all ornithomimosaurs more advanced than Choiniere et al. , 2012) is known from a single partial skele - Nqwebasaurus thwazi . To that end, a definitional revision is ton discovered in Early Cretaceous (Berriasian–Valanginian) proposed here for Ornithomimoidea Marsh 1890 (Tab. 2), a rocks of southern Africa. Nqwebasaurus , first recognized as taxon initially defined by Sereno (1999a, 1999b) to encom - an ornithomimosaur by Sereno (2001), stands as the only pass ornithomimids and alvarezsaurids, prior to the dis - accepted representative of this clade from a southern cov ery of basal taxa within each subgroup that have land mass—and the oldest ornithomimosaur on record. undermined their monophyly). A new southern ornithomimosaur . Here I describe a second Fossil preservation . The holotype and only known specimen ornithomimosaur from Africa of slightly younger age than of Afromimus tenerensis (MNBH GAD112; Figs. 1–10) was Nqwebasaurus . The holotypic and only known specimen weathering on a nearly horizontal erosional surface and may was discovered in 1997 in the Ténéré Desert (Gadoufaoua) have been considerably more complete when originally of Niger in the Lower Cretaceous (Aptian–Albian) El Rhaz buried. No other vertebrate fossils were preserved at the For mation. Further details, in addition, are given for Nqwe - type locality, and no other specimens pertaining to an or - basaurus to supplement previous descriptions (de Klerk et nithomimosaur
Recommended publications
  • Abstract Book Progeo 2Ed 20
    Abstract Book BUILDING CONNECTIONS FOR GLOBAL GEOCONSERVATION Editors: G. Lozano, J. Luengo, A. Cabrera Internationaland J. Vegas 10th International ProGEO online Symposium ABSTRACT BOOK BUILDING CONNECTIONS FOR GLOBAL GEOCONSERVATION Editors Gonzalo Lozano, Javier Luengo, Ana Cabrera and Juana Vegas Instituto Geológico y Minero de España 2021 Building connections for global geoconservation. X International ProGEO Symposium Ministerio de Ciencia e Innovación Instituto Geológico y Minero de España 2021 Lengua/s: Inglés NIPO: 836-21-003-8 ISBN: 978-84-9138-112-9 Gratuita / Unitaria / En línea / pdf © INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Ríos Rosas, 23. 28003 MADRID (SPAIN) ISBN: 978-84-9138-112-9 10th International ProGEO Online Symposium. June, 2021. Abstracts Book. Editors: Gonzalo Lozano, Javier Luengo, Ana Cabrera and Juana Vegas Symposium Logo design: María José Torres Cover Photo: Granitic Tor. Geosite: Ortigosa del Monte’s nubbin (Segovia, Spain). Author: Gonzalo Lozano. Cover Design: Javier Luengo and Gonzalo Lozano Layout and typesetting: Ana Cabrera 10th International ProGEO Online Symposium 2021 Organizing Committee, Instituto Geológico y Minero de España: Juana Vegas Andrés Díez-Herrero Enrique Díaz-Martínez Gonzalo Lozano Ana Cabrera Javier Luengo Luis Carcavilla Ángel Salazar Rincón Scientific Committee: Daniel Ballesteros Inés Galindo Silvia Menéndez Eduardo Barrón Ewa Glowniak Fernando Miranda José Brilha Marcela Gómez Manu Monge Ganuzas Margaret Brocx Maria Helena Henriques Kevin Page Viola Bruschi Asier Hilario Paulo Pereira Carles Canet Gergely Horváth Isabel Rábano Thais Canesin Tapio Kananoja Joao Rocha Tom Casadevall Jerónimo López-Martínez Ana Rodrigo Graciela Delvene Ljerka Marjanac Jonas Satkünas Lars Erikstad Álvaro Márquez Martina Stupar Esperanza Fernández Esther Martín-González Marina Vdovets PRESENTATION The first international meeting on geoconservation was held in The Netherlands in 1988, with the presence of seven European countries.
