Electronic Pressure Measurement
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
11 Fluid Statics
CHAPTER 11 | FLUID STATICS 357 11 FLUID STATICS Figure 11.1 The fluid essential to all life has a beauty of its own. It also helps support the weight of this swimmer. (credit: Terren, Wikimedia Commons) Learning Objectives 11.1. What Is a Fluid? • State the common phases of matter. • Explain the physical characteristics of solids, liquids, and gases. • Describe the arrangement of atoms in solids, liquids, and gases. 11.2. Density • Define density. • Calculate the mass of a reservoir from its density. • Compare and contrast the densities of various substances. 11.3. Pressure • Define pressure. • Explain the relationship between pressure and force. • Calculate force given pressure and area. 11.4. Variation of Pressure with Depth in a Fluid • Define pressure in terms of weight. • Explain the variation of pressure with depth in a fluid. • Calculate density given pressure and altitude. 11.5. Pascal’s Principle • Define pressure. • State Pascal’s principle. • Understand applications of Pascal’s principle. • Derive relationships between forces in a hydraulic system. 11.6. Gauge Pressure, Absolute Pressure, and Pressure Measurement • Define gauge pressure and absolute pressure. • Understand the working of aneroid and open-tube barometers. 11.7. Archimedes’ Principle • Define buoyant force. • State Archimedes’ principle. • Understand why objects float or sink. • Understand the relationship between density and Archimedes’ principle. 11.8. Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action • Understand cohesive and adhesive forces. • Define surface tension. • Understand capillary action. 11.9. Pressures in the Body • Explain the concept of pressure the in human body. • Explain systolic and diastolic blood pressures. • Describe pressures in the eye, lungs, spinal column, bladder, and skeletal system. -
Pressure, Its Units of Measure and Pressure References
_______________ White Paper Pressure, Its Units of Measure and Pressure References Viatran Phone: 1‐716‐629‐3800 3829 Forest Parkway Fax: 1‐716‐693‐9162 Suite 500 [email protected] Wheatfield, NY 14120 www.viatran.com This technical note is a summary reference on the nature of pressure, some common units of measure and pressure references. Read this and you won’t have to wait for the movie! PRESSURE Gas and liquid molecules are in constant, random motion called “Brownian” motion. The average speed of these molecules increases with increasing temperature. When a gas or liquid molecule collides with a surface, momentum is imparted into the surface. If the molecule is heavy or moving fast, more momentum is imparted. All of the collisions that occur over a given area combine to result in a force. The force per unit area defines the pressure of the gas or liquid. If we add more gas or liquid to a constant volume, then the number of collisions must increase, and therefore pressure must increase. If the gas inside the chamber is heated, the gas molecules will speed up, impact with more momentum and pressure increases. Pressure and temperature therefore are related (see table at right). The lowest pressure possible in nature occurs when there are no molecules at all. At this point, no collisions exist. This condition is known as a pure vacuum, or the absence of all matter. It is also possible to cool a liquid or gas until all molecular motion ceases. This extremely cold temperature is called “absolute zero”, which is -459.4° F. -
244LD Levelstar Intelligent Buoyancy Transmitter for Level
