Assembly Factors for the Membrane Arm of Human Complex I

Total Page:16

File Type:pdf, Size:1020Kb

Assembly Factors for the Membrane Arm of Human Complex I Assembly factors for the membrane arm of human complex I Byron Andrews, Joe Carroll, Shujing Ding, Ian M. Fearnley, and John E. Walker1 Medical Research Council Mitochondrial Biology Unit, Cambridge CB2 0XY, United Kingdom Contributed by John E. Walker, October 14, 2013 (sent for review September 12, 2013) Mitochondrial respiratory complex I is a product of both the nuclear subunits in a fungal enzyme from Yarrowia lipolytica seem to be and mitochondrial genomes. The integration of seven subunits distributed similarly (12, 13). encoded in mitochondrial DNA into the inner membrane, their asso- The assembly of mitochondrial complex I involves building the ciation with 14 nuclear-encoded membrane subunits, the construc- 44 subunits emanating from two genomes into the two domains of tion of the extrinsic arm from 23 additional nuclear-encoded the complex. The enzyme is put together from preassembled sub- proteins, iron–sulfur clusters, and flavin mononucleotide cofactor complexes, and their subunit compositions have been characterized require the participation of assembly factors. Some are intrinsic to partially (14, 15). Extrinsic assembly factors of unknown function the complex, whereas others participate transiently. The suppres- become associated with subcomplexes that accumulate when as- sion of the expression of the NDUFA11 subunit of complex I dis- sembly and the activity of complex I are impaired by pathogenic rupted the assembly of the complex, and subcomplexes with mutations. Some assembly factor mutations also impair its activ- masses of 550 and 815 kDa accumulated. Eight of the known ex- ity (16). Other pathogenic mutations are found in all of the core trinsic assembly factors plus a hydrophobic protein, C3orf1, were subunits, and in 10 supernumerary subunits (NDUFA1, NDUFA2, associated with the subcomplexes. The characteristics of C3orf1, of NDUFA9, NDUFA10, NDUFA11, NDUFA12, NDUFB3, another assembly factor, TMEM126B, and of NDUFA11 suggest that NDUFB9, NDUFS4, and NDUFS6) (17–26). Those in supernu- they all participate in constructing the membrane arm of complex I. merary subunits NDUFA2, NDUFA10, NDUFS4, and NDUFS6 are associated with a reduced level of intact complex and accu- mitochondria | respiratory chain | NADH:ubiquinone oxidoreductase mulation of subcomplexes, indicating a defect in assembly or sta- bility of the complex, or both. n mammalian mitochondria, complex I (NADH:ubiquinone As described here, suppression of the expression of the su- Ioxidoreductase) provides the entry point for electrons from pernumerary membrane subunit NDUFA11 impairs assembly of NADH into the electron transport chain. For each two electrons complex I, leading to the accumulation of subcomplexes with transferred from NADH to ubiquinone, four protons are ejected estimated molecular masses of 550 and 815 kDa associated with from the mitochondrial matrix, thereby contributing to the pro- eight known assembly factors, plus three other proteins, espe- ton motive force across the inner membrane (1). The mamma- cially C3orf1. NDUFA11 has the characteristics of an intrinsic lian enzyme has 44 subunits, with a combined molecular mass of assembly factor for complex I and together with C3orf1 and about 1 MDa, assembled into an L-shaped complex, with one another extrinsic assembly factor TMEM126B (27), they prob- arm embedded in the inner membrane and the other protruding ably help to assemble the membrane arm of the complex. into the matrix of the organelle (2–4). Seven hydrophobic sub- units (ND1–ND6 and ND4L) of the membrane arm of NADH Results dehydrogenase (complex I) are encoded in mitochondrial DNA, Suppression of Expression of NDUFA11. The experiment, conducted and synthesized on mitochondrial ribosomes (5). The remainder in 143B