    [Show full text]
  • A Comprehensive Anatomical And
    Journal of Paleontology, Volume 94, Memoir 78, 2020, p. 1–103 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.14 A comprehensive anatomical and phylogenetic evaluation of Dilophosaurus wetherilli (Dinosauria, Theropoda) with descriptions of new specimens from the Kayenta Formation of northern Arizona Adam D. Marsh1,2 and Timothy B. Rowe1 1Jackson School of Geosciences, the University of Texas at Austin, 2305 Speedway Stop C1160, Austin, Texas 78712, USA <[email protected]><[email protected]> 2Division of Resource Management, Petrified Forest National Park, 1 Park Road #2217, Petrified Forest, Arizona 86028, USA Abstract.—Dilophosaurus wetherilli was the largest animal known to have lived on land in North America during the Early Jurassic. Despite its charismatic presence in pop culture and dinosaurian phylogenetic analyses, major aspects of the skeletal anatomy, taxonomy, ontogeny, and evolutionary relationships of this dinosaur remain unknown. Skeletons of this species were collected from the middle and lower part of the Kayenta Formation in the Navajo Nation in northern Arizona. Redescription of the holotype, referred, and previously undescribed specimens of Dilophosaurus wetherilli supports the existence of a single species of crested, large-bodied theropod in the Kayenta Formation. The parasagittal nasolacrimal crests are uniquely constructed by a small ridge on the nasal process of the premaxilla, dorsoventrally expanded nasal, and tall lacrimal that includes a posterior process behind the eye.
    [Show full text]
  • Back Matter (PDF)
    Index Figures are shown in italic font, tables in bold Acrodontinae 99, 101–102 Buddha’s cortege 245 Actinopterygii 127, 130 burial temperature 63 adocid 143–144, 147, 148 Adocus [turtle] 166, 167 comparison, Basilochelys 155–158, 163–165 calc-alkaline volcanism 61 amber locality 86,88 calcrete 77 Ameghinichthys [fish] 129 Callialisporites [palynomorph] 72, 75, 77, 79, 80, 81 ammonites 48, 52 Carettochelyidae 166, 167 amphibian remains 2–3 Cathaysia Divide 10–12 anhydrite 70 Cathaysialand 8, 9, 15, 20 Anomoeodus [fish] 136 fauna 12–14 Anomoepodidae 264, 265, 266 flora 16 Anomoepus [ichnofossil] 256, 258, 261, 262–264 Ceno-Tethys 8, 12, 19,20 comparison 264, 265–267 Centre National de la Recherche Scientifique Ao Min, fish locality 98, 99 (France) 190 apatite 63 Champon Formation 50 Appendicisporites [palynomorph] 76,77 Chelomoidea 166, 167 Araucaria [tree] 85, 88, 92, 93 Chelonia 274, 293 Archaeornithomimus [theropod] 237–240 Chelydridae 166, 167 archosaur trackway 247 chert 18, 20 Argoland 12, 13 Chondrichthyes 98–99 Aruacariacites [palynomorph] 74 Chong Chad, oxygen isotope analysis 272, Asteracanthus [elasmobranch] 99–101 274, 275, 276, 277 comparison 101–102 Chong Chat, fish locality 127, 130, 131, 137 Asterodermus [elasmobranch] 107 Chuiella, distribution of 15 Cicatricosisporites [palynomorph] 75, 76, 77, 79 Cimmerian continent 8, 12, 15, 16, 18, 20 Baenidae 166, 167 Cimmerian Event 44, 46, 47, 51, 64 Ban Khok Sanam locality 272, 274, 276 cladistic analysis Ban Na Khrai, sauropod site 189, 190, 192, 195–214 actinopterygians 130 Ban Na
    [Show full text]
  • The Anatomy of Asilisaurus Kongwe, a Dinosauriform from the Lifua
    THE ANATOMICAL RECORD (2019) The Anatomy of Asilisaurus kongwe,a Dinosauriform from the Lifua Member of the Manda Beds (~Middle Triassic) of Africa 1 2 3 STERLING J. NESBITT , * MAX C. LANGER, AND MARTIN D. EZCURRA 1Department of Geosciences, Virginia Tech, Blacksburg, Virginia 2Departamento de Biologia, Universidade de Sao~ Paulo, Ribeirao~ Preto, Brazil 3Sección Paleontología de Vertebrados CONICET—Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires, Argentina ABSTRACT The diagnosis of Dinosauria and interrelationships of the earliest dino- saurs relies on careful documentation of the anatomy of their closest rela- tives. These close relatives, or dinosaur “precursors,” are typically only documented by a handful of fossils from across Pangea and nearly all speci- mens are typically missing important regions (e.g., forelimbs, pelves, skulls) that appear to be important to help resolving the relationships of dinosaurs. Here, we fully describe the known skeletal elements of Asilisaurus kongwe, a dinosauriform from the Middle Triassic Manda Beds of the Ruhuhu Basin of Tanzania. The taxon is known from many disarticulated and partially articulated remains and, most importantly, from a spectacularly preserved associated skeleton of an individual containing much of the skull, pectoral and pelvic girdles, forelimb and hindlimb, and parts of the vertebral column including much of the tail. The unprecedented detail of the anatomy indi- cates that Asilisaurus kongwe had a unique skull that was short and had both a premaxillary and dentary edentulous margin, but retained a number of character states plesiomorphic for Archosauria, including a crocodylian- like ankle configuration and a rather short foot with well-developed meta- tarsals I and V.
