Regeneration in Tropical Eucalypt Forest on Melville Island

Total Page:16

File Type:pdf, Size:1020Kb

Regeneration in Tropical Eucalypt Forest on Melville Island Regeneration in tropical eucalypt forest on Melville Island by ,0 V ```' f- R J. Fensham B. Sc. (Hons.) submitted in fulfillment of the requirements for the degree of Doctor of Philosophy UNIVERSITY OF TASMANIA HOBART SEPTEMBER 1990 DECLARATION This thesis contains no material which has been accepted for the award of any other degree or diploma in any tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except when due reference is made in this thesis. Roderick Fensham TABLE OF CONTENTS ACKNOWLEDGEMENTS ABSTRACT i ii LIST OF FIGURES vi LIST OF TABLES viii LIST OF PLATES CHAPTER 1 INTRODUCTION 1 1.1 Forest regeneration 1 1.2 Regeneration in tropical savanna 3 1.3 Thesis aims and structure 5 1.4 Geographical background 9 1.4.1 Study locality 9 1.4.2 Climate 9 1.4.3 Geology, geomorphology and soils 11 1.4.4 Vegetation 13 1.4.5 Fire 14 CHAPTER 2 ENVIRONMENTAL CONTROL OF OPEN VEGETATION GRADIENT ON WESTERN MELVILLE ISLAND 17 2.1 Introduction 17 2.2 Methods 19 2.2.1 Melville Island survey 19 2.2.2 Root excavation 23 2.3 Results 24 2.3.1 Indirect gradient analysis of Melville Island vegetation patterns 24 2.3.2 Direct gradient analysis of Melville Island vegetation patterns 30 2.3.3 Root excavation 43 2.4 Discussion 44 CHAPTER 3 PATTERNS AND DETERMINANTS OF WOODY GROWTH IN THE TROPICAL EUCALYPT FOREST 55 3.1 Introduction 55 3.2 Methods 56 3.2.1 Woody sprout growth 56 3.2.2 Xylem pressure potential 58 3.2.3 Response to fertilizer 58 3.2.4 Clipping versus burning 58 3.2.5 Mature tree growth 59 3.2.6 Analytical methods 59 3.3 Results 61 3.3.1 Generalized patterns of woody sprout growth 61 3.3.2 Species growth patterns 66 3.3.3 Comparisons between sites 67 3.3.4 Xylem pressure potential 68 3.3.5 Response to fertilizer 70 3.3.6 Clipping versus burning 70 3.3.7 Mature tree growth 70 4.3 Discussion 74 CHAPTER 4 NTERACTIVE EFFECTS OF FIRE AND SITE FACTORS IN TROPICAL EUCALYPT FOREST 82 4.1 Introduction 82 4.1.1 Background 82 4.1.2 Site history 84 4.1.3 Physical environment 86 4.2 Methods 86 4.2.1 Sampling procedure 86 4.2.2 Analytical methods 87 4.3 Results 88 4.3.1 Environmental determinants of vegetation gradients 88 4.3.2 Fire and aspect effects on species composition 91 4.3.3 Fire and aspect effects on vegetation structure 95 4.3.4 Fire effects on woody sprout density 97 4.4 Discussion 97 CHAPTER 5 STAND STRUCTURE AND COMPETITION INFLUENCES ON REGENERATION IN THE TROPICAL EUCALYPT FOREST 101 5.1 Introduction 101 5.2 Methods 103 5.2.1 Stand structure 103 5.2.2 Association of saplings in natural canopy gaps 104 5.2.3 Competition experiment 105 5.2.4 Old experimental sites without overstorey 106 5.2.5 Investigations of the lignotuber 107 5.3 Results 108 5.3.1 Stand structure 108 5.3.2 Association of saplings in natural canopy gaps 111 5.3.3 Competition experiment 111 5.3.4 Old experimental sites without overstorey 115 5.3.5 Investigations of the lignotuber 118 5.4 Discussion 123 5.4.1 Competitive influences 123 5.4.2 Can forest structure be maintained under present conditions? 131 CHAPTER 6 PHYTOPHAGOUS INSECT/VEGETATION INTERACTIONS IN THE TROPICAL EUCALYPT FOREST 134 6.1 Introduction 134 6.2 Methods 137 6.2.1 Insect damage 137 6.2.2 Insecticide experiment 141 6.2.3 Phytophagous insect community 142 6.3 Results 145 6.3.1 Insect damage 145 6.3.2 Insecticide experiment 158 6.3.3 Phytophagous insect community 160 6.4 Discussion 176 6.4.1 Comparison with other studies 176 6.4.2 Insect effects on vegetation 180 CHAPTER 7 ECOLOGICAL DETERMINANTS OF SEEDLING SUCCESS IN TROPICAL EUCALYPT FOREST 186 7.1 Introduction 186 7.2 Methods 187 7.2.1 Progress of young seedlings 187 7.2.2 Seedling garden experiment 187 7.2.3 Association of woody species with vegetation pattern 189 7.2.4 Effects of leaf litter on seedlings 189 7.2.5 Allelopathic effects of Eucalyptus tetrodonta leaves on tree seedlings 190 7.3 Results 191 7.3.1 Progress of young seedlings 191 7.3.2 Seedling garden experiment 195 7.3.3 Association of woody species with vegetation pattern 197 7.3.4 Effects of leaf litter on seedlings 201 7.3.5 Allelopathic effects of Eucalyptus tetrodonta leaves on tree seedlings 201 7.4 Discussion 203 CHAPTER 8 GENERAL DISCUSSION 206 8.1 Summary of findings and conclusion 206 8.2 The regeneration process 213 REFERENCES 218 APPENDICES 248 Appendix 1 Correlation of vegetation features and environmental variables for the entire Melville Island data set 248 Appendix 2 Correlation of vegetation features and environmental variables for forest plots only 250 Appendix 3 Soil chemical attributes 252 Appendix 4 Insect damage according to damage type 