Badgers in the Antarctic

Total Page:16

File Type:pdf, Size:1020Kb

Badgers in the Antarctic Badgers in the Antarctic Marie Dvorzak In recognition of the substantial contributions of researchers from our department, there are numerous Antarctic features named for UW-Madison faculty, staff and students. I would like to compile a complete list of all Wisconsin-named Antarctic features for a permanent library display. With the help of Charles Bentley and Campbell Craddock I have identified the 37 features listed below. If anyone knows of a feature missing from our list please contact me at: Marie Dvorzak [email protected] Geology and Geophysics Library, UW-Madison 53706 Phone: 608 262-8956; Fax: 608 262-0693 Behrendt, John C., PhD 1961 Black, Robert F., faculty 1956-1970 • Behrendt Mountains 75º20’S, 72º30’W. A group of • Black Glacier 71º40’S, 164º42’E. A broad tributary to the mountains, 20 miles long, aligned in the form of a horseshoe Lillie Glacier flowing NE, marking the SE extent of the with the opening to the SW, standing 7 miles SW of Merrick Bowers Mountains. Mountains in Ellsworth Land. Blankenship, Donald D., PhD 1989 Beitzel, John E., PhD 1972 • Blankenship Glacier 77º59’S, 161º45’E. A steep glacier • Beitzel Peak 80º17’S, 82º18’W. A peak rising 1.5 miles SE which descends N between La Count Mountain and Bubble of Minaret Peak in the Marble Hills, Heritage Range, Spur to enter upper Ferrar Glacier, Victoria Land. Ellsworth Mountains. 0° Bowser, Carl J., faculty, 1964–, emeritus 2000 Bennett, Hugh F., PhD 1968 3 • Bowser, Mount 86º03’S, 155º36’W. A W 0 0° °E • Bennett, Mount 84º49’S, 3 Atlantic prominent peak, 3,655 m, standing 2 178º55’W. A prominent 60°S Ocean miles S of Mount Astor at the N mountain (3,090 m) about 3 end of Fram Mesa, in the Queen miles E of Mount Boyd, Maud Mountains. 6 0 W ° surmounting the W part of ° E 60 Weddell Chamberlin, Thomas C., Anderson Heights, 70°S Sea Queen Maud faculty, university president 80°S 1887-1892 Mountains. Ronne Ice • Chamberlin Glacier Shelf Indian Bentley, Charles R., Bellingshausen ANTARCTICA Ocean 67º34’S, 65º33’W. Glacier Sea E W faculty 1962–, emeritus ° ° which flows NE into 0 0 South Pole 9 1998 9 Whirlwind Inlet about 4 • Bentley, Mount miles SE of Matthes 78º07’S, 86º14’W. Ross Glacier, on the E coast of Amundsen Ice Mountain (4,245 m) Sea Shelf Graham Land. standing 2 miles N of 120 Ross E Mount Anderson in the Sea ° Clough, John W., PhD 1974 ° W 0 2 main western ridge of the 1 • Clough, Mount 85º54’S, Sentinel range, Ellsworth 158º26’W. An ice-free Mountains. mountain, 2,230 m, standing 2 Pacific 500 Km • Bentley Subglacial Trench 150 miles E of Mount Dort, at the S side of Ocean E °W 500 Mi. 0° 80º00’S, 105º00’W. A major 15 Cappellari Glacier, in the Queen Maud subglacial trench of West Antarctica 180°E Mountains. which lies S of Byrd Subglacial Basin and is separated from it by a ridge except for a juncture of the two Craddock, J. Campbell, faculty 1967–, emeritus 1996 features near their E termination. A maximum depth of - • Craddock, Mount 78º38’S, 85º12’W. A large, bold 2540 m is reported in the W part of the trench. mountain (4,650 m) that marks the highest point on the southern end of Vinson Massif in the Sentinel Range. Berg, Thomas Eric, BS 1957 Ellsworth Mountains. • Berg Peak 71º32’S, 161º47’E. A prominent peak (1,870m) standing 3 miles S of El Pulgar in northern Morozumi Dott, Robert H., faculty 1958–, emeritus 1994 Range. Berg perished in a helicopter crash near Mount • Dott Ice Rise 79º18’S, 81º48’W. A peninsula-like feature McLennan, Nov. 19, 1969. that is ice-drowned except for the Barrett Nunataks, about 20 miles long, extending eastward from the Heritage Range of the Ellsworth Mountains and terminating at Constellation Inlet at the SW edge of Ronne Ice Shelf. 