    [Show full text]
  • New Tyrannosaur from the Mid-Cretaceous of Uzbekistan Clarifies Evolution of Giant Body Sizes and Advanced Senses in Tyrant Dinosaurs
    Edinburgh Research Explorer New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs Citation for published version: Brusatte, SL, Averianov, A, Sues, H, Muir, A & Butler, IB 2016, 'New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs', Proceedings of the National Academy of Sciences, pp. 201600140. https://doi.org/10.1073/pnas.1600140113 Digital Object Identifier (DOI): 10.1073/pnas.1600140113 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Proceedings of the National Academy of Sciences General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Classification: Physical Sciences: Earth, Atmospheric, and Planetary Sciences; Biological Sciences: Evolution New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs Stephen L. Brusattea,1, Alexander Averianovb,c, Hans-Dieter Suesd, Amy Muir1, Ian B. Butler1 aSchool of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, UK bZoological Institute, Russian Academy of Sciences, St.
    [Show full text]
  • New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia
    Bull. Natn. Sci. Mus., Tokyo, Ser. C, 30, pp. 95–130, December 22, 2004 New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia Junchang Lü1, Yukimitsu Tomida2, Yoichi Azuma3, Zhiming Dong4 and Yuong-Nam Lee5 1 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China 2 National Science Museum, 3–23–1 Hyakunincho, Shinjukuku, Tokyo 169–0073, Japan 3 Fukui Prefectural Dinosaur Museum, 51–11 Terao, Muroko, Katsuyama 911–8601, Japan 4 Institute of Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 5 Korea Institute of Geoscience and Mineral Resources, Geology & Geoinformation Division, 30 Gajeong-dong, Yuseong-gu, Daejeon 305–350, South Korea Abstract Nemegtia barsboldi gen. et sp. nov. here described is a new oviraptorid dinosaur from the Late Cretaceous (mid-Maastrichtian) Nemegt Formation of southwestern Mongolia. It differs from other oviraptorids in the skull having a well-developed crest, the anterior margin of which is nearly vertical, and the dorsal margin of the skull and the anterior margin of the crest form nearly 90°; the nasal process of the premaxilla being less exposed on the dorsal surface of the skull than those in other known oviraptorids; the length of the frontal being approximately one fourth that of the parietal along the midline of the skull. Phylogenetic analysis shows that Nemegtia barsboldi is more closely related to Citipati osmolskae than to any other oviraptorosaurs. Key words : Nemegt Basin, Mongolia, Nemegt Formation, Late Cretaceous, Oviraptorosauria, Nemegtia. dae, and Caudipterygidae (Barsbold, 1976; Stern- Introduction berg, 1940; Currie, 2000; Clark et al., 2001; Ji et Oviraptorosaurs are generally regarded as non- al., 1998; Zhou and Wang, 2000; Zhou et al., avian theropod dinosaurs (Osborn, 1924; Bars- 2000).
    [Show full text]
  • Postcranial Skeletal Pneumaticity in Sauropods and Its
    Postcranial Pneumaticity in Dinosaurs and the Origin of the Avian Lung by Mathew John Wedel B.S. (University of Oklahoma) 1997 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Kevin Padian, Co-chair Professor William Clemens, Co-chair Professor Marvalee Wake Professor David Wake Professor John Gerhart Spring 2007 1 The dissertation of Mathew John Wedel is approved: Co-chair Date Co-chair Date Date Date Date University of California, Berkeley Spring 2007 2 Postcranial Pneumaticity in Dinosaurs and the Origin of the Avian Lung © 2007 by Mathew John Wedel 3 Abstract Postcranial Pneumaticity in Dinosaurs and the Origin of the Avian Lung by Mathew John Wedel Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Kevin Padian, Co-chair Professor William Clemens, Co-chair Among extant vertebrates, postcranial skeletal pneumaticity is present only in birds. In birds, diverticula of the lungs and air sacs pneumatize specific regions of the postcranial skeleton. The relationships among pulmonary components and the regions of the skeleton that they pneumatize form the basis for inferences about the pulmonary anatomy of non-avian dinosaurs. Fossae, foramina and chambers in the postcranial skeletons of pterosaurs and saurischian dinosaurs are diagnostic for pneumaticity. In basal saurischians only the cervical skeleton is pneumatized. Pneumatization by cervical air sacs is the most consilient explanation for this pattern. In more derived sauropods and theropods pneumatization of the posterior dorsal, sacral, and caudal vertebrae indicates that abdominal air sacs were also present.