Master Instruction 11.2016 MI EML0710 G-(en) 244LD LevelStar Intelligent Buoyancy Transmitter for Vers. 6.2.x Level, Interface and Density with Torque Tube and displacer – HART and Foundation Fieldbus – The intelligent transmitter 244LD LevelStar is designed to perform continuous measurements for liquid level, interface or density of liquids in the process of all industrial applications. The measurement is based on the proven Archimedes buoyancy principle and thus extremely robust and durable. Measuring values can be transferred analog and digital. Digital communication facilitates complete operation and configuration via PC or control system. Despite extreme temperatures, high process pressure and corrosive liquids, the 244LD measures with consistent reliability and high precision. It is approved for installations in contact with explosive atmospheres. The 244LD combines the abundant experience of FOXBORO with most advanced digital technology. FEATURES • HART Communication, 4 to 20 mA, or • Backdocumentation of measuring point Foundation Fieldbus • Continuous self-diagnostics, Status and diagnostic • Configuration via FDT-DTM messages • Multilingual full text graphic LCD • Configurable safety value • IR communication as a standard • Local display in %, mA or physical units • Easy adaptation to the measuring point • Process temperature from –196 °C to +500 °C without calibration at the workshop • Materials for use with aggressive media • Linear or customized characteristic • Micro sintermetal sensor technology • 32 point linearisation -
Calibration Methods – Nomenclature and Classification
CHAPTER 8 CALIBRATION METHODS – NOMENCLATURE AND CLASSIFICATION Paweł Kościelniak Institute of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, R. Ingardena 3, 30-060 Kraków, Poland ABSTRACT Reviewing the analytical literature, including academic textbooks, one can notice that in fact there is no precise and clear terminology dealing with the analytical calibration. Especially a great confusion exists in nomenclature related to the calibration methods: not only different names are used with reference to a given method, but they do not express the principles and the nature of different methods properly (e.g. "the set of standard method" or "the internal standard method"). The problem mentioned above is of great importance. A lack of good terminology can be a source of misunderstandings and, consequently, can be even a reason of carrying out an analytical treatment against the rules. Finally, the aspect of rather psychological nature is worth to be stressed, namely just an analyst is (or should be at least) especially sensitive to such terms as "order" and "purity" irrespectively of what analytical area is considered. Chapter 8 1 INTRODUCTION Reading the professional literature, one is bound to arrive at the conclusion that in analytical chemistry there is a lack of clearly defined, current nomenclature relating to the problems of analytical calibration. It is characteristic that, among other things, in spite of the inevitable necessity of carrying out calibration in instrumental analysis and the common usage of the term ‘analytical calibration’ itself, it is not defined even in texts on nomenclature problems in chemistry [1,2], or otherwise the definitions are not connected with analytical practice [3]. -
Pressure Measuring Instruments
testo-312-2-3-4-P01 21.08.2012 08:49 Seite 1 We measure it. Pressure measuring instruments For gas and water installers testo 312-2 HPA testo 312-3 testo 312-4 BAR °C www.testo.com testo-312-2-3-4-P02 23.11.2011 14:37 Seite 2 testo 312-2 / testo 312-3 We measure it. Pressure meters for gas and water fitters Use the testo 312-2 fine pressure measuring instrument to testo 312-2 check flue gas draught, differential pressure in the combustion chamber compared with ambient pressure testo 312-2, fine pressure measuring or gas flow pressure with high instrument up to 40/200 hPa, DVGW approval, incl. alarm display, battery and resolution. Fine pressures with a resolution of 0.01 hPa can calibration protocol be measured in the range from 0 to 40 hPa. Part no. 0632 0313 DVGW approval according to TRGI for pressure settings and pressure tests on a gas boiler. • Switchable precision range with a high resolution • Alarm display when user-defined limit values are • Compensation of measurement fluctuations caused by exceeded temperature • Clear display with time The versatile pressure measuring instrument testo 312-3 testo 312-3 supports load and gas-rightness tests on gas and water pipelines up to 6000 hPa (6 bar) quickly and reliably. testo 312-3 versatile pressure meter up to Everything you need to inspect gas and water pipe 300/600 hPa, DVGW approval, incl. alarm display, battery and calibration protocol installations: with the electronic pressure measuring instrument testo 312-3, pressure- and gas-tightness can be tested. -