cells, had three effects. First, cellular oxygen consump- are nuclear gene products, made in the cytoplasm and imported tion linked to complex I was reduced by two-thirds (Fig. 1), and into mitochondria (6). The seven proteins encoded in mito- chondrial DNA and seven nuclear-encoded subunits conserved Significance in prokaryotic complexes I, constitute the catalytic cores of the membrane and peripheral arms, respectively (1). The latter Mammalian complex I, the largest and most complicated en- contains binding sites for NADH, the primary electron acceptor zyme of the mitochondrial respiratory chain, is an L-shaped FMN, and seven iron–sulfur clusters that link FMN and the assembly of 44 proteins with one arm in the mitochondrial terminal electron acceptor, ubiquinone, bound at the juncture matrix and the orthogonal arm buried in the inner membrane. between the peripheral and membrane arms (1, 7). The mem- It is put together from preassembled modules. This inves- brane arm has four antiporter-like domains that probably provide tigation concerns the little studied process of the assembly of pathways for translocating protons (1). The remaining 30 so- the membrane arm module from proteins emanating from both called supernumerary subunits of mammalian complex I have no nuclear and mitochondrial genomes. We have identified two direct role in catalysis (2). Their functions are mostly unknown, membrane protein assembly factors C3orf1 and TMEM126B, not but they may be involved in assembly, stability, or regulation of found in the mature complex, that help this process by putting the complex (2, 8). together two membrane arm subcomplexes. Defects in the as- There is no atomic structure for any eukaryotic complex I, but sembly of complex I are increasingly being associated with human the arrangement and folds of the 14 core subunits in the mam- pathologies. malian enzyme are likely to be closely similar to those of bacterial orthologs, with the supernumerary subunits attached peripher- Author contributions: B.A. and J.E.W. designed research; B.A., J.C., S.D., and I.M.F. per- ally around the core (2, 9). The distribution of supernumerary formed research; B.A., J.C., S.D., I.M.F., and J.E.W. analyzed data; and J.E.W. wrote the subunits in bovine complex I is known from the subunit com- paper. positions of subcomplexes (3, 10, 11). Subcomplex Iλ is the pe- The authors declare no conflict of interest. ripheral arm, subcomplex Iα is a combination of Iλ and the Freely available online through the PNAS open access option. adjacent region of the membrane arm, subcomplex Iβ is the 1To whom correspondence should be addressed. E-mail: [email protected]. γ distal region of the membrane arm, and subcomplex I is an- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. other fragment from the membrane arm. The supernumerary 1073/pnas.1319247110/-/DCSupplemental. 18934–18939 | PNAS | November 19, 2013 | vol. 110 | no. 47 www.pnas.org/cgi/doi/10.1073/pnas.1319247110 Downloaded by guest on September 28, 2021 A protein profile of complex I accompanying the eightfold reduction control of NDUFA11 correspond to additional proteins associated with P < 0.01 incompletely assembled complex I. Eight known assembly factors, NDUFA11-1 NDUFAF1–4, ACAD9, ECSIT, FOXRED1, and TMEM126B were associated with the NDUFA11-deficient subcomplexes (Fig. NDUFA11-2 3andDataset S1). FOXRED1 has been designated as an as- sembly factor from genetic and functional data (29), but here its 0 0.2 0.4 0.6 0.8 direct association with assembly intermediates of complex I has OCR (fmol/min/cell) been demonstrated. Three other proteins, C3orf1, ATP5SL, and B DNAJC11 were found. C3orf1 and ATP5SL have no ascribed control functions, whereas DNAJC11 belongs to the Hsp40 chaperone family. Both C3orf1 and TMEM126B colocalized with Mito- NDUFA11-1 Tracker, and so they are intrinsic mitochondrial proteins (Fig. S3). NDUFA11-2 Ablation of C3orf1, TMEM126B, ATP5SL, and