Supernumerary Subunits NDUFA3, NDUFA5 and NDUFA12
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Increased COUP-TFII Expression in Adult Hearts Induces Mitochondrial Dysfunction Resulting in Heart Failure
ARTICLE Received 9 Mar 2015 | Accepted 30 Jul 2015 | Published 10 Sep 2015 DOI: 10.1038/ncomms9245 OPEN Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure San-Pin Wu1,2, Chung-Yang Kao1, Leiming Wang1, Chad J. Creighton3,4, Jin Yang5, Taraka R. Donti6, Romain Harmancey7, Hernan G. Vasquez7, Brett H. Graham6,8, Hugo J. Bellen6,8, Heinrich Taegtmeyer7, Ching-Pin Chang5, Ming-Jer Tsai1,8 & Sophia Y. Tsai1,8 Mitochondrial dysfunction and metabolic remodelling are pivotal in the development of cardiomyopathy. Here, we show that myocardial COUP-TFII overexpression causes heart failure in mice, suggesting a causal effect of elevated COUP-TFII levels on development of dilated cardiomyopathy. COUP-TFII represses genes critical for mitochondrial electron transport chain enzyme activity, oxidative stress detoxification and mitochondrial dynamics, resulting in increased levels of reactive oxygen species and lower rates of oxygen consumption in mitochondria. COUP-TFII also suppresses the metabolic regulator PGC-1 network and decreases the expression of key glucose and lipid utilization genes, leading to a reduction in both glucose and oleate oxidation in the hearts. These data suggest that COUP- TFII affects mitochondrial function, impairs metabolic remodelling and has a key role in dilated cardiomyopathy. Last, COUP-TFII haploinsufficiency attenuates the progression of cardiac dilation and improves survival in a calcineurin transgenic mouse model, indicating that COUP-TFII may serve as a therapeutic target for the treatment of dilated cardiomyopathy. 1 Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA. 2 Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130, USA. -
Supplementary Materials: Evaluation of Cytotoxicity and Α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids
Supplementary Materials: Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids Oxana B. Kazakova1*, Gul'nara V. Giniyatullina1, Akhat G. Mustafin1, Denis A. Babkov2, Elena V. Sokolova2, Alexander A. Spasov2* 1Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russian Federation 2Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, Volgograd 400087, Russian Federation Correspondence Prof. Dr. Oxana B. Kazakova Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences 71 Prospeсt Oktyabrya Ufa, 450054 Russian Federation E-mail: [email protected] Prof. Dr. Alexander A. Spasov Scientific Center for Innovative Drugs of the Volgograd State Medical University 39 Novorossiyskaya st. Volgograd, 400087 Russian Federation E-mail: [email protected] Figure S1. 1H and 13C of compound 2. H NH N H O H O H 2 2 Figure S2. 1H and 13C of compound 4. NH2 O H O H CH3 O O H H3C O H 4 3 Figure S3. Anticancer screening data of compound 2 at single dose assay 4 Figure S4. Anticancer screening data of compound 7 at single dose assay 5 Figure S5. Anticancer screening data of compound 8 at single dose assay 6 Figure S6. Anticancer screening data of compound 9 at single dose assay 7 Figure S7. Anticancer screening data of compound 12 at single dose assay 8 Figure S8. Anticancer screening data of compound 13 at single dose assay 9 Figure S9. Anticancer screening data of compound 14 at single dose assay 10 Figure S10. -
High-Throughput, Pooled Sequencing Identifies Mutations in NUBPL And
