Ski Antarctica
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review of the Geology and Paleontology of the Ellsworth Mountains, Antarctica
U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Short Research Paper 107; doi:10.3133/of2007-1047.srp107 Review of the geology and paleontology of the Ellsworth Mountains, Antarctica G.F. Webers¹ and J.F. Splettstoesser² ¹Department of Geology, Macalester College, St. Paul, MN 55108, USA ([email protected]) ²P.O. Box 515, Waconia, MN 55387, USA ([email protected]) Abstract The geology of the Ellsworth Mountains has become known in detail only within the past 40-45 years, and the wealth of paleontologic information within the past 25 years. The mountains are an anomaly, structurally speaking, occurring at right angles to the Transantarctic Mountains, implying a crustal plate rotation to reach the present location. Paleontologic affinities with other parts of Gondwanaland are evident, with nearly 150 fossil species ranging in age from Early Cambrian to Permian, with the majority from the Heritage Range. Trilobites and mollusks comprise most of the fauna discovered and identified, including many new genera and species. A Glossopteris flora of Permian age provides a comparison with other Gondwana floras of similar age. The quartzitic rocks that form much of the Sentinel Range have been sculpted by glacial erosion into spectacular alpine topography, resulting in eight of the highest peaks in Antarctica. Citation: Webers, G.F., and J.F. Splettstoesser (2007), Review of the geology and paleontology of the Ellsworth Mountains, Antarctica, in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES, edited by A.K. Cooper and C.R. Raymond et al., USGS Open- File Report 2007-1047, Short Research Paper 107, 5 p.; doi:10.3133/of2007-1047.srp107 Introduction The Ellsworth Mountains are located in West Antarctica (Figure 1) with dimensions of approximately 350 km long and 80 km wide. -
PDF-TITEL-AA-CHILE-EMPEORSADVENTURE Kopie.Pages
Antarktis Flug-Expeditionen EMPEROR PENGUINS Besuch der Kaiserpinguin-Kolonie in der Gould-Bucht ex Punta Arenas / Chile via Basecamp Union Glaciar POLARADVENTURES Schiffs- und Flug-Expeditionen in Arktis und Antarktis Reiseagentur Heinrich-Böll-Str. 40 * D-21335 Lüneburg * Deutschland Tel +49-4131- 223474 Fax +49-4131-54255 [email protected] www.polaradventures.de Saison 2021/22 Veranstalter Direkt-Angebote ab-bis Punta Arenas (Chile) für individuelle Planungen alle Abfahrten der Saison inkl. englischsprachiger Termine POLARADVENTURES Schiffs- und Flug-Expeditionen in Arktis und Antarktis Reiseagentur * Heinrich-Böll-Str. 40 * D-21335 Lüneburg * Deutschland Tel +49-4131- 223474 Fax +49-4131-54255 [email protected] www.polaradventures.de EMPEROR PENGUINS A PHOTOGRAPHER’S PARADISE Immerse yourself in the sights and sounds of the Gould Bay Emperor Penguin Colony on the remote coast of the Weddell Sea. Camp on the same sea ice where thousands of birds come to raise and feed their young. Photograph majestic emperors and their chicks against a spectacular backdrop of ice cliffs, pressure ridges, and icebergs. Spot petrels and seals amongst the endless white expanse. Fall asleep to a chorus of trumpeting calls and wake to find curious penguins outside your tent. Our remote field camp offers you unparalleled access to the emperors as you witness their amazing adaptations to the Antarctic environment alongside our expert guides. ITINERARY Arrival Day Punta Arenas, Chile Pre-departure Day Luggage Pick-Up & Briefing Day 1 Fly to Antarctica Day 2 Explore Union Glacier Day 3 Fly to Emperor Colony Day 4-6 Live with the Emperors Day 7 Return to Union Glacier Day 8 Explore Union Glacier Day 9 Return to Chile Flexible Departure Day Fly Home *Subject to change based on weather and flight conditions. -
S. Antarctic Projects Officer Bullet