46 Department of Geology and Geophysics • University of Wisconsin-Madison Dowling, Forrest L., PhD 1968 Sporli, Bernhard N., research associate • Dowling, Mount 72º27’S, 98º08’W. Small mountain • Sporli, Mount 79º33’S, 83º36’W. A prominent mountain, overlooking the S coast of Thurston Island, about 13 miles E 2,255m, standing at the E side of the head of Driscoll of Von der Wall Point. Glacier in the Pioneer Heights, Heritage Range, Ellsworth Mountains. Giovinetto, Mario B., PhD 1968, geography • Giovinetto, Mount 78º16’S, 86º10’W. The summit of a Thiel, Edward C., PhD 1955 buttress-type mountain (4,090m) located 2 miles N of • Thiel Mountains 85º15’S, 91º00’W. Isolated, mainly snow- Mount Ostenso in the main ridge of the Sentinel Range, capped mountains, 45 miles long, located roughly between Ellsworth Mountains. the Horlick Mountains and the Pensacola Mountains and extending from Moulton Escarpment on the west to Nolan Halpern, Martin, PhD 1963 Pillar on the east. • Halpern Point. 63º18’S, 57º50’W. A point on the northern • Thiel Trough 81º30’S, 57º00’W. A submarine trough coast of Trinity Peninsula directly south of the eastern part trending NE-SW with depths reaching to 1,500 m below sea of the Duroch Islands. level. Jezek, Kenneth C., PhD 1980 Thwaites, Fredrik T., faculty 1916-1957 • Jezek Glacier 77º59’S, 162º13’E. A glacier on the SE side • Thwaites Glacier 75º30’S, 106º45’W. A broad glacier of Platform Spur, flowing NE into Emmanuel Glacier in the flowing into Amundsen Sea about 30 miles E of Mount Royal Society Range, Victoria Land. Murphy, Marie Byrd Land. Though imperfectly delineated, the glacier has tremendous flow. Jiracek, George R., MS 1966 • Thwaites Glacier Tongue 75º00’S, 106º50’W. A glacier • Jiracek, Mount 73º46’S, 163º56’E. A mountain (2,430 m) tongue, about 20 miles wide and 40 miles long, which is the rising at the W side of the head of Tinker Glacier, in the seaward extension of Thwaites Glacier into the Amundsen southern Cross Mountains of Victoria Land. Sea. Laudon, Thomas Stanzel., PhD 1963 • Thwaites Iceberg Tongue 74º00’S, 108º30’W. A very large • Laudon, Mount 74º13’S, 64º03’W. Prominent mountain and rather compact iceberg tongue which is aground and lies standing 7 miles N of Mount Crowell in the NW part of in the Amundsen Sea, about 20 miles NE of Bear Peninsula, Guettard Range, in southern Palmer Land. Marie Byrd Land. Long, Jack B., staff Weihaupt, John G., BS 1952, MS 1953 • Long Gables 78º11’S, 86º14’W. Prominent twin peaks • Weihaupt, Mount 72º37‚S, 161º03‚W. A large, bare (4,150m and 4,110 m) joined by a col. The lower rock mountain (2,285 m) which stands 10 mi E of Mount Bower exposures are in the form of steep buttresses. The peaks rise and is the dominant feature in the E part of the Outback from the main ridge of the Sentinel Range, Ellsworth Nunataks. Mountains between Mounts Anderson and Viets. • Wisconsin Islands 63º17’S, 57º51’W. A group of a dozen or Mudrey, Michael G., Jr., faculty, staff, Wisconsin Geological more small rocky islands which lie 1 mile NE of Largo and Natural History Survey Island in the NE part of the Duroch Islands. Named after the • Mudrey Cirque 77º39’S, 160º44'. A cirque between University of Wisconsin-Madison. Northwest Mountain and West Groin in the S part of Asgard • Wisconsin Plateau 85º48’S, 125º24’W. A large ice-capped Range, Victoria Land. plateau with general elevations above 2,800 m, comprising Ostenso, Ned A., PhD 1962, faculty 1963-1966 most of the upland surface area of the Wisconsin Range, • Ostenso, Mount 78º18’S, 86º11’W. A mountain (4,180 m) 2 Horlick Mountains. miles S of Mount Giovinetto in the main ridge of the • Wisconsin Range 85º45’S, 125º00’W. A major mountain Sentinel Range, Ellsworth Mountains. range of the Horlick Mountains, comprising the Wisconsin Robertson, James D., PhD 1975 Plateau and numerous glaciers, ridges and peaks bounded by • Robertson Ridge 77º24’S, 162º12’E. A ridge circumscribing the Reedy Glacier, Shimizu Ice Stream, Horlick Ice Stream the NW part of Clark Glacier in Victoria Land. and the interior ice plateau. Named for the University of Wisconsin, Madison which has sent numerous researchers to Robinson, Edwin S., PhD 1964 Antarctica. • Robinson Heights 71º22’S, 166º40’E. The mainly ice- covered heights (2,170 m), elliptical in plan and 15 miles Wold, Richard J., PhD 1966 long, which rise S of Anare Pass and form the NW end of • Wold Nunatak 74º47’S, 98º38’W. A nunatak standing 10 the Admiralty Mountains. miles E of Mount Manthe in the SE part of the Hudson Mountains. Sonntag, Wayne, staff, operation director, UW Geophysical and Polar Research Center Woollard, George P., faculty, 1949-1962 • Sonntag Nunatak 84º53’S, 86º42’W. A solitary nunatak • Woollard, Mount 80º33’S, 96º43’W. An isolated mountain located 20 miles ENE of Hamilton cliff, Ford Massif, of the (2,675 m) with only Mount Moore nearby 8 miles to the Thiel Mountains. north. It stands nearly 150 miles W of the Heritage Range, Ellsworth Mountains. http://www.geology.wisc.edu 2000 The Outcrop 47.
Recommended publications
  • Ferraccioli Etal2008.Pdf
    Tectonophysics 478 (2009) 43–61 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Magmatic and tectonic patterns over the Northern Victoria Land sector of the Transantarctic Mountains from new aeromagnetic imaging F. Ferraccioli a,⁎, E. Armadillo b, A. Zunino b, E. Bozzo b, S. Rocchi c, P. Armienti c a British Antarctic Survey, Cambridge, UK b Dipartimento per lo Studio del Territorio e delle Sue Risorse, Università di Genova, Genova, Italy c Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy article info abstract Article history: New aeromagnetic data image the extent and spatial distribution of Cenozoic magmatism and older Received 30 January 2008 basement features over the Admiralty Block of the Transantarctic Mountains. Digital enhancement Received in revised form 12 November 2008 techniques image magmatic and tectonic features spanning in age from the Cambrian to the Neogene. Accepted 25 November 2008 Magnetic lineaments trace major fault zones, including NNW to NNE trending transtensional fault systems Available online 6 December 2008 that appear to control the emplacement of Neogene age McMurdo volcanics. These faults represent splays from a major NW–SE oriented Cenozoic strike-slip fault belt, which reactivated the inherited early Paleozoic Keywords: – Aeromagnetic anomalies structural architecture. NE SW oriented magnetic lineaments are also typical of the Admiralty Block and fl Transantarctic Mountains re ect post-Miocene age extensional faults. To re-investigate controversial relationships between strike-slip Inheritance faulting, rifting, and Cenozoic magmatism, we combined the new aeromagnetic data with previous datasets Cenozoic magmatism over the Transantarctic Mountains and Ross Sea Rift.