Surface Tension Measurement." Copyright 2000 CRC Press LLC
David B. Thiessen, et. al.. "Surface Tension Measurement." Copyright 2000 CRC Press LLC. <http://www.engnetbase.com>. Surface Tension Measurement 31.1 Mechanics of Fluid Surfaces 31.2 Standard Methods and Instrumentation Capillary Rise Method • Wilhelmy Plate and du Noüy Ring Methods • Maximum Bubble Pressure Method • Pendant Drop and Sessile Drop Methods • Drop Weight or Volume David B. Thiessen Method • Spinning Drop Method California Institute of Technology 31.3 Specialized Methods Dynamic Surface Tension • Surface Viscoelasticity • Kin F. Man Measurements at Extremes of Temperature and Pressure • California Institute of Technology Interfacial Tension The effect of surface tension is observed in many everyday situations. For example, a slowly leaking faucet drips because the force of surface tension allows the water to cling to it until a sufficient mass of water is accumulated to break free. Surface tension can cause a steel needle to “float” on the surface of water although its density is much higher than that of water. The surface of a liquid can be thought of as having a skin that is under tension. A liquid droplet is somewhat analogous to a balloon filled with air. The elastic skin of the balloon contains the air inside at a slightly higher pressure than the surrounding air. The surface of a liquid droplet likewise contains the liquid in the droplet at a pressure that is slightly higher than ambient. A clean liquid surface, however, is not elastic like a rubber skin. The tension in a piece of rubber increases as it is stretched and will eventually rupture. A clean liquid surface can be expanded indefinitely without changing the surface tension. -
Lecture # 04 Pressure Measurement Techniques and Instrumentation
AerE 344 class notes LectureLecture ## 0404 PressurePressure MeasurementMeasurement TechniquesTechniques andand InstrumentationInstrumentation Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 50011, U.S.A Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved! MeasurementMeasurement TechniquesTechniques forfor ThermalThermal--FluidsFluids StudiesStudies Velocity, temperature, density (concentration), etc.. • Pitot probe • hotwire, hot film Intrusive • thermocouples techniques • etc ... Thermal-Fluids measurement techniques • Laser Doppler Velocimetry (LDV) particle-based • Planar Doppler Velocimetry (PDV) techniques • Particle Image Velocimetry (PIV) • etc… Non-intrusive techniques • Laser Induced Fluorescence (LIF) • Molecular Tagging Velocimetry (MTV) molecule-based • Molecular Tagging Therometry (MTT) techniques • Pressure Sensitive Paint (PSP) • Temperature Sensitive Paint (TSP) • Quantum Dot Imaging • etc … Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved! Pressure measurements • Pressure is defined as the amount of force that presses on a certain area. – The pressure on the surface will increase if you make the force on an area bigger. – Making the area smaller and keeping the force the same also increase the pressure. – Pressure is a scalar F dF P = n = n A dA nˆ dFn dA τˆ Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved! Pressure measurements Pgauge = Pabsolute − Pamb Manometer Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved! -
A Measuring Instrument for Multipoint Soil Temperature Underground