S. ANTARCTIC PROJECTS OFFICER BULLET VOLUME III NUMBER 8 APRIL 1962 Instructions given by the Lords Commissioners of the Admiralty ti James Clark Ross, Esquire, Captain of HMS EREBUS, 14 September 1839, in J. C. Ross, A Voya ge of Dis- covery_and Research in the Southern and Antarctic Regions, . I, pp. xxiv-xxv: In the following summer, your provisions having been completed and your crews refreshed, you will proceed direct to the southward, in order to determine the position of the magnet- ic pole, and oven to attain to it if pssble, which it is hoped will be one of the remarka- ble and creditable results of this expedition. In the execution, however, of this arduous part of the service entrusted to your enter- prise and to your resources, you are to use your best endoavours to withdraw from the high latitudes in time to prevent the ships being besot with the ice Volume III, No. 8 April 1962 CONTENTS South Magnetic Pole 1 University of Miohigan Glaoiologioal Work on the Ross Ice Shelf, 1961-62 9 by Charles W. M. Swithinbank 2 Little America - Byrd Traverse, by Major Wilbur E. Martin, USA 6 Air Development Squadron SIX, Navy Unit Commendation 16 Geological Reoonnaissanoe of the Ellsworth Mountains, by Paul G. Schmidt 17 Hydrographio Offices Shipboard Marine Geophysical Program, by Alan Ballard and James Q. Tierney 21 Sentinel flange Mapped 23 Antarctic Chronology, 1961-62 24 The Bulletin is pleased to present four firsthand accounts of activities in the Antarctic during the recent season. The Illustration accompanying Major Martins log is an official U.S. -
Mid-Holocene Pulse of Thinning in the Weddell Sea Sector of the West Antarctic Ice Sheet
ARTICLE Received 9 Feb 2016 | Accepted 9 Jul 2016 | Published 22 Aug 2016 DOI: 10.1038/ncomms12511 OPEN Mid-Holocene pulse of thinning in the Weddell Sea sector of the West Antarctic ice sheet Andrew S. Hein1, Shasta M. Marrero1, John Woodward2, Stuart A. Dunning2,3, Kate Winter2, Matthew J. Westoby2, Stewart P.H.T. Freeman4, Richard P. Shanks4 & David E. Sugden1 Establishing the trajectory of thinning of the West Antarctic ice sheet (WAIS) since the last glacial maximum (LGM) is important for addressing questions concerning ice sheet (in)stability and changes in global sea level. Here we present detailed geomorphological and cosmogenic nuclide data from the southern Ellsworth Mountains in the heart of the Weddell Sea embayment that suggest the ice sheet, nourished by increased snowfall until the early Holocene, was close to its LGM thickness at 10 ka. A pulse of rapid thinning caused the ice elevation to fall B400 m to the present level at 6.5–3.5 ka, and could have contributed 1.4–2 m to global sea-level rise. These results imply that the Weddell Sea sector of the WAIS contributed little to late-glacial pulses in sea-level rise but was involved in mid-Holocene rises. The stepped decline is argued to reflect marine downdraw triggered by grounding line retreat into Hercules Inlet. 1 School of GeoSciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK. 2 Department of Geography, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, UK. 3 School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK. -
Mem170-Bm.Pdf by Guest on 30 September 2021 452 Index
Index [Italic page numbers indicate major references] acacamite, 437 anticlines, 21, 385 Bathyholcus sp., 135, 136, 137, 150 Acanthagnostus, 108 anticlinorium, 33, 377, 385, 396 Bathyuriscus, 113 accretion, 371 Antispira, 201 manchuriensis, 110 Acmarhachis sp., 133 apatite, 74, 298 Battus sp., 105, 107 Acrotretidae, 252 Aphelaspidinae, 140, 142 Bavaria, 72 actinolite, 13, 298, 299, 335, 336, 339, aphelaspidinids, 130 Beacon Supergroup, 33 346 Aphelaspis sp., 128, 130, 131, 132, Beardmore Glacier, 429 Actinopteris bengalensis, 288 140, 141, 142, 144, 145, 155, 168 beaverite, 440 Africa, southern, 52, 63, 72, 77, 402 Apoptopegma, 206, 207 bedrock, 4, 58, 296, 412, 416, 422, aggregates, 12, 342 craddocki sp., 185, 186, 206, 207, 429, 434, 440 Agnostidae, 104, 105, 109, 116, 122, 208, 210, 244 Bellingsella, 255 131, 132, 133 Appalachian Basin, 71 Bergeronites sp., 112 Angostinae, 130 Appalachian Province, 276 Bicyathus, 281 Agnostoidea, 105 Appalachian metamorphic belt, 343 Billingsella sp., 255, 256, 264 Agnostus, 131 aragonite, 438 Billingsia saratogensis, 201 cyclopyge, 133 Arberiella, 288 Bingham Peak, 86, 129, 185, 190, 194, e genus, 105 Archaeocyathidae, 5, 14, 86, 89, 104, 195, 204, 205, 244 nudus marginata, 105 128, 249, 257, 281 biogeography, 275 parvifrons, 106 Archaeocyathinae, 258 biomicrite, 13, 18 pisiformis, 131, 141 Archaeocyathus, 279, 280, 281, 283 biosparite, 18, 86 pisiformis obesus, 131 Archaeogastropoda, 199 biostratigraphy, 130, 275 punctuosus, 107 Archaeopharetra sp., 281 biotite, 14, 74, 300, 347 repandus, 108 Archaeophialia, -