    [Show full text]
  • Detrital Zircon Geochronology of Palaeozoic Siliciclastic Rocks from the Ellsworth Mountains, West Antarctica
    O EOL GIC G A D D A E D C E I H C I L E O S F u n 2 d 6 la serena octubre 2015 ada en 19 Detrital zircon geochronology of Palaeozoic siliciclastic rocks from the Ellsworth Mountains, West Antarctica Paula Castillo* and C. Mark Fanning Research School of Earth Sciences, The Australian National University, Canberra, Australia. Rodrigo Fernández University of Texas Institute for Geophysics, The University of Texas at Austin, Austin, Texas, USA. Fernando Poblete Geosciences Rennes, Université de Rennes 1, Rennes, France. Departamento de Geología, Universidad de Chile, Santiago, Chile. *Contact email: [email protected] Abstract. In the Ellsworth Mountains there is an extensive record of sedimentation from early Cambrian to Permian times. However, the tectonic history and the palaeogeographic significance remain enigmatic. Nine sandstone samples were analysed for their U-Pb detrital zircon age spectra using SHRIMPII and RG. They belong to the early Cambrian to Carboniferous-Permian sequences and record typical Gondwana margin signatures. Variations up section/sequence in zircon provenance suggest restricted basinal deposition during the Cambrian,! with likely sources in the Namaqua-Natal and Mozambique/Maud Belts. There are little or no contributions from older cratons and so the Ellsworth basin evolved as a separate basin to that in the Transantarctic Mountains.! This basin configuration changed after the Devonian and deposition continued Figure 1. Reconstruction of part of Gondwana at ca. 500 Ma. during the late Palaeozoic, when the Ellsworth Mountains South America: SFC - Sao Francisco craton; PPC - basin only received detritus from the Ross/Pan-African Paranapanema craton; RPC - Río de la Plata craton.
    [Show full text]
  • University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY of the SCOTT GLACIER and WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA
    This dissertation has been /»OOAOO m icrofilm ed exactly as received MINSHEW, Jr., Velon Haywood, 1939- GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA. The Ohio State University, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Velon Haywood Minshew, Jr. B.S., M.S, The Ohio State University 1967 Approved by -Adviser Department of Geology ACKNOWLEDGMENTS This report covers two field seasons in the central Trans- antarctic Mountains, During this time, the Mt, Weaver field party consisted of: George Doumani, leader and paleontologist; Larry Lackey, field assistant; Courtney Skinner, field assistant. The Wisconsin Range party was composed of: Gunter Faure, leader and geochronologist; John Mercer, glacial geologist; John Murtaugh, igneous petrclogist; James Teller, field assistant; Courtney Skinner, field assistant; Harry Gair, visiting strati- grapher. The author served as a stratigrapher with both expedi­ tions . Various members of the staff of the Department of Geology, The Ohio State University, as well as some specialists from the outside were consulted in the laboratory studies for the pre­ paration of this report. Dr. George E. Moore supervised the petrographic work and critically reviewed the manuscript. Dr. J. M. Schopf examined the coal and plant fossils, and provided information concerning their age and environmental significance. Drs. Richard P. Goldthwait and Colin B. B. Bull spent time with the author discussing the late Paleozoic glacial deposits, and reviewed portions of the manuscript.