253 Appendix 5 Insect taxa in samples 259 ACKNOWLEDGEMENTS During the field work phase of my project, Dave Bowman, Bruce Wilson, Jeremy Russell-Smith and Clyde Dunlop provided much stimulus and encouragement. Clyde and his Herbarium staff made it possible to learn the unpublished flora of Melville Island. The implementation and perpetuation of this project was a hair- raising bureaucratic balancing act that was only possible through the support and enthusiasm of several people. Without Dave Bowman's deft administration and financial support, the project could never have got off the ground. Dave's enthusiasm for ecology and learning in general was an important inspiration. The Conservation Commission of the Northern Territory provided the infrastructure during the first year, through their forestry operation on Melville Island. For this period, Bill Freeland, Mery Haines, Ron Hooper and Tim McGuffog were instrumental. The Tiwi Land Council took over the forestry operation during the second year and John Hicks, Greg Sutton and the members of the Council allowed the project to continue, despite the withdrawal of the Conservation Commission from the island. Many visiting friends helped with field work. Dave Bowman, Judith Gallen, Leonie McDough and Bruce Wilson kindly organised the ferrying of gear between Melville and the mainland. Melville Island is home for the Tiwi and they allowed me to live and work on their island for two years. Sharing life with these people had a profound influence on my life and gave me a fresh perception of the bush. The Land Conservation Unit of the Conservation Commission conducted some of the soil analyses. Alan Andersen from CSIRO, Darwin, Gordon Gross, from the S. A. Museum, and Catriona McPhee, from the Museum of Victoria examined insects. Neil Gibson and Bruce Wilson got me started with computing. Zhenjie Lin wrote the computer programs for part of the analysis in Chapter 6. ii Jamie Kirkpatrick has been a great inspiration and friend since I first started studying the bush in 1983. He gave encouragement and feedback throughout the project and particularly during the 'writing up' phase in Hobart. Jamie and Dave Bowman were my excellent formal supervisors for the project. Many colleagues and friends participated in proof reading and the examiners of this thesis made many useful crticisms. Lisa put in the late nights that always seem necessary during the dying stages of episodes such as this one. I thank all of these people immensely. ABSTRACT The eucalypt species of the evergreen savanna forest in monsoonal Australia have a population structure characterized by mature trees, an abundance of short stems in the ground layer and low densities of saplings. Other common trees of these forests, such as the broadleaved species, are almost exclusively represented by these short woody . sprouts. The distinctive structure of the eucalypt forests begs the question as to how these forests are perpetuated. This study seeks to examine tree regeneration in the eucalypt forests of Melville Island in the wet-dry tropics of Australia. The first part of the thesis adresses the influence of the physical environment on regeneration by examining edpahic influences on vegetation structure, growth rates and fire response. The second part of the thesis concentrates on the evergreen eucalypts forests and examines possible causes for the supression of woody sprouts. An attempt was made to define the soil moisture conditions across the range of savanna types. However, elucidating the relationship between edaphic conditions and vegetation patterns is difficult because of the effect of rockiness and soil texture on root penetration. It is reasonably certain that evergreen eucalypts are excluded from one intensively studied site because a clay layer impedes root growth. This low forest is dominated by semi-deciduous eucalypts and the growth of all woody sprouts is slower than in the tall forest. Despite less vigorous growth, broadleaved tree species, such as Term inalia ferdinandiana and Planchonia careya, occupy the mid-canopy at this site. It is suggested that the tall evergreen eucalypts, Eucalyptus miniata, Eucalyptus nesophila and Eucalyptus tetrodonta, suppress the growth of other tree species. Overwood suppression is evident within the tall forest. Tree seedlings grew more rapidly under killed trees than live overwood. Furthermore, clearfelled sites develop saplings although the replacement of the tree canopy occurs sporadically. Few eucalypt saplings developed in an extensive experiment designed to examine the influence of eucalypt and wattle trees and herbage on tree iv regeneration. The saplings of two tree species were weakly associated with natural canopy gaps.