DNAJC11 and Assembly of Complex I. The suppression of expression of C3orf1 or TMEM126B 3210 4 reduced both the cellular oxygen consumption, and the level of OCR (fmol/min/cell) intact complex I (Fig. 4), and subcomplexes of 315 and 370 kDa Fig. 1. Oxygen consumption of 143B cells with ablated NDUFA11. Oxygen accumulated. They were detected with antibodies against the pe- consumption rate (OCR) 96 h after transfection with two siRNAs (NDUFA11-1 ripheral arm and the membrane arm component NDUFB8, re- and -2, each 30 nM) against NDUFA11 (black and dark gray) compared with spectively. The accumulation of the 370-kDa subcomplex was control cells (light gray). (A) Complex-I–dependent OCR of 143B cells de- concomitant with a reduction in a 550-kDa subcomplex (Fig. 4), termined by subtraction of rotenone-inhibited OCR values from initial val- presumably the same subcomplex accompanying suppression of ues. (B) Addition of rotenone and duroquinol and OCR derived from expression of NDUFA11 (Fig. 2). Also, when TMEM126B was activities of complexes III and IV. Error bars are SD. suppressed, the levels of both complexes III and IV increased (Fig. 4). As the analyses were performed in the presence of n-dodecyl- β-D-maltoside, which dissociates respiratory complexes into in- the effect was bypassed by addition of the complex III substrate, dividual enzymes, the increase in complexes III and IV is not due duroquinol. Second, the mitochondrial network observed in to their release from supercomplexes. In their experiments on control cells became fragmented (Fig. S1). Third, the amount of TMEM126B, Heide et al. reported an increase in complex III, but intact complex I was reduced, and subcomplexes with molecular not of complex IV (27). masses of 815 and 550 kDa accumulated (Fig. 2). Previously The complex I assembly factors NDUFAF3, ACAD9, and known as the 830- and 650-kDa subcomplexes, respectively (16), NDUFAF2 are associated with subassemblies with masses of their sizes have been reestimated (Fig. S2). This accumulation of 400, 460, and 830 kDa, respectively (15). Based on the reesti- the 815-kDa complex is similar to the effects of mutation of mated masses of subcomplexes (Fig. S2) they probably corre- NDUFS4 or NDUFAF2 (28), but the accumulation of the 550- spond to the 315-, 370-, and 815-kDa subcomplexes, respectively, kDa complex has not been reported.
Recommended publications
  • Supplementary Materials: Evaluation of Cytotoxicity and Α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids
    Supplementary Materials: Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids Oxana B. Kazakova1*, Gul'nara V. Giniyatullina1, Akhat G. Mustafin1, Denis A. Babkov2, Elena V. Sokolova2, Alexander A. Spasov2* 1Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russian Federation 2Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, Volgograd 400087, Russian Federation Correspondence Prof. Dr. Oxana B. Kazakova Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences 71 Prospeсt Oktyabrya Ufa, 450054 Russian Federation E-mail: [email protected] Prof. Dr. Alexander A. Spasov Scientific Center for Innovative Drugs of the Volgograd State Medical University 39 Novorossiyskaya st. Volgograd, 400087 Russian Federation E-mail: [email protected] Figure S1. 1H and 13C of compound 2. H NH N H O H O H 2 2 Figure S2. 1H and 13C of compound 4. NH2 O H O H CH3 O O H H3C O H 4 3 Figure S3. Anticancer screening data of compound 2 at single dose assay 4 Figure S4. Anticancer screening data of compound 7 at single dose assay 5 Figure S5. Anticancer screening data of compound 8 at single dose assay 6 Figure S6. Anticancer screening data of compound 9 at single dose assay 7 Figure S7. Anticancer screening data of compound 12 at single dose assay 8 Figure S8. Anticancer screening data of compound 13 at single dose assay 9 Figure S9. Anticancer screening data of compound 14 at single dose assay 10 Figure S10.