    [Show full text]
  • Review of the Geology and Paleontology of the Ellsworth Mountains, Antarctica
    U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Short Research Paper 107; doi:10.3133/of2007-1047.srp107 Review of the geology and paleontology of the Ellsworth Mountains, Antarctica G.F. Webers¹ and J.F. Splettstoesser² ¹Department of Geology, Macalester College, St. Paul, MN 55108, USA ([email protected]) ²P.O. Box 515, Waconia, MN 55387, USA ([email protected]) Abstract The geology of the Ellsworth Mountains has become known in detail only within the past 40-45 years, and the wealth of paleontologic information within the past 25 years. The mountains are an anomaly, structurally speaking, occurring at right angles to the Transantarctic Mountains, implying a crustal plate rotation to reach the present location. Paleontologic affinities with other parts of Gondwanaland are evident, with nearly 150 fossil species ranging in age from Early Cambrian to Permian, with the majority from the Heritage Range. Trilobites and mollusks comprise most of the fauna discovered and identified, including many new genera and species. A Glossopteris flora of Permian age provides a comparison with other Gondwana floras of similar age. The quartzitic rocks that form much of the Sentinel Range have been sculpted by glacial erosion into spectacular alpine topography, resulting in eight of the highest peaks in Antarctica. Citation: Webers, G.F., and J.F. Splettstoesser (2007), Review of the geology and paleontology of the Ellsworth Mountains, Antarctica, in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES, edited by A.K. Cooper and C.R. Raymond et al., USGS Open- File Report 2007-1047, Short Research Paper 107, 5 p.; doi:10.3133/of2007-1047.srp107 Introduction The Ellsworth Mountains are located in West Antarctica (Figure 1) with dimensions of approximately 350 km long and 80 km wide.
    [Show full text]
  • Controls on Subaerial Erosion Rates in Antarctica
    Edinburgh Research Explorer Controls on subaerial erosion rates in Antarctica Citation for published version: Marrero, S, Hein, A, Naylor, M, Attal, M, Shanks, R, Winter, K, Woodward, J, Dunning, S, Westoby, M & Sugden, D 2018, 'Controls on subaerial erosion rates in Antarctica' Earth and Planetary Science Letters, vol. 501, pp. 56-66. DOI: 10.1016/j.epsl.2018.08.018 Digital Object Identifier (DOI): 10.1016/j.epsl.2018.08.018 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Earth and Planetary Science Letters General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Apr. 2019 Earth and Planetary Science Letters 501 (2018) 56–66 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Controls on subaerial erosion rates in Antarctica ∗ Shasta M. Marrero a, , Andrew S. Hein a, Mark
    [Show full text]
  • Office of Polar Programs
    DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1
    [Show full text]
  • Weather and Climate in the Amundsen Sea Embayment
    WEATHER AND CLIMATE IN THE AMUNDSEN SEA EMBAYMENT,WEST ANTARCTICA:OBSERVATIONS, REANALYSES AND HIGH RESOLUTION MODELLING A thesis submitted to the School of Environmental Sciences of the University of East Anglia in partial fulfilment of the requirements for the degree of Doctor of Philosophy RICHARD JONES JANUARY 2018 © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. © Copyright 2018 Richard Jones iii ABSTRACT Glaciers within the Amundsen Sea Embayment (ASE) are rapidly retreating and so contributing 10% of current global sea level rise, primarily through basal melting. » Here the focus is atmospheric features that influence the mass balance of these glaciers and their representation in atmospheric models. New radiosondes and surface-based observations show that global reanalysis products contain relatively large biases in the vicinity of Pine Island Glacier (PIG), e.g. near-surface temperatures 1.8 ±C (ERA-I) to 6.8 ±C (MERRA) lower than observed. The reanalyses all underestimate wind speed during orographically-forced strong wind events and struggle to reproduce low-level jets. These biases would contribute to errors in surface heat fluxes and thus the simulated supply of ocean heat leading to PIG melting. Ten new ice cores show that there is no significant trend in accumulation on PIG between 1979 and 2013. RACMO2.3 and four global reanalysis products broadly reproduce the observed time series and the lack of any significant trend.
    [Show full text]
  • The Commonwealth Trans-Antarctic Expedition 1955-1958
    THE COMMONWEALTH TRANS-ANTARCTIC EXPEDITION 1955-1958 HOW THE CROSSING OF ANTARCTICA MOVED NEW ZEALAND TO RECOGNISE ITS ANTARCTIC HERITAGE AND TAKE AN EQUAL PLACE AMONG ANTARCTIC NATIONS A thesis submitted in fulfilment of the requirements for the Degree PhD - Doctor of Philosophy (Antarctic Studies – History) University of Canterbury Gateway Antarctica Stephen Walter Hicks 2015 Statement of Authority & Originality I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Elements of material covered in Chapter 4 and 5 have been published in: Electronic version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume00,(0), pp.1-12, (2011), Cambridge University Press, 2011. Print version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume 49, Issue 1, pp. 50-61, Cambridge University Press, 2013 Signature of Candidate ________________________________ Table of Contents Foreword ..................................................................................................................................
