Anti-Integrin Therapy for Inflammatory Bowel Disease S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models. -
Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products. -
Looking for Therapeutic Antibodies in Next Generation Sequencing Repositories
bioRxiv preprint doi: https://doi.org/10.1101/572958; this version posted March 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Title: Looking for Therapeutic Antibodies in Next Generation Sequencing Repositories. Authors: Konrad Krawczyk1*, Matthew Raybould2, Aleksandr Kovaltsuk2, Charlotte M. Deane2 1 NaturalAntibody, Hamburg, Germany 2 Oxford University Department of Statistics, Oxford, UK *Correspondence to [email protected] Abstract: Recently it has become possible to query the great diversity of natural antibody repertoires using Next Generation Sequencing (NGS). These methods are capable of producing millions of sequences in a single experiment. Here we compare Clinical Stage Therapeutic antibodies to the ~1b sequences from 60 independent sequencing studies in the Observed Antibody Space Database. Of the 242 post Phase I antibodies, we find 16 with sequence identity matches of 95% or better for both heavy and light chains. There are also 54 perfect matches to therapeutic CDR-H3 regions in the NGS outputs, suggesting a nontrivial amount of convergence between naturally observed sequences and those developed artificially. This has potential implications for both the discovery of antibody therapeutics and the legal protection of commercial antibodies. Introduction Antibodies are proteins in jawed vertebrates that recognize noxious molecules (antigens) for elimination. An organism expresses millions of diverse antibodies to increase the chances that some of them will be able to bind the foreign antigen, initiating the adaptive immune response. -
(12) Patent Application Publication (10) Pub. No.: US 2017/0172932 A1 Peyman (43) Pub
US 20170172932A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0172932 A1 Peyman (43) Pub. Date: Jun. 22, 2017 (54) EARLY CANCER DETECTION AND A 6LX 39/395 (2006.01) ENHANCED IMMUNOTHERAPY A61R 4I/00 (2006.01) (52) U.S. Cl. (71) Applicant: Gholam A. Peyman, Sun City, AZ CPC .......... A61K 9/50 (2013.01); A61K 39/39558 (US) (2013.01); A61K 4I/0052 (2013.01); A61 K 48/00 (2013.01); A61K 35/17 (2013.01); A61 K (72) Inventor: sham A. Peyman, Sun City, AZ 35/15 (2013.01); A61K 2035/124 (2013.01) (21) Appl. No.: 15/143,981 (57) ABSTRACT (22) Filed: May 2, 2016 A method of therapy for a tumor or other pathology by administering a combination of thermotherapy and immu Related U.S. Application Data notherapy optionally combined with gene delivery. The combination therapy beneficially treats the tumor and pre (63) Continuation-in-part of application No. 14/976,321, vents tumor recurrence, either locally or at a different site, by filed on Dec. 21, 2015. boosting the patient’s immune response both at the time or original therapy and/or for later therapy. With respect to Publication Classification gene delivery, the inventive method may be used in cancer (51) Int. Cl. therapy, but is not limited to such use; it will be appreciated A 6LX 9/50 (2006.01) that the inventive method may be used for gene delivery in A6 IK 35/5 (2006.01) general. The controlled and precise application of thermal A6 IK 4.8/00 (2006.01) energy enhances gene transfer to any cell, whether the cell A 6LX 35/7 (2006.01) is a neoplastic cell, a pre-neoplastic cell, or a normal cell. -
Lääkeaineiden Yleisnimet (INN-Nimet) 21.6.2021
Lääkealan turvallisuus- ja kehittämiskeskus Säkerhets- och utvecklingscentret för läkemedelsområdet Finnish Medicines Agency Lääkeaineiden yleisnimet (INN-nimet) 21.6. -
Biological Treatments in Inflammatory Bowel Disease: a Complex Mix Of
Review Biological Treatments in Inflammatory Bowel Disease: A Complex Mix of Mechanisms and Actions Lorena Ortega Moreno 1,2,3 , Samuel Fernández-Tomé 1,3 and Raquel Abalo 4,5,6,7,* 1 Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, 28006 Madrid, Spain; [email protected] (L.O.M.); [email protected] (S.F.-T.) 2 Department of Medicine, Faculty of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain 3 Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain 4 Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain 5 High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, 28922 Alcorcón, Spain 6 Associated I+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), 28006 Madrid, Spain 7 Working Group of Basic Sciences in Pain and Analgesia of the Spanish Pain Society (Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor), 28046 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-91-488-8854 Abstract: Inflammatory bowel disease (IBD) is a chronic disease that requires lifelong medication and whose incidence is increasing over the world. There is currently no cure for IBD, and the current ther- apeutic objective is to control the inflammatory process. Approximately one third of treated patients do not respond to treatment and refractoriness to treatment is common. Therefore, pharmacological Citation: Moreno, L.O.; treatments, such as monoclonal antibodies, are urgently needed, and new treatment guidelines are Fernández-Tomé, S.; Abalo, R. -