A MEASURING INSTRUMENT FOR MULTIPOINT SOIL TEMPERATURE UNDERGROUND Cheng Wang, Chunjiang Zhao * , Xiaojun Qiao, Zhilong Xu National Engineering Research Center for Information Technology in Agriculture, Beijing, P. R. China, 100097 * Corresponding author, Address: Shuguang Huayuan Middle Road 11#, Beijing, 100097, P. R. China, Tel: +86-10-51503411, Fax: +86-10-51503449, Email: [email protected] Abstract: A new measuring instrument for 10 points soil temperatures in 0–50 centimeters depth underground was designed. System was based on Silicon Laboratories’ MCU C8051F310, single chip digital temperature sensor DS18B20, and other peripheral circuits. It was simultaneously able to measure, memory and display, and also convey data to computer via a standard RS232 interface. Keywords: Multi-point Soil Temperature; Portable; DS18B20; C8051F310 1. INTRODUCTION The temperature of soil is a vital environmental factor, which directly influences the activity of microorganisms and the decomposition of organic substances. It can affect roots absorbing water and mineral elements. It also plays an important role in the growth rate and range of roots. Statistically, roots of most plants are within 50 centimeters underground, so it becomes very significant to measure the soil temperature of different depth in this level. The Soil Temperature Measuring Instruments used nowadays mainly fall into three types, the first type is the measure temperature by making use of the relationship between the soil temperature and the temperature-sensitive resistor. Before using this sort of instruments, the system parameters need to Wang, C., Zhao, C., Qiao, X. and Xu, Z., 2008, in IFIP International Federation for Information Processing, Volume 259; Computer and Computing Technologies in Agriculture, Vol. -
Made to Measure. Practical Guide to Electrical Measurements in Low Voltage Switchboards V
Contact us A 250 500 200 150 V (b) 100 (a) 50 0 t Made to measure. Practical guide to electrical measurements in low voltage switchboards A 250 500 ABB SACE The data and illustrations are not binding. We reserve 200 the right to modify the contents of this document on the 150 Una divisione di ABB S.p.A. basis of technical development of the products, 100 Apparecchi Modulari without prior notice. 50 0 Viale dell’Industria, 18 Copyright 2010 ABB. All rights reserved. - 1.500 - CAL. 20010 Vittuone (MI) Tel.: 02 9034 1 Fax: 02 9034 7609 bol.it.abb.com www.abb.com V 80 V 60 2CSC445012D0201 - 12/2010 (f) 40 50 Hz 20 0 t Made to measure. Practical guide to electrical measurements in low voltage switchboards table of Made to measure. Practical guide to electrical measurements contents in low voltage switchboards 1 Electrical measurements 5.3.2 Current transformers ......................................................... 37 5.3.3 Voltage transformers ......................................................... 38 1.1 Why is it important to measure? .......................................... 3 5.3.4 Shunts for direct current .................................................... 38 1.2 Applicational contexts .......................................................... 4 1.3 Problems connected with energy networks ......................... 4 6 The measurements 1.4 Reducing consumption ........................................................ 7 1.5 Table of charges .................................................................. 8 6.1 TRMS Measurements -
Pressure Measurement Explained
Pressure measurement explained Rev A1, May 25th, 2018 Sens4Knowledge Sens4 A/S – Nordre Strandvej 119 G – 3150 Hellebaek – Denmark Phone: +45 8844 7044 – Email: [email protected] www.sens4.com Sens4Knowledge Pressure measurement explained Introduction Pressure is defined as the force per area that can be exerted by a liquid, gas or vapor etc. on a given surface. The applied pressure can be measured as absolute, gauge or differential pressure. Pressure can be measured directly by measurement of the applied force or indirectly, e.g. by the measurement of the gas properties. Examples of indirect measurement techniques that are using gas properties are thermal conductivity or ionization of gas molecules. Before mechanical manometers and electronic diaphragm pressure sensors were invented, pressure was measured by liquid manometers with mercury or water. Pressure standards In physical science the symbol for pressure is p and the SI (abbreviation from French Le