    [Show full text]
  • USGS Open-File Report 2007-1047, Short Research Paper 075, 4 P.; Doi: 10.3133/Of2007-1047.Srp075
    U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Short Research Paper 075, doi:10.3133/of2007-1047.srp075 Aeromagnetic search for Cenozoic magmatism over the Admiralty Mountains Block (East Antarctica) 1 2 3 4 5 6 E. Armadillo, F. Ferraccioli, A. Zunino, E. Bozzo, S. Rocchi, and P. Armienti 1Dipartimento per lo Studio del Territorio e delle Sue Risorse, Università di Genova, V.le Benedetto XV 5,16132 Genova, Italy ([email protected]) 2British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK ([email protected]) 3Dipartimento per lo Studio del Territorio e delle Sue Risorse, Università di Genova, V.le Benedetto XV 5,16132 Genova, Italy ([email protected]) 4Dipartimento per lo Studio del Territorio e delle Sue Risorse, Università di Genova, V.le Benedetto XV 5,16132 Genova, Italy ([email protected]) 5Dipartimento di Scienze della Terra, Università di Pisa, Via di S. Maria 53-56126, Pisa, Italy ([email protected]) 6Dipartimento di Scienze della Terra, Università di Pisa, Via di S. Maria 53-56126, Pisa, Italy ([email protected]) Abstract Cenozoic magmatic rocks of the Transantarctic Mountains provide an important window on the tectonic and magmatic processes of the West Antarctic Rift System. Previous aeromagnetic investigations in northern Victoria Land have delineated Cenozoic volcanic and intrusive complexes assigned to the McMurdo Volcanic Group and Meander Intrusives over the Transantarctic Mountains. We present a new aeromagnetic anomaly map for the region north of the Mariner Glacier to study the extent and spatial distribution of these Cenozoic rocks over the previously unexplored Admiralty Mountains.
    [Show full text]
  • PDF-TITEL-AA-CHILE-EMPEORSADVENTURE Kopie.Pages
    Antarktis Flug-Expeditionen EMPEROR PENGUINS Besuch der Kaiserpinguin-Kolonie in der Gould-Bucht ex Punta Arenas / Chile via Basecamp Union Glaciar POLARADVENTURES Schiffs- und Flug-Expeditionen in Arktis und Antarktis Reiseagentur Heinrich-Böll-Str. 40 * D-21335 Lüneburg * Deutschland Tel +49-4131- 223474 Fax +49-4131-54255 [email protected] www.polaradventures.de Saison 2021/22 Veranstalter Direkt-Angebote ab-bis Punta Arenas (Chile) für individuelle Planungen alle Abfahrten der Saison inkl. englischsprachiger Termine POLARADVENTURES Schiffs- und Flug-Expeditionen in Arktis und Antarktis Reiseagentur * Heinrich-Böll-Str. 40 * D-21335 Lüneburg * Deutschland Tel +49-4131- 223474 Fax +49-4131-54255 [email protected] www.polaradventures.de EMPEROR PENGUINS A PHOTOGRAPHER’S PARADISE Immerse yourself in the sights and sounds of the Gould Bay Emperor Penguin Colony on the remote coast of the Weddell Sea. Camp on the same sea ice where thousands of birds come to raise and feed their young. Photograph majestic emperors and their chicks against a spectacular backdrop of ice cliffs, pressure ridges, and icebergs. Spot petrels and seals amongst the endless white expanse. Fall asleep to a chorus of trumpeting calls and wake to find curious penguins outside your tent. Our remote field camp offers you unparalleled access to the emperors as you witness their amazing adaptations to the Antarctic environment alongside our expert guides. ITINERARY Arrival Day Punta Arenas, Chile Pre-departure Day Luggage Pick-Up & Briefing Day 1 Fly to Antarctica Day 2 Explore Union Glacier Day 3 Fly to Emperor Colony Day 4-6 Live with the Emperors Day 7 Return to Union Glacier Day 8 Explore Union Glacier Day 9 Return to Chile Flexible Departure Day Fly Home *Subject to change based on weather and flight conditions.