Ellsworth Mountains, Overview Antarctica Mt
AAC Publications Ellsworth Mountains, Overview Antarctica Mt. Vinson (4,892m) continues to attract large numbers. One hundred and seventy individual climbers reached the summit during the 2012-13 season (a total of 184 successful ascents). Fourteen guides made two or more ascents. Only four clients failed to top out. Neighboring Mt. Shinn (4,660m) received five ascents. American guide Robert Anderson and his clients did the probable first ascent of a 2,880m peak five kilometers south of Vinson base camp. This attractive ice peak forms a pyramidal end to the ridge dividing the Cairns and Tulaczyk glaciers, the unclimbed southern arm of the western ridge of the Vinson Massif. In late December, Antarctic Logistics & Expeditions (ALE) guides Maria Paz “Pachi” Ibarra and Todd Passey led the returning German client Ralf Laier on the first ascents of three peaks: Mt. Allen (3,430m) and Mt. Liptak (3,052m) in the southern Sentinel Range, and Robinson Peak (2,038m) further south in the Heritage Range. Allen was climbed from the south, ending in a difficult corniced ridge, and took two attempts. Liptak had a mixed summit ridge of loose rock, after steep snow and ice on the northern slope. Robinson Peak, a rocky summit in the Pioneer Heights Range, was approached from the west, across the Rennell Glacier, and then climbed by the south ridge, with some technical rock pitches and exposed scrambling. The trio traversed the summit to the northern side, and traveled back around the east to reach their skis on the southern col. Further south, in the Independence Hills, Scott Webster and friends made the first ascent of an elegangt unnamed ice peak north of Beitzel Peak and just south of the famous Minaret Peak, a distinctive rock tower visible to all who flew out of the old ANI base at Patriot Hills. -
New Antarctica Voyages
1 NEW DISCOVERYS STYLE VOYAGE LAUNCHING OCTOBER, 2016 NEW ANTARCTICA VOYAGES NOW DISCOVERY AND ADVENTURE FOR ALL Hands-on activities Small group landings Affordable! INSIDE Meet Your Polar Heroes SOLO TRAVELER FRIENDLY 2 Discovery and learning for all Dear Explorer, Imagine an expedition through a pristine environment you Oosten van © Marsel can only reach by ship, a life-changing voyage to a continent blanketed in ice and snow. No matter where you gaze you see wildlife in an untamed world of massive icebergs, endless snowfields, and deep blue sea. Now, open your eyes and stop imagining - because what, for many, has only ever been a dream, is now a reality. Starting in the fall of 2016, Hurtigruten will offer all new Discovery Style Voyages to Antarctica, making us the largest and most diverse provider of active voyages to and throughout the polar region. While our renowned MS Fram has sailed these remote waters for many years, now MS Midnatsol will be joining her with new itineraries via the Chilean fjords and Cape Horn. Our new Discovery Style Voyages are designed especially to bring polar exploration to all ages and learning levels. Most importantly, you will explore ashore and in small craft through iceberg-rich waters and feel like a real polar explorer. Back on board, you’ll have fun opportunities to learn and share discoveries with family and fellow explorers in casual comfort. As the most experienced operator in polar waters, our Antarctica voyages far exceed those of other cruise lines - most using either smaller expedition ships or large ocean liners. -
Reconstruction of Changes in the Weddell Sea Sector of the Antarctic Ice Sheet Since the Last Glacial Maximum