    [Show full text]
  • Molecular Mechanism of ACAD9 in Mitochondrial Respiratory Complex 1 Assembly
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.07.425795; this version posted January 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Molecular mechanism of ACAD9 in mitochondrial respiratory complex 1 assembly Chuanwu Xia1, Baoying Lou1, Zhuji Fu1, Al-Walid Mohsen2, Jerry Vockley2, and Jung-Ja P. Kim1 1Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA 2Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA Abstract ACAD9 belongs to the acyl-CoA dehydrogenase family, which catalyzes the α-β dehydrogenation of fatty acyl-CoA thioesters. Thus, it is involved in fatty acid β-oxidation (FAO). However, it is now known that the primary function of ACAD9 is as an essential chaperone for mitochondrial respiratory complex 1 assembly. ACAD9 interacts with ECSIT and NDUFAF1, forming the mitochondrial complex 1 assembly (MCIA) complex. Although the role of MCIA in the complex 1 assembly pathway is well studied, little is known about the molecular mechanism of the interactions among these three assembly factors. Our current studies reveal that when ECSIT interacts with ACAD9, the flavoenzyme loses the FAD cofactor and consequently loses its FAO activity, demonstrating that the two roles of ACAD9 are not compatible. ACAD9 binds to the carboxy-terminal half (C-ECSIT), and NDUFAF1 binds to the amino-terminal half of ECSIT. Although the binary complex of ACAD9 with ECSIT or with C-ECSIT is unstable and aggregates easily, the ternary complex of ACAD9-ECSIT-NDUFAF1 (i.e., the MCIA complex) is soluble and extremely stable.
    [Show full text]
  • High-Throughput, Pooled Sequencing Identifies Mutations in NUBPL And
    ARTICLES High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency Sarah E Calvo1–3,10, Elena J Tucker4,5,10, Alison G Compton4,10, Denise M Kirby4, Gabriel Crawford3, Noel P Burtt3, Manuel Rivas1,3, Candace Guiducci3, Damien L Bruno4, Olga A Goldberger1,2, Michelle C Redman3, Esko Wiltshire6,7, Callum J Wilson8, David Altshuler1,3,9, Stacey B Gabriel3, Mark J Daly1,3, David R Thorburn4,5 & Vamsi K Mootha1–3 Discovering the molecular basis of mitochondrial respiratory chain disease is challenging given the large number of both mitochondrial and nuclear genes that are involved. We report a strategy of focused candidate gene prediction, high-throughput sequencing and experimental validation to uncover the molecular basis of mitochondrial complex I disorders. We created seven pools of DNA from a cohort of 103 cases and 42 healthy controls and then performed deep sequencing of 103 candidate genes to identify 151 rare variants that were predicted to affect protein function. We established genetic diagnoses in 13 of 60 previously unsolved cases using confirmatory experiments, including cDNA complementation to show that mutations in NUBPL and FOXRED1 can cause complex I deficiency. Our study illustrates how large-scale sequencing, coupled with functional prediction and experimental validation, can be used to identify causal mutations in individual cases. Complex I of the mitochondrial respiratory chain is a large ~1-MDa ­assembly factors are probably required, as suggested by the 20 factors macromolecular machine composed of 45 protein subunits encoded necessary for assembly of the smaller complex IV9 and by cohort by both the nuclear and mitochondrial (mtDNA) genomes.