    [Show full text]
  • Download Full-Text
    Vertebrate Anatomy Morphology Palaeontology 6:60-67 60 ISSN 2292-1389 Positional Variation in Pedal Unguals of North American Ornithomimids (Dinosauria, Theropoda): A Response to Brownstein (2017) Bradley McFeeters1*, Michael J. Ryan1,2, and Thomas M. Cullen3 1Dept. Earth Sciences, Carleton University, Ottawa, Ontario, K1S 5B6, Canada; [email protected] 2Cleveland Museum of Natural History, 1 Wade Oval Drive, Cleveland, Ohio 41106-1767, USA; [email protected] 3Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, Illinois 60605, USA; thomas.cullen@ fieldmuseum.org Abstract: Positional variation is documented in ornithomimid pedal unguals from the Dinosaur Park and Horseshoe Canyon Formations of Alberta, Canada, and characters for identifying the position of isolated ornithomimid pedal unguals are discussed. Ungual morphology has been used recently to argue for the coexistence of two distinct ornithomimosaurs, a basal taxon and distinctly more derived taxon, in the Early Cretaceous Arundel Clay of Maryland, USA. However, these conclusions are based on misconceptions of the morphology and positional variability of ornithomimosaur unguals. Some characters previously cited as diagnostic of ornithomimosaur unguals are not actually observed in this clade, or are more homoplastically distributed among theropods. Other characters proposed to distinguish between the two pedal ungual morphs in the Arundel Clay material are shown in the Albertan ornithomimid material to consistently distinguish the dif- ferent ungual positions within the pes of one individual. Claims of multiple distinct ornithomimosaur taxa in the Arundel Clay are premature, as the two pedal ungual morphotypes more likely represent positional variation in a single taxon. INTRODUCTION itional variation in a complete set of unguals from a single pes of the ornithomimid Aepyornithomimus tugrikinensis The ornithomimosaur pes is regarded as an important was described and figured.
    [Show full text]
  • Dinosaur Species List E to M
    Dinosaur Species List E to M E F G • Echinodon becklesii • Fabrosaurus australis • Gallimimus bullatus • Edmarka rex • Frenguellisaurus • Garudimimus brevipes • Edmontonia longiceps ischigualastensis • Gasosaurus constructus • Edmontonia rugosidens • Fulengia youngi • Gasparinisaura • Edmontosaurus annectens • Fulgurotherium australe cincosaltensis • Edmontosaurus regalis • Genusaurus sisteronis • Edmontosaurus • Genyodectes serus saskatchewanensis • Geranosaurus atavus • Einiosaurus procurvicornis • Gigantosaurus africanus • Elaphrosaurus bambergi • Giganotosaurus carolinii • Elaphrosaurus gautieri • Gigantosaurus dixeyi • Elaphrosaurus iguidiensis • Gigantosaurus megalonyx • Elmisaurus elegans • Gigantosaurus robustus • Elmisaurus rarus • Gigantoscelus • Elopteryx nopcsai molengraaffi • Elosaurus parvus • Gilmoreosaurus • Emausaurus ernsti mongoliensis • Embasaurus minax • Giraffotitan altithorax • Enigmosaurus • Gongbusaurus shiyii mongoliensis • Gongbusaurus • Eoceratops canadensis wucaiwanensis • Eoraptor lunensis • Gorgosaurus lancensis • Epachthosaurus sciuttoi • Gorgosaurus lancinator • Epanterias amplexus • Gorgosaurus libratus • Erectopus sauvagei • "Gorgosaurus" novojilovi • Erectopus superbus • Gorgosaurus sternbergi • Erlikosaurus andrewsi • Goyocephale lattimorei • Eucamerotus foxi • Gravitholus albertae • Eucercosaurus • Gresslyosaurus ingens tanyspondylus • Gresslyosaurus robustus • Eucnemesaurus fortis • Gresslyosaurus torgeri • Euhelopus zdanskyi • Gryponyx africanus • Euoplocephalus tutus • Gryponyx taylori • Euronychodon
    [Show full text]
  • The Distinctive Theropod Assemblage of the Ellisdale Site of New Jersey and Its Implications for North American Dinosaur Ecology and Evolution During the Cretaceous