Recommended publications
  • Excursion Report July 2019
    July 2019 Number 193 In this issue... Excursion report July 2019..................................................1 Cooktown Botanic Gardens Work Party 2019...............................1 Species List .........................................5 Australian Native Plants Society (Australia) - 2019 Conference............................................8 Excursion report Blooming Biodiversity............8 Albany, Western Australia July 2019 - 29th September to 4 October 2019..............................8 Cooktown Botanic Gardens Work Party 2019 Mystery Styphelia Update.......8 Don Lawie and Stuart Worboys What's Happening.........................9 Cooktown Botanic Gardens is Queensland's Cairns Branch.............................9 northern-most botanic gardens. Established Townsville Branch....................9 not long after the town's birth in 1873, the gardens are home to historic stone-pitched Tablelands Branch...................9 waterways. and grand and unusual heritage trees. They also lie a short distance from the Endeavour River, where in 1770 Cook beached his damaged ship for repairs after an unfortunate interaction with the Great Barrier Reef. Page 1 During their sevenSGAP Cairnsweek enforcedBranch - Newsletterstay, the 193 botanist Joseph Banks, naturalist wet season plus much work has Daniels Solander and their party resulted in a green outlook of surveyed and collected more neat graveled pathways, low key extensively than anywhere else on but effective fencing, and trees, their voyage, making Cooktown shrubs and vines all thriving and arguably the birthplace of well mulched. An efficient but Australian scientific botany. unobtrusive “pop-up” watering Since 1987, Cooktown Botanic system has assisted with Gardens has been the semi-regular maintaining growth. mid-year destination for Cairns and Tablelands branches of SGAP. Over the decades, we have assisted with tasks across the gardens, from weeding to planting, from mulching to bridge renovations.
    [Show full text]
  • Trees for Farm Forestry: 22 Promising Species
    Forestry and Forest Products Natural Heritage Trust Helping Communities Helping Australia TREES FOR FARM FORESTRY: 22 PROMISING SPECIES Forestry and Forest Products TREES FOR FARM FORESTRY: Natural Heritage 22 PROMISING SPECIES Trust Helping Communities Helping Australia A report for the RIRDC/ Land & Water Australia/ FWPRDC Joint Venture Agroforestry Program Revised and Edited by Bronwyn Clarke, Ian McLeod and Tim Vercoe March 2009 i © 2008 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 821 0 ISSN 1440-6845 Trees for Farm Forestry: 22 promising species Publication No. 09/015 Project No. CSF-56A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]
  • Buchanania Obovata) Compared to Other Anacardiaceae Fruit and Nuts
    The Nutritional Potential of the Native Australian Green Plum (Buchanania obovata) Compared to Other Anacardiaceae Fruit and Nuts Author Fyfe, S, Smyth, HE, Schirra, HJ, Rychlik, M, Sultanbawa, Y Published 2020 Journal Title Frontiers in Nutrition Version Version of Record (VoR) DOI https://doi.org/10.3389/fnut.2020.600215 Copyright Statement © 2020 Fyfe, Smyth, Schirra, Rychlik and Sultanbawa. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Downloaded from http://hdl.handle.net/10072/405739 Griffith Research Online https://research-repository.griffith.edu.au REVIEW published: 16 December 2020 doi: 10.3389/fnut.2020.600215 The Nutritional Potential of the Native Australian Green Plum (Buchanania obovata) Compared to Other Anacardiaceae Fruit and Nuts Selina Fyfe 1*, Heather E. Smyth 1, Horst Joachim Schirra 2, Michael Rychlik 1,3 and Yasmina Sultanbawa 1 1 Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD, Australia, 2 Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia, 3 Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany The native Australian green plum (Buchanania obovata) is a small fruit that grows in the northern parts of the Northern Territory and Western Australia. The fruit belongs to the family Anacardiaceae, which includes the other agriculturally important fruit mangoes, pistachios and cashew nuts.