Système. International d'Unités) unit for measuring pressure is pascal (symbol: Pa). One pascal is the force of one Newton per square meter acting perpendicular on a surface. Other commonly used pressure units for stating the pressure level are psi (pounds per square inch), torr and bar. Use of pressure units have regional and applicational preference: psi is commonly used in the United States, while bar the preferred unit of measure in Europe. In the industrial vacuum community, the preferred pressure unit is torr in the United States, mbar in Europe and pascal in Asia. Unit conversion Pa bar psi torr atm 1 Pa = 1 1×10-5 1.45038×10-4 7.50062×10-3 9.86923×10-6 1 bar = 100,000 1 14.5038 750.062 0.986923 1 psi = 6,894.76 6.89476×10-2 1 51.7149 6.80460×10-2 1 torr = 133.322 1.33322×10-3 1.933768×10-2 1 1.31579×10-3 1 atm (standard) = 1013.25 1.01325 14.6959 760.000 1 According to the International Organization for Standardization the standard ISO 2533:1975 defines the standard atmospheric pressure of 101,325 Pa (1 atm, 1013.25 mbar or 14.6959 psi). -
IQ Sensornet Nitravis 701 & 705 IQ Sensors User Manual
OPERATIONS MANUAL ba76078e03 05/2017 NitraVis 701 IQ NitraVis 705 IQ OPTICAL SENSOR FOR NITRATE NitraVis 70x IQ Contact YSI 1725 Brannum Lane Yellow Springs, OH 45387 USA Tel: +1 937-767-7241 800-765-4974 Email: [email protected] Internet: www.ysi.com Copyright © 2017 Xylem Inc. 2 ba76078e03 05/2017 NitraVis 70x IQ Contents Contents 1 Overview . 5 1.1 How to use this component operating manual . 5 1.2 Field of application . 6 1.3 Measuring principle of the sensor NitraVis 70x IQ . 6 1.4 Structure of the sensor NitraVis 70x IQ . 7 2 Safety . 8 2.1 Safety information . 8 2.1.1 Safety information in the operating manual . 8 2.1.2 Safety signs on the product . 8 2.1.3 Further documents providing safety information . 8 2.2 Safe operation . 9 2.2.1 Authorized use . 9 2.2.2 Requirements for safe operation . 9 2.2.3 Unauthorized use . 9 3 Commissioning . 10 3.1 IQ SENSORNET system requirements . 10 3.2 Scope of delivery of the NitraVis 70x IQ . 10 3.3 Installation . 11 3.3.1 Mounting the sensor . 11 3.3.2 Mounting the shock protectors . 13 3.3.3 Connecting the sensor to the IQ SENSORNET . 14 3.4 Initial commissioning . 16 3.4.1 General information . 16 3.4.2 Settings . 17 4 Measurement / Operation . 21 4.1 Determination of measured values . 21 4.2 Measurement operation . 22 4.3 Calibration . 22 4.3.1 Overview . 22 4.3.2 User calibration . 25 4.3.3 Sensor check/Zero adjustment . -
Bluemeter SIGMA
WYLER AG Tel. 0041 (0) 52 233 66 66 Im Hölderli Fax. 0041 (0) 52 233 20 53 CH-8405 WINTERTHUR Switzerland Homepage: http://www.wylerag.com E-Mail: [email protected] Manual BlueMETER SIGMA INDEX Subject page 1 BASICS / INTRODUCTION 6 1.1 DESCRIPTION OF THE BLUEMETER SIGMA 6 1.2 PREPARATION AND START-UP OF THE BLUEMETER SIGMA 6 1.2.1 BATTERIES 6 1.2.2 POSSIBLE CONFIGURATIONS 8 2 INITIAL STARTUP OF THE BLUEMETER SIGMA AND THE MEASURING INSTRUMENTS/SENSORS 10 2.1 CONNECTING THE INSTRUMENTS / CONNECTING OPTIONS ON THE BLUEMETER SIGMA 11 2.2 START UP 12 2.2.1 OPERATING ELEMENTS/SHORT OVERVIEW 12 2.2.1.1 OVERVIEW KEYS AND DISPLAY 12 2.2.1.2 SWITCHING THE INSTRUMENT ON AND OFF 13 2.2.1.3 KEYS / FUNCTIONS / SHORT DESCRIPTIONS OF EACH SINGLE KEY 14 2.3 DISPLAY 16 2.3.1 SCALING OF THE DISPLAY 16 2.3.2 DISPLAY TYPES 16 2.3.3 BACKGROUND COLOUR 19 2.3.4 BRIGHTNESS OF THE DISPLAY 20 2.3.5 SHORT DESCRIPTION OF THE INDIVIDUAL DISPLAY AREAS 21 3 OPERATING INSTRUCTIONS BLUEMETER SIGMA 22 3.1 FUNCTIONS ON THE BLUEMETER SIGMA / OVERVIEW KEYS AND DISPLAY 22 3.2 STARTING THE BLUEMETER SIGMA 24 3.2.1 START WITH UNCHANGED CONFIGURAATION 24 3.2.2 START WITH A CHANGED CONFIGURATION 25 3.3 REFRESH 26 3.4 SENSOR 26 3.5 ZERO-SETTING / ABSOLUTE ZERO 28 3.5.1 SET ABSOLUTE ZERO (WITH A REVERSAL MEASUREMENT) 28 3.6 SELECTION OF THE MEASURING UNIT / UNIT 30 3.6.1 STANDARD-UNITS 30 3.6.2 UNITS WITH RELATIVE BASE LENGTH 30 3.7 FUNCTION HOLD 31 3.8 FUNCTION SEND (PRINT FUNCTION) 32 3.9 SELECTION OF THE FILTER UNDER DIFFERENT MEASURING CONDITIONS / FILTER 33 3.10 ABSOLUTE