The Current State of the Art for Biological Therapies and New Small Molecules in Inflammatory Bowel Disease
www.nature.com/mi REVIEW ARTICLE The current state of the art for biological therapies and new small molecules in inflammatory bowel disease Sudarshan Paramsothy1, Adam K. Rosenstein1,2, Saurabh Mehandru1,2 and Jean-Frederic Colombel1 The emergence of biologic therapies is arguably the greatest therapeutic advance in the care of inflammatory bowel disease (IBD) to date, allowing directed treatments targeted at highly specific molecules shown to play critical roles in disease pathogenesis, with advantages in potency and selectivity. Furthermore, a large number of new biologic and small-molecule therapies in IBD targeting a variety of pathways are at various stages of development that should soon lead to a dramatic expansion in our therapeutic armamentarium. Additionally, since the initial introduction of biologics, there have been substantial advances in our understanding as to how biologics work, the practical realities of their administration, and how to enhance their efficacy and safety in the clinical setting. In this review, we will summarize the current state of the art for biological therapies in IBD, both in terms of agents available and their optimal use, as well as preview future advances in biologics and highly targeted small molecules in the IBD field. Mucosal Immunology (2018) 11:1558–1570; https://doi.org/10.1038/s41385-018-0050-3 INTRODUCTION concerns regarding the safety of these agents have decreased Inflammatory bowel disease (IBD) incorporates a spectrum of with accumulating data. Although there is a slightly increased risk chronic, often progressive and disabling, inflammatory disorders of serious infections, this is lower than initially predicted and less of the gastrointestinal tract including Crohn’s disease (CD) and than the risk associated with steroid use.12 Concerns regarding ulcerative colitis (UC). -
Stembook 2018.Pdf
The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. -
NETTER, Jr., Robert, C. Et Al.; Dann, Dorf- (21) International Application
ll ( (51) International Patent Classification: (74) Agent: NETTER, Jr., Robert, C. et al.; Dann, Dorf- C07K 16/28 (2006.01) man, Herrell and Skillman, 1601 Market Street, Suite 2400, Philadelphia, PA 19103-2307 (US). (21) International Application Number: PCT/US2020/030354 (81) Designated States (unless otherwise indicated, for every kind of national protection av ailable) . AE, AG, AL, AM, (22) International Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, 29 April 2020 (29.04.2020) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (26) Publication Language: English KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 62/840,465 30 April 2019 (30.04.2019) US OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, (71) Applicants: INSTITUTE FOR CANCER RESEARCH TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW. D/B/A THE RESEARCH INSTITUTE OF FOX CHASE CANCER CENTER [US/US]; 333 Cottman Av¬ (84) Designated States (unless otherwise indicated, for every enue, Philadelphia, PA 191 11-2497 (US). UNIVERSTIY kind of regional protection available) . ARIPO (BW, GH, OF KANSAS [US/US]; 245 Strong Hall, 1450 Jayhawk GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, Boulevard, Lawrence, KS 66045 (US). -
211 the Impact of Biological Interventions on Health-Related Quality of Life in Adults with Crohn's Disease
211 The impact of biological interventions on health-related quality of life in adults with Crohn's disease The impact of biological interventions on health-related quality of life in adults with Crohn's disease Protocol information Review type: Intervention Review number: 211 Authors Mirjana Stanic Benic1, Vanja Giljaca2, Vera Vlahovic-Palcevski1 1Department of Clinical Pharmacology, Clinical Hospital Centre Rijeka, Rijeka, Croatia 2Directorate of Surgery, Department of Gastroenterology, Heart of England NHS Foundation Trust, Birmingham Heartlands Hospital, Birmingham, UK Citation example: Stanic Benic M, Giljaca V, Vlahovic-Palcevski V. The impact of biological interventions on health- related quality of life in adults with Crohn's disease. Cochrane Database of Systematic Reviews , Issue . Art. No.: . DOI: . Contact person Mirjana Stanic Benic resident in clinical pharmacology and toxicology Department of Clinical Pharmacology Clinical Hospital Centre Rijeka Krešimirova 42 Rijeka 51000 Croatia E-mail: [email protected] Dates Assessed as Up-to-date:Not provided Date of Search: Not provided Next Stage Expected: 28 February 2019 Protocol First Published:Not specified Review First Published: Not specified Last Citation Issue: Not specified What's new Date Event Description History Date Event Description Abstract Background Objectives Search methods Selection criteria Data collection and analysis Main results Authors' conclusions Plain language summary [Summary title] [Summary text] Background Description of the condition 1 / 20 211 The impact of biological interventions on health-related quality of life in adults with Crohn's disease Crohn’s disease (CD) is a relapsing-remitting transmural inflammatory bowel disease (IBD) that may involve any part of the gastrointestinal tract from mouth to anus as well as cause extraintestinal manifestations (skin lesions, arthritis). -
New Targets in Inflammatory Bowel Disease Therapy: 2021
REVIEW CURRENT OPINION New targets in inflammatory bowel disease therapy: 2021 Nathaniel A. Cohen and David T. Rubin Purpose of review In the rapidly progressing world of inflammatory bowel disease, this review discusses and summarizes new drug targets and results from major clinical trials in order to provide an update to physicians treating patients with inflammatory bowel diseases (IBD). Recent findings Multiple new mechanisms in the treatment of IBD are being developed and many are showing promising results in both ulcerative colitis and Crohn’s disease patients. In addition to efficacy, some of these treatments may provide safety benefits over existing therapies. Summary The IBD physicians’ therapeutic armamentarium is rapidly expanding and keeping abreast of these developments is required in order to provide patients with optimized individualized care. Keywords biologics, inflammatory bowel disease, new therapeutics, small molecules INTRODUCTION physician’s armamentarium, a significant percentage The inflammatory bowel diseases (IBD) are a hetero- of patients do not respond to these treatments [10]. geneous group of conditions divided into two As such, new treatment pathways and a greater predominant groups, Crohn’s disease (CD) and ulcer- understanding of mechanisms of treatment failure ative colitis (UC). These conditions are characterized are required. This will provide more options for by a chronic, progressive, or relapsing and remitting patients and greater individualization in treatment disease course with the gastrointestinal (GI) tract decision-making. being the major site of inflammatory activity. This review examines the future of IBD treat- Unchecked, this inflammation can result in a ments and details current phase I, II, and III clinical complicated disease course with undesirable ramifi- trial results. -
Ulcerative Colitis and Probiotics: an Overview
REVIEW Ulcerative colitis and probiotics: An overview Irfan Ahmad Rather1, Rajib Majumder1, Fanar Hamad Alshammari1, Jae Gyu Park2 and Vivek Kumar Bajpai1* 1Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Korea 2Pohang Technopark, Pohang Center for Evaluation of Biomaterials, Jigok-ro, Nam-gu, Pohang, Gyeongbuk, Korea Abstract: Ulcerative colitis is an inflammatory disease of the large intestine whose effects are bloody diarrhea, cramping and bloating. The disease is usually relapsing and remitting. However, the cause of ulcerative colitis is not yet known. Due to this reason, finding an effective treatment has been a great challenge. The suggested medical treatment is usually composed of two portions; keeping the flare up from happening and treating the flare up when it has happened. Active flare ups are treated with corticosteroids. There are several hypothesis which suggest that ulcerative colitis could be due to the micro flora present in gut. For this reason, several researchers tried to modify the gut microflora with probiotics. However, there is no probiotics found that can induce emission faster than the placebo. The ulcerative colitis patients taking probiotics showed fewer and less severe symptoms during the flare up. This means that even though the probiotics did not end up the flare up faster, it slowed up the severity of the symptoms of the patients. Keywords: Ulcerative colitis, inflammation, probiotics. INTRODUCTION important in digestion and also prevent other types of bacteria from occupying their spaces. This is the basic Ulcerative colitis (UC) is a chronic disease which is concept of the probiotics referred to as the good bacteria.