ARTICLES High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency Sarah E Calvo1–3,10, Elena J Tucker4,5,10, Alison G Compton4,10, Denise M Kirby4, Gabriel Crawford3, Noel P Burtt3, Manuel Rivas1,3, Candace Guiducci3, Damien L Bruno4, Olga A Goldberger1,2, Michelle C Redman3, Esko Wiltshire6,7, Callum J Wilson8, David Altshuler1,3,9, Stacey B Gabriel3, Mark J Daly1,3, David R Thorburn4,5 & Vamsi K Mootha1–3 Discovering the molecular basis of mitochondrial respiratory chain disease is challenging given the large number of both mitochondrial and nuclear genes that are involved. We report a strategy of focused candidate gene prediction, high-throughput sequencing and experimental validation to uncover the molecular basis of mitochondrial complex I disorders. We created seven pools of DNA from a cohort of 103 cases and 42 healthy controls and then performed deep sequencing of 103 candidate genes to identify 151 rare variants that were predicted to affect protein function. We established genetic diagnoses in 13 of 60 previously unsolved cases using confirmatory experiments, including cDNA complementation to show that mutations in NUBPL and FOXRED1 can cause complex I deficiency. Our study illustrates how large-scale sequencing, coupled with functional prediction and experimental validation, can be used to identify causal mutations in individual cases. Complex I of the mitochondrial respiratory chain is a large ~1-MDa assembly factors are probably required, as suggested by the 20 factors macromolecular machine composed of 45 protein subunits encoded necessary for assembly of the smaller complex IV9 and by cohort by both the nuclear and mitochondrial (mtDNA) genomes. -
Location Analysis of Estrogen Receptor Target Promoters Reveals That
Location analysis of estrogen receptor ␣ target promoters reveals that FOXA1 defines a domain of the estrogen response Jose´ e Laganie` re*†, Genevie` ve Deblois*, Ce´ line Lefebvre*, Alain R. Bataille‡, Franc¸ois Robert‡, and Vincent Gigue` re*†§ *Molecular Oncology Group, Departments of Medicine and Oncology, McGill University Health Centre, Montreal, QC, Canada H3A 1A1; †Department of Biochemistry, McGill University, Montreal, QC, Canada H3G 1Y6; and ‡Laboratory of Chromatin and Genomic Expression, Institut de Recherches Cliniques de Montre´al, Montreal, QC, Canada H2W 1R7 Communicated by Ronald M. Evans, The Salk Institute for Biological Studies, La Jolla, CA, July 1, 2005 (received for review June 3, 2005) Nuclear receptors can activate diverse biological pathways within general absence of large scale functional data linking these putative a target cell in response to their cognate ligands, but how this binding sites with gene expression in specific cell types. compartmentalization is achieved at the level of gene regulation is Recently, chromatin immunoprecipitation (ChIP) has been used poorly understood. We used a genome-wide analysis of promoter in combination with promoter or genomic DNA microarrays to occupancy by the estrogen receptor ␣ (ER␣) in MCF-7 cells to identify loci recognized by transcription factors in a genome-wide investigate the molecular mechanisms underlying the action of manner in mammalian cells (20–24). This technology, termed 17-estradiol (E2) in controlling the growth of breast cancer cells. ChIP-on-chip or location analysis, can therefore be used to deter- We identified 153 promoters bound by ER␣ in the presence of E2. mine the global gene expression program that characterize the Motif-finding algorithms demonstrated that the estrogen re- action of a nuclear receptor in response to its natural ligand. -
Assembly Factors for the Membrane Arm of Human Complex I
Assembly factors for the membrane arm of human complex I Byron Andrews, Joe Carroll, Shujing Ding, Ian M. Fearnley, and John E. Walker1 Medical Research Council Mitochondrial Biology Unit, Cambridge CB2 0XY, United Kingdom Contributed by John E. Walker, October 14, 2013 (sent for review September 12, 2013) Mitochondrial respiratory complex I is a product of both the nuclear subunits in a fungal enzyme from Yarrowia lipolytica seem to be and mitochondrial genomes. The integration of seven subunits distributed similarly (12, 13). encoded in mitochondrial DNA into the inner membrane, their asso- The assembly of mitochondrial complex I involves building the ciation with 14 nuclear-encoded membrane subunits, the construc- 44 subunits emanating from two genomes into the two domains of tion of the extrinsic arm from 23 additional nuclear-encoded the complex. The enzyme is put together from preassembled