    [Show full text]
  • World Journal of Pharmaceutical Sciences Buchanania Lanzan: A
    World Journal of Pharmaceutical Sciences ISSN (Print): 2321-3310; ISSN (Online): 2321-3086 Published by Atom and Cell Publishers © All Rights Reserved Available online at: http://www.wjpsonline.com/ Review Article Buchanania Lanzan: a species of enormous potentials Mahtab Zakira Siddiqui1*, Arnab Roy Chowdhury1, Niranjan Prasad1 and Moni Thomas2 1Processing and Product Development Division, Indian Institute of Natural Resins & Gums, Namkum, Ranchi – 834 010 (Jharkhand), India 2Directorate of Research Services, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur – 482 004 (M.P.), India Received: 17-02-2014 / Revised: 24-02-2014 / Accepted: 25-03-2014 ABSTRACT Buchanania lanzan Spreng, commonly known as char, achar and chironji, belongs to family Anacardiaceae. It was first described by Francis Hamilton in 1798. The tree is natural wild growth in the tropical deciduous forests of Northern, Western and Central India, mostly in the States of Chhattisgarh, Jharkhand, Madhya Pradesh and in Varanasi and Mirzapur districts of Uttar Pradesh. Besides India, the plant is also found in other tropical Asian countries, Australia and Pacific islands. Tree can be identified by dark grey crocodile bark with red blaze and is a good species for afforestation in bare hill slopes. Traditional indigenous knowledge reveals the immense value of almost all parts of the plant i.e. roots, leaves, fruits, seeds and gum for various medicinal uses. Buchanania lanzan, being a vulnerable medicinal plant, is included in the Red Data Book published by International Union for Conservation of Nature and Natural Resources (IUCN). This species has high socio- economic value providing livelihood to tribal population of the area and has high potential as commercial horticulture species.
    [Show full text]
  • 503 Flora V7 2.Doc 3
    Browse LNG Precinct ©WOODSIDE Browse Liquefied Natural Gas Precinct Strategic Assessment Report (Draft for Public Review) December 2010 Appendix C-18 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 Prepared for Department of State Development December 2009 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 © Biota Environmental Sciences Pty Ltd 2009 ABN 49 092 687 119 Level 1, 228 Carr Place Leederville Western Australia 6007 Ph: (08) 9328 1900 Fax: (08) 9328 6138 Project No.: 503 Prepared by: P. Chukowry, M. Maier Checked by: G. Humphreys Approved for Issue: M. Maier This document has been prepared to the requirements of the client identified on the cover page and no representation is made to any third party. It may be cited for the purposes of scientific research or other fair use, but it may not be reproduced or distributed to any third party by any physical or electronic means without the express permission of the client for whom it was prepared or Biota Environmental Sciences Pty Ltd. This report has been designed for double-sided printing. Hard copies supplied by Biota are printed on recycled paper. Cube:Current:503 (Kimberley Hub Wet Season):Doc:Flora:503 flora v7_2.doc 3 A Vegetation and Flora Survey of James Price Point: Wet Season 2009 4 Cube:Current:503 (Kimberley Hub Wet Season):Doc:Flora:503 flora v7_2.doc Biota A Vegetation and Flora Survey of James Price Point: Wet Season 2009 A Vegetation and Flora Survey of James Price
    [Show full text]
  • MVG04 Tropical Eucalypt Open Forests DRAFT
    MVG 4 - TROPICAL EUCALYPT OPEN FORESTS Tropical eucalypt savanna forest Kakadu National Park, NT (Photo: D. Keith) Overview Also known as tropical savannas. MVG 4 occurs in high rainfall areas of Cape York in Queensland, on Melville and Bathurst Islands, the Top End in Northern Territory, and in Western Australia close to Kimberley coast. Structurally it is an open forest with a tall grass-dominated groundlayer. Dominated by eucalypts, primarily species of Corymbia and Eucalyptus, notably the subgenera Fibridia and Leprolaena, but the tree canopy also includes a range of tropical non-eucalypt genera. The grassy understorey is dominated by annual and perennial species exclusively with C4 photosynthetic pathways. Closely associated with tropical monsoonal climates with wet summers and dry winters. Regularly fire-prone in dry seasons. Facts and figures Major Vegetation Group MVG 4 – Tropical Eucalypt Open Forests Major Vegetation Subgroups xx. Tropical eucalypt savanna forest NT, QLD, WA (number of NVIS descriptions) Typical NVIS structural formations Low open forest Number of IBRA regions 26 Most extensive in IBRA region Est. pre-1750: Jarrah Forest (WA) (Est. pre-1750 and present) Present: Nandewar (NSW) Estimated pre-1750 extent (km2) 4 726 Present extent (km2) 3 952 Area protected (km2) 1 417 Structure and physiognomy Open forests dominated by eucalypts with tall grass dominated understories. Trees are taller with straighter boles and the canopy cover is greater than in the savanna woodlands of MVG 12. Leaves of the tree canopies are sclerophyllous and vary in size from notophyll (20 – 45 cm2) to mesophyll (45 – 150 cm2). Broad-leaved shrubs, palms and cycads occur in the understorey (Dunlop 2001; Beard et al.