Quaternary Science Reviews xxx (2013) 1e26 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Reconstruction of changes in the Weddell Sea sector of the Antarctic Ice Sheet since the Last Glacial Maximum Claus-Dieter Hillenbrand a,*,1, Michael J. Bentley b,1, Travis D. Stolldorf c, Andrew S. Hein d, Gerhard Kuhn e, Alastair G.C. Graham f, Christopher J. Fogwill g, Yngve Kristoffersen h, James. A. Smith a, John B. Anderson c, Robert D. Larter a, Martin Melles i, Dominic A. Hodgson a, Robert Mulvaney a, David E. Sugden d a British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK b Department of Geography, Durham University, South Road, Durham DH1 3LE, UK c Department of Earth Sciences, Rice University, 6100 Main Street, Houston, TX 77005, USA d School of GeoSciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK e Alfred-Wegener-Institut Hemholtz-Zentrum für Polar- und Meeresforschung, Am Alten Hafen 26, D-27568 Bremerhaven, Germany f College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK g Climate Change Research Centre, University of New South Wales, Sydney, Australia h Department of Earth Science, University of Bergen, Allegate 41, Bergen N-5014, Norway i Institute of Geology and Mineralogy, University of Cologne, Zülpicher Strasse 49a, D-50674 Cologne, Germany article info abstract Article history: The Weddell Sea sector is one of the main formation sites for Antarctic Bottom Water and an outlet for Received 4 December 2012 about one fifth of Antarctica’s continental ice volume. -
The Million-Year Evolution of the Glacial Trimline in the Southernmost Ellsworth Mountains, Antarctica ∗ David E
Earth and Planetary Science Letters 469 (2017) 42–52 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl The million-year evolution of the glacial trimline in the southernmost Ellsworth Mountains, Antarctica ∗ David E. Sugden a, , Andrew S. Hein a, John Woodward b, Shasta M. Marrero a, Ángel Rodés c, Stuart A. Dunning d, Finlay M. Stuart c, Stewart P.H.T. Freeman c, Kate Winter b, Matthew J. Westoby b a Institute of Geography, School of GeoSciences, University of Edinburgh, Edinburgh, EH8 9XP, UK b Department of Geography, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK c Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride, G75 0QF, UK d School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK a r t i c l e i n f o a b s t r a c t Article history: An elevated erosional trimline in the heart of West Antarctica in the Ellsworth Mountains tells of thicker Received 23 December 2016 ice in the past and represents an important yet ambiguous stage in the evolution of the Antarctic Ice Received in revised form 28 March 2017 Sheet. Here we analyse the geomorphology of massifs in the southernmost Heritage Range where the Accepted 2 April 2017 surfaces associated with the trimline are overlain by surficial deposits that have the potential to be dated Available online xxxx through cosmogenic nuclide analysis. Analysis of 100 rock samples reveals that some clasts have been Editor: A. Yin exposed on glacially moulded surfaces for 1.4 Ma and perhaps more than 3.5 Ma, while others reflect Keywords: fluctuations in thickness during Quaternary glacial cycles. -
Reconstruction of Changes in the Weddell Sea Sector of the Antarctic Ice Sheet Since the Last Glacial Maximumq
Quaternary Science Reviews 100 (2014) 111e136 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Reconstruction of changes in the Weddell Sea sector of the Antarctic Ice Sheet since the Last Glacial Maximumq Claus-Dieter Hillenbrand a,*,1, Michael J. Bentley b,1, Travis D. Stolldorf c, Andrew S. Hein d, Gerhard Kuhn e, Alastair G.C. Graham f, Christopher J. Fogwill g, Yngve Kristoffersen h, James. A. Smith a, John B. Anderson c, Robert D. Larter a, Martin Melles i, Dominic A. Hodgson a, Robert Mulvaney a, David E. Sugden d a British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK b Department of Geography, Durham University, South Road, Durham DH1 3LE, UK c Department of Earth Sciences, Rice University, 6100 Main Street, Houston, TX 