sub- proteins, iron–sulfur clusters, and flavin mononucleotide cofactor complexes, and their subunit compositions have been characterized require the participation of assembly factors. Some are intrinsic to partially (14, 15). Extrinsic assembly factors of unknown function the complex, whereas others participate transiently. The suppres- become associated with subcomplexes that accumulate when as- sion of the expression of the NDUFA11 subunit of complex I dis- sembly and the activity of complex I are impaired by pathogenic rupted the assembly of the complex, and subcomplexes with mutations. Some assembly factor mutations also impair its activ- masses of 550 and 815 kDa accumulated. Eight of the known ex- ity (16). Other pathogenic mutations are found in all of the core trinsic assembly factors plus a hydrophobic protein, C3orf1, were subunits, and in 10 supernumerary subunits (NDUFA1, NDUFA2, associated with the subcomplexes. -
NDUFS6 Mutations Are a Novel Cause of Lethal Neonatal Mitochondrial Complex I Deficiency Denise M
Related Commentary, page 760 Research article NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency Denise M. Kirby,1,2,3 Renato Salemi,1 Canny Sugiana,1,3 Akira Ohtake,4 Lee Parry,1 Katrina M. Bell,1 Edwin P. Kirk,5 Avihu Boneh,1,2,3 Robert W. Taylor,6 Hans-Henrik M. Dahl,1,3 Michael T. Ryan,4 and David R. Thorburn1,2,3 1Murdoch Childrens Research Institute and 2Genetic Health Services Victoria, Royal Children’s Hospital, Melbourne, Victoria, Australia. 3Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia. 4Department of Biochemistry, LaTrobe University, Melbourne, Victoria, Australia. 5Department of Medical Genetics, Sydney Children’s Hospital, Sydney, New South Wales, Australia. 6Mitochondrial Research Group, School of Neurology, Neurobiology and Psychiatry, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom. Complex I deficiency, the most common respiratory chain defect, is genetically heterogeneous: mutations in 8 nuclear and 7 mitochondrial DNA genes encoding complex I subunits have been described. However, these genes account for disease in only a minority of complex I–deficient patients. We investigated whether there may be an unknown common gene by performing functional complementation analysis of cell lines from 10 unrelated patients. Two of the patients were found to have mitochondrial DNA mutations. The other 8 repre- sented 7 different (nuclear) complementation groups, all but 1 of which showed abnormalities of complex I assembly. It is thus unlikely that any one unknown gene accounts for a large proportion of complex I cases. The 2 patients sharing a nuclear complementation group had a similar abnormal complex I assembly profile and were studied further by homozygosity mapping, chromosome transfers, and microarray expression analysis. -
Proteomic and Metabolomic Analyses of Mitochondrial Complex I-Deficient
THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 287, NO. 24, pp. 20652–20663, June 8, 2012 © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Proteomic and Metabolomic Analyses of Mitochondrial Complex I-deficient Mouse Model Generated by Spontaneous B2 Short Interspersed Nuclear Element (SINE) Insertion into NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4 (Ndufs4) Gene*□S Received for publication, November 25, 2011, and in revised form, April 5, 2012 Published, JBC Papers in Press, April 25, 2012, DOI 10.1074/jbc.M111.327601 Dillon W. Leong,a1 Jasper C. Komen,b1 Chelsee A. Hewitt,a Estelle Arnaud,c Matthew McKenzie,d Belinda Phipson,e Melanie Bahlo,e,f Adrienne Laskowski,b Sarah A. Kinkel,a,g,h Gayle M. Davey,g William R. Heath,g Anne K. Voss,a,h René P. Zahedi,i James J. Pitt,j Roman Chrast,c Albert Sickmann,i,k Michael T. Ryan,l Gordon K. Smyth,e,f,h b2 a,h,m,n3 David R. Thorburn, and Hamish S. Scott Downloaded from From the aMolecular Medicine Division, gImmunology Division, and eBioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia, the bMurdoch Childrens Research Institute, Royal Children’s Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia, the cDépartement de Génétique Médicale, Université de Lausanne, 1005 Lausanne, Switzerland, the dCentre for Reproduction and Development, Monash Institute of Medical Research, Clayton, Victoria 3168, Australia, the hDepartment of Medical Biology -