    [Show full text]
  • NDUFS6 Mutations Are a Novel Cause of Lethal Neonatal Mitochondrial Complex I Deficiency Denise M
    Related Commentary, page 760 Research article NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency Denise M. Kirby,1,2,3 Renato Salemi,1 Canny Sugiana,1,3 Akira Ohtake,4 Lee Parry,1 Katrina M. Bell,1 Edwin P. Kirk,5 Avihu Boneh,1,2,3 Robert W. Taylor,6 Hans-Henrik M. Dahl,1,3 Michael T. Ryan,4 and David R. Thorburn1,2,3 1Murdoch Childrens Research Institute and 2Genetic Health Services Victoria, Royal Children’s Hospital, Melbourne, Victoria, Australia. 3Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia. 4Department of Biochemistry, LaTrobe University, Melbourne, Victoria, Australia. 5Department of Medical Genetics, Sydney Children’s Hospital, Sydney, New South Wales, Australia. 6Mitochondrial Research Group, School of Neurology, Neurobiology and Psychiatry, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom. Complex I deficiency, the most common respiratory chain defect, is genetically heterogeneous: mutations in 8 nuclear and 7 mitochondrial DNA genes encoding complex I subunits have been described. However, these genes account for disease in only a minority of complex I–deficient patients. We investigated whether there may be an unknown common gene by performing functional complementation analysis of cell lines from 10 unrelated patients. Two of the patients were found to have mitochondrial DNA mutations. The other 8 repre- sented 7 different (nuclear) complementation groups, all but 1 of which showed abnormalities of complex I assembly. It is thus unlikely that any one unknown gene accounts for a large proportion of complex I cases. The 2 patients sharing a nuclear complementation group had a similar abnormal complex I assembly profile and were studied further by homozygosity mapping, chromosome transfers, and microarray expression analysis.
    [Show full text]
  • Membrane Proteomics of Cervical Cancer Cell Lines Reveal Insights on the Process of Cervical Carcinogenesis
    INTERNATIONAL JOURNAL OF ONCOLOGY 53: 2111-2122, 2018 Membrane proteomics of cervical cancer cell lines reveal insights on the process of cervical carcinogenesis KALLIOPI I. PAPPA1,2, POLYXENI CHRISTOU3,4, AMARILDO XHOLI3, GEORGE MERMELEKAS3, GEORGIA KONTOSTATHI3,4, VASILIKI LYGIROU3,4, MANOUSOS MAKRIDAKIS3, JEROME ZOIDAKIS3 and NICHOLAS P. ANAGNOU1,4 1Cell and Gene Therapy Laboratory, Centre of Basic Research II, Biomedical Research Foundation of the Academy of Athens, 11527 Athens; 2First Department of Obstetrics and Gynecology, University of Athens School of Medicine, Alexandra Hospital, 11528 Athens; 3Biotechnology Division, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens; 4Laboratory of Biology, University of Athens School of Medicine, 11527 Athens, Greece Received March 22, 2018; Accepted May 4, 2018 DOI: 10.3892/ijo.2018.4518 Abstract. The available therapeutic approaches for cervical biological pathways relevant to malignancy, including ‘HIPPO cancer can seriously affect the fertility potential of patient; signaling’, ‘PI3K/Akt signaling’, ‘cell cycle: G2/M DNA thus, there is a pressing requirement for less toxic and damage checkpoint regulation’ and ‘EIF2 signaling’. These targeted therapies. The membrane proteome is a potential unique membrane protein identifications offer insights on a source of therapeutic targets; however, despite the signifi- previously inaccessible region of the cervical cancer proteome, cance of membrane proteins in cancer, proteomic analysis and may represent putative
    [Show full text]
  • THE FUNCTIONAL SIGNIFICANCE of MITOCHONDRIAL SUPERCOMPLEXES in C. ELEGANS by WICHIT SUTHAMMARAK Submitted in Partial Fulfillment
    THE FUNCTIONAL SIGNIFICANCE OF MITOCHONDRIAL SUPERCOMPLEXES in C. ELEGANS by WICHIT SUTHAMMARAK Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Drs. Margaret M. Sedensky & Philip G. Morgan Department of Genetics CASE WESTERN RESERVE UNIVERSITY January, 2011 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________ candidate for the ______________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Dedicated to my family, my teachers and all of my beloved ones for their love and support ii ACKNOWLEDGEMENTS My advanced academic journey began 5 years ago on the opposite side of the world. I traveled to the United States from Thailand in search of a better understanding of science so that one day I can return to my homeland and apply the knowledge and experience I have gained to improve the lives of those affected by sickness and disease yet unanswered by science. Ultimately, I hoped to make the academic transition into the scholarly community by proving myself through scientific research and understanding so that I can make a meaningful contribution to both the scientific and medical communities. The following dissertation would not have been possible without the help, support, and guidance of a lot of people both near and far. I wish to thank all who have aided me in one way or another on this long yet rewarding journey. My sincerest thanks and appreciation goes to my advisors Philip Morgan and Margaret Sedensky.