77005, USA d School of GeoSciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK e Alfred-Wegener-Institut Hemholtz-Zentrum für Polar- und Meeresforschung, Am Alten Hafen 26, D-27568 Bremerhaven, Germany f College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK g Climate Change Research Centre, University of New South Wales, Sydney, Australia h Department of Earth Science, University of Bergen, Allegate 41, Bergen N-5014, Norway i Institute of Geology and Mineralogy, University of Cologne, Zülpicher Strasse 49a, D-50674 Cologne, Germany article info abstract Article history: The Weddell Sea sector is one of the main formation sites for Antarctic Bottom Water and an outlet for Received 4 December 2012 about one fifth of Antarctica’s continental ice volume. -
Antarktis Flug-Expeditionen BERGSTEIGEN / MOUNT VINSON SKITOUREN
Antarktis Flug-Expeditionen BERGSTEIGEN / MOUNT VINSON SKITOUREN ex Punta Arenas / Chile via Basecamp UNION GLACIAR POLARADVENTURES Schiffs- und Flug-Expeditionen in Arktis und Antarktis Reiseagentur * Heinrich-Böll-Str. 40 * D-21335 Lüneburg * Deutschland Tel +49-4131- 223474 Fax +49-4131-54255 [email protected] www.polaradventures.de Saison 2021/22 Veranstalter Direkt-Angebote ab-bis Punta Arenas (Chile) für individuelle Planungen alle Abfahrten der Saison inkl. englischsprachiger Termine POLARADVENTURES Schiffs- und Flug-Expeditionen in Arktis und Antarktis Reiseagentur * Heinrich-Böll-Str. 40 * D-21335 Lüneburg * Deutschland Tel +49-4131- 223474 Fax +49-4131-54255 [email protected] www.polaradventures.de ANTARCTIC LOGISTICS & EXPEDITIONS EXPERIENCES November 2021 to January 2022 As a courtesy of and in recognition of the difficulties resulting from COVID-19, ALE has chosen to keep pricing the same as our 2020 season. These are preliminary dates and rates (as of September 18th, 2020) and are subject to change, particularly as fuel prices fluctuate. Please see pricing note. Number Experience and Dates Offered Code Price (USD) of Days Mount Vinson 12 days $44,495 November 26 – December 7, 2021 VINS1 December 7 – December 18, 2021 VINS2 December 18 – December 29, 2021 VINS3 December 29, 2021 – January 9, 2022 VINS4 January 9 – January 20, 2022 VINS5 South Pole Flights 6-7 days $51,250 December 7 – December 13, 2021 SPF1 January 9 – January 14, 2022 SPF4 South Pole Overnight 6 days $55,100 December 29, 2021 – January 3, 2022 -
USGS Open-File Report 2007-1047, Short Research Paper 069, 3 P.; Doi:10.3133/Of2007-1047.Srp069
U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Short Research Paper 069, doi:10.3133/of2007-1047.srp069 Craddock Massif and Vinson Massif remeasured Damien Gildea¹ and John Splettstoesser² ¹The Omega Foundation, Incline Village, Nevada U.S.A. 89450 ([email protected]) ²P.O. Box 515, Waconia, Minnesota U.S.A. 55387 ([email protected]) Abstract The highest peak in Antarctica, the Vinson Massif (78º35’S, 85º25’W), is at an elevation of 4892 m (16,046 ft), as determined in 2004. Measurements of the elevation have fluctuated over the years, from its earliest surveyed elevation of 5140 m (16,859 ft), to its present height. Vinson Massif and three of its near neighbors in the Sentinel Range of the Ellsworth Mountains are the highest peaks in Antarctica, making them a favorite objective of mountaineers. Well over 1,100 people have climbed Vinson since the first ascent by a team in the 1966-67 austral summer. The range is composed of Crashsite quartzite, making the Sentinel’s very resistant to erosion. Very accurate elevations have been achieved annually by GPS mapping done by a climbing team sponsored by the Omega Foundation, active in Antarctica since 1998. The Craddock Massif now includes Mt. Craddock, the ninth highest peak in Antarctica, at 4368 m (14,327 ft). Both are named for Campbell Craddock*, a U.S. geologist active in Antarctic research beginning in 1959-60. *Deceased, 23 July 2006. Citation: Gildea, D., and J. Splettstoesser (2007), Craddock Massif and Vinson Massif remeasured, in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES, edited by A.K.