Different Expression of Mitochondrial and Endoplasmic Reticulum Stress Genes in Epicardial Adipose Tissue Depends on Coronary Atherosclerosis
International Journal of Molecular Sciences Article Different Expression of Mitochondrial and Endoplasmic Reticulum Stress Genes in Epicardial Adipose Tissue Depends on Coronary Atherosclerosis Helena Kratochvílová 1,2, Miloš Mráz 2,3, Barbora J. Kasperová 3, Daniel Hlaváˇcek 4 , Jakub Mahrík 5 , Ivana La ˇnková 3, Anna Cinkajzlová 1,2, ZdenˇekMatloch 6, Zde ˇnkaLacinová 1,2, Jaroslava Trnovská 1, Peter Ivák 4, Peter Novodvorský 1,3,7, Ivan Netuka 4 and Martin Haluzík 1,2,3,* 1 Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Vídeˇnská 1958, 140 21 Prague 4, Czech Republic; [email protected] (H.K.); [email protected] (A.C.); [email protected] (Z.L.); [email protected] (J.T.); p.novodvorsky@sheffield.ac.uk (P.N.) 2 First Faculty of Medicine, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University and General University Hospital, U Nemocnice 499/2, 128 08 Nové Mˇesto,Prague, Czech Republic; [email protected] 3 Department of Diabetes, Institute for Clinical and Experimental Medicine, Vídeˇnská 1958, 140 21 Prague 4, Czech Republic; [email protected] (B.J.K.); [email protected] (I.L.) 4 Department of Cardiac Surgery, Institute for Clinical and Experimental Medicine, Vídeˇnská 1958, 140 21 Prague 4, Czech Republic; [email protected] (D.H.); [email protected] (P.I.); [email protected] (I.N.) 5 Department of Anesthesia and Resuscitation, Institute for Clinical and Experimental Medicine, Citation: Kratochvílová, H.; Mráz, Vídeˇnská 1958, 140 21 Prague 4, Czech Republic; [email protected] 6 Shackleton Department of Anaesthesia UHS NHS UK, Southampton General Hospital, M.; Kasperová, B.J.; Hlaváˇcek,D.; Southampton SO14, UK; [email protected] Mahrík, J.; Laˇnková,I.; Cinkajzlová, 7 Department of Oncology & Metabolism, University of Sheffield, Sheffield S0114, UK A.; Matloch, Z.; Lacinová, Z.; * Correspondence: [email protected]; Tel.: +42-03-605-4108; Fax: +42-02-2496-5719 Trnovská, J.; et al. -
FOXRED1 (D-4): Sc-377010
SANTA CRUZ BIOTECHNOLOGY, INC. FOXRED1 (D-4): sc-377010 BACKGROUND APPLICATIONS FOXRED1 (FAD-dependent oxidoreductase domain-containing protein 1), also FOXRED1 (D-4) is recommended for detection of FOXRED1 of human origin known as FP634, is a 486 amino acid single-pass membrane protein. Utilizing by Western Blotting (starting dilution 1:100, dilution range 1:100-1:1000), FAD as a cofactor, FOXRED1 may act as a chaperone protein essential for the immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell function of mitochondrial complex I. Mutations to FOXRED1 may result in lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50- mitochondrial complex I deficiency (MT-C1D), which results in a wide range 1:500), immunohistochemistry (including paraffin-embedded sections) of clinical maladies from lethal neonatal disease to adult onset neurodegen- (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA erative disorders. Common phenotypes of MT-C1D include cardiomyopathy, (starting dilution 1:30, dilution range 1:30-1:3000). liver disease, Leigh syndrome, Leber hereditary optic neuropathy, and some Suitable for use as control antibody for FOXRED1 siRNA (h): sc-96988, forms of Parkinson disease. FOXRED1 exists as three alternatively spliced FOXRED1 shRNA Plasmid (h): sc-96988-SH and FOXRED1 shRNA (h) isoforms and is encoded by a gene mapping to human chromosome 11q24.2. Lentiviral Particles: sc-96988-V. With approximately 135 million base pairs and 1,400 genes, chromosome 11 makes up around 4% of human genomic DNA and is considered a gene and Molecular Weight of FOXRED1 isoform 1: 54 kDa. -
S41467-020-18249-3.Pdf