    [Show full text]
  • Analyzing the Function of TRAP1 in Models of Parkinson's Disease
    Analyzing the function of TRAP1 in models of Parkinson’s disease Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation vorgelegt von Li Zhang aus Changchun, Jilin (China) Berichter: Universitätsprofessor Dr. med. Jörg B. Schulz Universitätsprofessor Dr. rer. nat. Marc Spehr Tag der mündlichen Prüfung: 29.01.2016 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar. Eidesstattliche Versicherung ___________________________Zhang, Li ___________________________ Name, Vorname Matrikelnummer (freiwillige Angabe) Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/ Masterarbeit* mit dem Titel __________________________________________________________________________Analyzing the function of TRAP1 in models of Parkinson’s disease __________________________________________________________________________Uebersetzung: Analyse der TRAP1-Funktion in Modellen fuer Morbus Parkinson __________________________________________________________________________ selbständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, IRVINE Molecular and Metabolic
    UNIVERSITY OF CALIFORNIA, IRVINE Molecular and metabolic hallmarks of metastasis in triple negative breast cancer DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biomedical Sciences by Ryan Tevia Davis Dissertation Committee: Assistant Professor Devon A. Lawson, Chair Associate Professor Francesco Tombola Assistant Professor Sergio Armando Villalta Professor David A. Fruman Associate Professor Mei Kong 2020 Portion of Chapter 1 © 2018 Springer Nature Portion Chapter 2 and 3 © 2020 Springer Nature All other materials © 2020 Ryan Tevia Davis Dedication To my wife, the one who make me smile, my parents, the ones who sacrificed so much, my friends the ones who helped me hit level two, in recognition of their worth Perseverance When asked how it felt to have failed 10,000 times in the process of inventing the light bulb, Thomas Edison responded: “I have not failed. I’ve just found 10,000 ways that won’t work” ii Table of Contents Table of Contents ........................................................................................................................ iii List of Figures ............................................................................................................................... v List of Tables ................................................................................................................................ vi List of Acronyms and Symbols ................................................................................................
    [Show full text]
  • Biogenesis of NDUFS3-Less Complex I Indicates TMEM126A/OPA7 As an Assembly Factor of the ND4-Module
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.22.350587; this version posted October 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Biogenesis of NDUFS3-less complex I indicates TMEM126A/OPA7 as an assembly factor of the ND4-module Running title: NDUFS3-dependent CI disassembly pathway Luigi D’Angelo,1* Elisa Astro,1* Monica De Luise,2 Ivana Kurelac,2 Nikkitha Umesh-Ganesh,2 Shujing Ding,3 Ian M. Fearnley,3 Massimo Zeviani,3,4 Giuseppe Gasparre,2,5 Anna Maria Porcelli,1,6# Erika Fernandez-Vizarra,3,7# and Luisa Iommarini1# 1Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy 2Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy 3Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK 4Venetian Institute of Molecular Medicine, Via Orus 2, 35128 Padova, Italy; Department of Neurosciences, University of Padova, via Giustiniani 2, 35128 Padova, Italy 5Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy 6Interdepartmental Center of Industrial Research (CIRI) Life Science and Health Technologies, University of Bologna, Ozzano dell'Emilia, Italy 7Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK. *Co-first authors #Co-last authors To whom correspondence should be addressed: Luisa Iommarini Department of Pharmacy and Biotechnology (FABIT) University of Bologna Via Francesco Selmi 3, 40126 Bologna, Italy Tel. +39 051 2091282 e-mail [email protected] Erika Fernandez-Vizarra Institute of Molecular, Cell and Systems Biology University of Glasgow University Avenue Glasgow G12 8QQ, UK Tel.