    [Show full text]
  • Late Quaternary History of Reedy Glacier Brenda Hall Principal Investigator; University of Maine, Orono, [email protected]
    The University of Maine DigitalCommons@UMaine University of Maine Office of Research and Special Collections Sponsored Programs: Grant Reports 5-30-2007 Collaborative Research: Late Quaternary History of Reedy Glacier Brenda Hall Principal Investigator; University of Maine, Orono, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/orsp_reports Part of the Climate Commons, and the Glaciology Commons Recommended Citation Hall, Brenda, "Collaborative Research: Late Quaternary History of Reedy Glacier" (2007). University of Maine Office of Research and Sponsored Programs: Grant Reports. 154. https://digitalcommons.library.umaine.edu/orsp_reports/154 This Open-Access Report is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in University of Maine Office of Research and Sponsored Programs: Grant Reports by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. Final Report: 0229034 Final Report for Period: 06/2006 - 05/2007 Submitted on: 05/30/2007 Principal Investigator: Hall, Brenda L. Award ID: 0229034 Organization: University of Maine Title: Collaborative Research: Late Quaternary History of Reedy Glacier Project Participants Senior Personnel Name: Hall, Brenda Worked for more than 160 Hours: Yes Contribution to Project: Brenda Hall has led the mapping effort at Reedy Glacier. She is supervising a graduate student who is working on this project. In addition, she has undertaken all of the radiocarbon work. Post-doc Graduate Student Name: Bromley, Gordon Worked for more than 160 Hours: Yes Contribution to Project: Gordon Bromley is the principal graduate student on the University of Maine portion of this collaborative project.
    [Show full text]
  • Atmospheric Gas Records from Taylor Glacier, Antarctica, Reveal Ancient Ice with Ages Spanning the Entire Last Glacial Cycle Daniel Baggenstos1,*, Thomas K
    Clim. Past Discuss., doi:10.5194/cp-2017-25, 2017 Manuscript under review for journal Clim. Past Discussion started: 28 February 2017 c Author(s) 2017. CC-BY 3.0 License. Atmospheric gas records from Taylor Glacier, Antarctica, reveal ancient ice with ages spanning the entire last glacial cycle Daniel Baggenstos1,*, Thomas K. Bauska2, Jeffrey P. Severinghaus1, James E. Lee2, Hinrich Schaefer3, Christo Buizert2, Edward J. Brook2, Sarah Shackleton1, and Vasilii V. Petrenko4 1Scripps Institution of Oceanography (SIO), University of California, San Diego, La Jolla, CA 92093, USA. 2College of Earth, Ocean and Atmospheric Sciences, Oregon State University (OSU), Corvallis, OR, 97331, USA. 3National Institute of Water and Atmospheric Research Ltd (NIWA), PO Box 14901, Kilbirnie, 301 Evans Bay Parade, Wellington, New Zealand. 4Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA. *Current address: Climate and Environmental Physics, University of Bern, Switzerland. Correspondence to: [email protected] Abstract. Old ice for paleo-environmental studies, traditionally accessed through deep core drilling on domes and ridges on the large ice sheets, can also be retrieved at the surface from ice sheet margins and blue ice areas. The practically unlimited amount of ice available at these sites satisfies a need in the community for studies of trace components requiring large sample volumes. For margin sites to be useful as ancient ice archives, the ice stratigraphy needs to be understood and age models 5 need to be established. We present measurements of trapped gases in ice from Taylor Glacier, Antarctica, to date the ice 18 and assess the completeness of the stratigraphic section.
    [Show full text]