ARTICLE https://doi.org/10.1038/s41467-020-18249-3 OPEN Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain Lei Zhao1,2,17, Zhongqi Li 1,2,17, Joaquim S. L. Vong2,3,17, Xinyi Chen1,2, Hei-Ming Lai1,2,4,5,6, Leo Y. C. Yan1,2, Junzhe Huang1,2, Samuel K. H. Sy1,2,7, Xiaoyu Tian 8, Yu Huang 8, Ho Yin Edwin Chan5,9, Hon-Cheong So6,8, ✉ ✉ Wai-Lung Ng 10, Yamei Tang11, Wei-Jye Lin12,13, Vincent C. T. Mok1,5,6,14,15 &HoKo 1,2,4,5,6,8,14,16 1234567890():,; The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovas- cular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation- dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which pro- minently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed tran- scriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible. -
551978V2.Full.Pdf
bioRxiv preprint doi: https://doi.org/10.1101/551978; this version posted February 26, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A high-resolution, chromosome-assigned Komodo dragon genome reveals adaptations in the 2 cardiovascular, muscular, and chemosensory systems of monitor lizards 3 4 Abigail L. Lind1, Yvonne Y.Y. Lai2, Yulia Mostovoy2, Alisha K. Holloway1, Alessio Iannucci3, Angel 5 C.Y. Mak2, Marco Fondi3, Valerio Orlandini3, Walter L. Eckalbar4, Massimo Milan5, Michail 6 Rovatsos6,7, , Ilya G. Kichigin8, Alex I. Makunin8, Martina J. Pokorná6, Marie Altmanová6, Vladimir 7 A. Trifonov8, Elio Schijlen9, Lukáš Kratochvíl6, Renato Fani3, Tim S. Jessop10, Tomaso Patarnello5, 8 James W. Hicks11, Oliver A. Ryder12, Joseph R. Mendelson III13,14, Claudio Ciofi3, Pui-Yan 9 Kwok2,4,15, Katherine S. Pollard1,4,16,17,18, & Benoit G. Bruneau1,2,19 10 11 1. Gladstone Institutes, San Francisco, CA 94158, USA. 12 2. Cardiovascular Research Institute, University of California, San Francisco, CA 94143, USA. 13 3. Department of Biology, University of Florence, 50019 Sesto Fiorentino (FI), Italy 14 4. Institute for Human Genetics, University of California, San Francisco, CA 94143, USA. 15 5. Department of Comparative Biomedicine and Food Science, University of Padova, 35020 16 Legnaro (PD), Italy 17 6. Department of Ecology, Charles University, 128 00 Prague, Czech Republic 18 7. Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, 277 21 19 Liběchov, Czech Republic 20 8. -
Low Abundance of the Matrix Arm of Complex I in Mitochondria Predicts Longevity in Mice
ARTICLE Received 24 Jan 2014 | Accepted 9 Apr 2014 | Published 12 May 2014 DOI: 10.1038/ncomms4837 OPEN Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice Satomi Miwa1, Howsun Jow2, Karen Baty3, Amy Johnson1, Rafal Czapiewski1, Gabriele Saretzki1, Achim Treumann3 & Thomas von Zglinicki1 Mitochondrial function is an important determinant of the ageing process; however, the mitochondrial properties that enable longevity are not well understood. Here we show that optimal assembly of mitochondrial complex I predicts longevity in mice. Using an unbiased high-coverage high-confidence approach, we demonstrate that electron transport chain proteins, especially the matrix arm subunits of complex I, are decreased in young long-living mice, which is associated with improved complex I assembly, higher complex I-linked state 3 oxygen consumption rates and decreased superoxide production, whereas the opposite is seen in old mice. Disruption of complex I assembly reduces oxidative metabolism with concomitant increase in mitochondrial superoxide production. This is rescued by knockdown of the mitochondrial chaperone, prohibitin. Disrupted complex I assembly causes premature senescence in primary cells. We propose that lower abundance of free catalytic complex I components supports complex I assembly, efficacy of substrate utilization and minimal ROS production, enabling enhanced longevity. 1 Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 2 Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 3 Newcastle University Protein and Proteome Analysis, Devonshire Building, Devonshire Terrace, Newcastle upon Tyne NE1 7RU, UK. Correspondence and requests for materials should be addressed to T.v.Z.