    [Show full text]
  • Inactivation of Mitochondrial Complex I Stimulates Chloroplast Atpase in Physcomitrella (Physcomitrium Patens)
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.20.390153; this version posted November 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Inactivation of mitochondrial Complex I stimulates chloroplast ATPase in Physcomitrella (Physcomitrium patens). Marco Mellon a, Mattia Storti a, Antoni Mateu Vera Vives a, David M. Kramer b, Alessandro Alboresi a and Tomas Morosinotto a a. Department of Biology, University of Padova, 35121 Padova, Italy b. MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, United States of America; Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States of America. Corresponding author: Tomas Morosinotto, Dipartimento di Biologia, Università di Padova, Via Ugo Bassi 58B, 35121 Padova, Italy. Tel. +390498277484, Email: [email protected] Abstract While light is the ultimate source of energy for photosynthetic organisms, mitochondrial respiration is still fundamental for supporting metabolism demand during the night or in heterotrophic tissues. Respiration is also important for the metabolism of photosynthetically active cells, acting as a sink for excess reduced molecules and source of substrates for anabolic pathways. In this work, we isolated Physcomitrella (Physcomitrium patens) plants with altered respiration by inactivating Complex I of the mitochondrial electron transport chain by independent targeting of two essential subunits. Results show that the inactivation of Complex I causes a strong growth impairment even in fully autotrophic conditions in tissues where all cells are photosynthetically active.
    [Show full text]
  • NDUFAF3 (Q-15): Sc-99317
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . NDUFAF3 (Q-15): sc-99317 BACKGROUND PRODUCT NDUFAF3 (NADH dehydrogenase [ubiquinone] 1 α subcomplex assembly Each vial contains 200 µg IgG in 1.0 ml of PBS with < 0.1% sodium azide factor 3), also known as 2P1 or E3-3, is a 184 amino acid protein that localizes and 0.1% gelatin. to the nucleus and mitochondrial inner membrane. Existing as two alterna - Blocking peptide available for competition studies, sc-99317 P, (100 µg tively spliced isoforms, NDUFAF3 is important in the assembly of the mito - peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA). chondrial NADH:ubiquinone oxidoreductase complex (complex I). The gene encoding NDUFAF3 maps to human chromosome 3p21.31. Defects in the APPLICATIONS gene are the cause of mitochondrial complex I deficiency (MT-C1D), a mito- chondrial respiratory chain disorder that can be lethal in neonates and may NDUFAF3 (Q-15) is recommended for detection of NDUFAF3 of mouse, rat lead to neurodegenerative disorders in adults. Chromosome 3 houses over and human origin by Western Blotting (starting dilution 1:200, dilution range 1,100 genes, including a chemokine receptor (CKR) gene cluster and a vari - 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range ety of human cancer-related gene loci. 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30- 1:3000). REFERENCES NDUFAF3 (Q-15) is also recommended for detection of NDUFAF3 in addi - 1. Müller, S., et al. 2000.
    [Show full text]
  • WO 2017/070647 Al 27 April 2017 (27.04.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/070647 Al 27 April 2017 (27.04.2017) P O P C T (51) International Patent Classification: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, A61K 31/455 (2006.01) C12N 15/86 (2006.01) KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, A61K 31/465 (2006.01) A61P 27/02 (2006.01) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, A61K 31/19 (2006.01) A61P 27/06 (2006.01) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, A61K 48/00 (2006.01) A61K 45/06 (2006.01) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (21) International Application Number: ZW. PCT/US2016/058388 (84) Designated States (unless otherwise indicated, for every (22) International Filing Date: kind of regional protection available): ARIPO (BW, GH, 24 October 2016 (24.10.201 6) GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (25) Filing Language: English TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (26) Publication Language: English DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (30) Priority Data: LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, 62/245,467 23 October 2015 (23.
    [Show full text]