    Journal of Paleontology, 92(6), 2018, p. 1115–1129 Copyright © 2018, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/15/0088-0906 doi: 10.1017/jpa.2018.42 The distinctive theropod assemblage of the Ellisdale site of New Jersey and its implications for North American dinosaur ecology and evolution during the Cretaceous Chase D. Brownstein Stamford Museum and Nature Center, Stamford CT 〈[email protected]〉 Abstract.—The Cretaceous landmass of Appalachia has preserved an understudied but nevertheless important record of dinosaurs that has recently come under some attention. In the past few years, the vertebrate faunas of several Appalachian sites have been described. One such locality, the Ellisdale site of the Cretaceous Marshalltown Forma- tion of New Jersey, has produced hundreds of remains assignable to dinosaurs, including those of hadrosauroids of several size classes, indeterminate ornithopods, indeterminate theropods, the teeth, cranial, and appendicular elements of dromaeosaurids, ornithomimosaurians, and tyrannosauroids, and an extensive microvertebrate assemblage. The theropod dinosaur record of the Ellisdale site is currently the most extensive and diverse known from the Campanian of Appalachia. Study of the Ellisdale theropod specimens suggests that at
    [Show full text]
  • The Nonavian Theropod Quadrate II: Systematic Usefulness, Major Trends and Cladistic and Phylogenetic Morphometrics Analyses
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/272162807 The nonavian theropod quadrate II: systematic usefulness, major trends and cladistic and phylogenetic morphometrics analyses Article · January 2014 DOI: 10.7287/peerj.preprints.380v2 CITATION READS 1 90 3 authors: Christophe Hendrickx Ricardo Araujo University of the Witwatersrand Technical University of Lisbon 37 PUBLICATIONS 210 CITATIONS 89 PUBLICATIONS 324 CITATIONS SEE PROFILE SEE PROFILE Octávio Mateus University NOVA of Lisbon 224 PUBLICATIONS 2,205 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Nature and Time on Earth - Project for a course and a book for virtual visits to past environments in learning programmes for university students (coordinators Edoardo Martinetto, Emanuel Tschopp, Robert A. Gastaldo) View project Ten Sleep Wyoming Jurassic dinosaurs View project All content following this page was uploaded by Octávio Mateus on 12 February 2015. The user has requested enhancement of the downloaded file. The nonavian theropod quadrate II: systematic usefulness, major trends and cladistic and phylogenetic morphometrics analyses Christophe Hendrickx1,2 1Universidade Nova de Lisboa, CICEGe, Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Quinta da Torre, 2829-516, Caparica, Portugal. 2 Museu da Lourinhã, 9 Rua João Luis de Moura, 2530-158, Lourinhã, Portugal. s t [email protected] n i r P e 2,3,4,5 r Ricardo Araújo P 2 Museu da Lourinhã, 9 Rua João Luis de Moura, 2530-158, Lourinhã, Portugal. 3 Huffington Department of Earth Sciences, Southern Methodist University, PO Box 750395, 75275-0395, Dallas, Texas, USA.
    [Show full text]
  • Download Download
    Vertebrate Anatomy Morphology Palaeontology 6:68-72 68 ISSN 2292-1389 Rebuttal of McFeeters, Ryan and Cullen, 2018, ‘Positional variation in pedal unguals of North American ornithomimids (Dinosauria, Theropoda): A Response to Brownstein (2017)’ Chase Doran Brownstein Stamford Museum, 39 Scofieldtown Road, Stamford, CT 06903, USA; [email protected] Abstract: The Arundel Clay of Maryland is among the only Early Cretaceous terrestrial units known from eastern North America. Research on some theropod dinosaur bones from this layer has indicated the presence of two ornithomimosaur taxa in the assemblage. However, a recent paper discussed issues with the definite assignment of any of these unguals to Ornithomimosauria and suggested that morphological differences originally interpreted to be indicative of the presence of two ornithomimosaurs could be explained by positional variation. Here, I show that substantial evidence persists for the presence of two ornithomimosaurs in the Arundel Clay assemblage, even considering the recent description of positional variation in ornithomimosaur pedal unguals. Furthermore, the argument against the confident assignment of these unguals to ornithomimosaurs is shown to be based on oversimplified comparisons that do not take into account the combination of features in the Arundel specimens that allow for their assignment to that clade. Although several small points made in the initial paper describing the Arundel specimens are incorrect or unsubstantiated, the differences between the Maryland unguals are outside the spectrum of positional variation and are indicative of the presence of two ornithomimosaurs in the Arundel Clay assemblage. The Arundel Clay of Maryland is an Aptian unit (e.g., Lipka major acts in that paper: (1) the confident assignment of the et al.
    [Show full text]