    [Show full text]
  • Brisbane Native Plants by Suburb
    INDEX - BRISBANE SUBURBS SPECIES LIST Acacia Ridge. ...........15 Chelmer ...................14 Hamilton. .................10 Mayne. .................25 Pullenvale............... 22 Toowong ....................46 Albion .......................25 Chermside West .11 Hawthorne................. 7 McDowall. ..............6 Torwood .....................47 Alderley ....................45 Clayfield ..................14 Heathwood.... 34. Meeandah.............. 2 Queensport ............32 Trinder Park ...............32 Algester.................... 15 Coopers Plains........32 Hemmant. .................32 Merthyr .................7 Annerley ...................32 Coorparoo ................3 Hendra. .................10 Middle Park .........19 Rainworth. ..............47 Underwood. ................41 Anstead ....................17 Corinda. ..................14 Herston ....................5 Milton ...................46 Ransome. ................32 Upper Brookfield .......23 Archerfield ...............32 Highgate Hill. ........43 Mitchelton ...........45 Red Hill.................... 43 Upper Mt gravatt. .......15 Ascot. .......................36 Darra .......................33 Hill End ..................45 Moggill. .................20 Richlands ................34 Ashgrove. ................26 Deagon ....................2 Holland Park........... 3 Moorooka. ............32 River Hills................ 19 Virginia ........................31 Aspley ......................31 Doboy ......................2 Morningside. .........3 Robertson ................42 Auchenflower
    [Show full text]
  • Darwin International Airport Landscape Treatments
    Darwin International Airport Landscape Treatments FINAL REPORT - 29.06.09 ISSUE E DARWIN INTERNATIONAL AIRPORT LANDSCAPE TREATMENTS FINAL REPORT Northern Territory Airports Pty Ltd PO Box 40996 CASUARINA NT 0811 CLOUSTON Associates Landscape Architects • Urban Designers • Landscape Planners Level 1, 1 Briggs Street • Darwin • NT 0801 PO Box 1118 • Darwin • NT 0801 Telephone (08) 8941 2450 • Facsimile (08) 8981 8230 Email • [email protected] ND609 • Issue E • 29.06.09 TABLE OF CONTENTS Title page CONTENTS TABLE OF CONTENTS 3 EXECUTIVE SUMMARY 4 LANDSCAPE treatments summary 5 INTRODUCTION 6 LANDSCAPE TREATMENTS 7 HIGHLIGHT LANDSCAPE treatment SHOWCASE LANDSCAPE treatment STRUCTURE LANDSCAPE treatment UTILITY LANDSCAPE treatment habitat LANDSCAPE treatment APPENDIX - BANNED SPECIES list 20 DARWIN INTERNATIONAL AIRPORT - LANDSCAPE TREATMENTS • ISSUE E JUNE 2009 3 EXECUTIVE SUMMARY The Darwin International Airport masterplan identifies a range of uses and functions that include airport operations, tourist development, environmental areas and commercial opportunities. These functions are supported by existing services and infrastructure. All this occurs within a landscape framework. It is recognised that the landscape development of the site is a significant factor in establishing a distinct character that reflects the overall development philosophy and objectives as described in the Masterplan. The landscape masterplan prepared by Greening Australia in 2005 established a landscape approach ‘that incorporates and builds on the strengths of the Rapid Creek catchment’s unique plant communities that include riparian monsoon forest, eucalypt woodland, melaleuca swamps and wetlands”. The resultant landscape deliberately introduces international and national visitors to the beauty and diversity of the Top End environment and associated flora. In order to provide clear direction to future works within the precinct, it has been recognised that a ‘kit of part’ comprising distinct landscape treatments is required.
    [Show full text]
  • Southern Gulf, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • BIODIVERSITY CONSERVATION on the TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and Plants
    BIODIVERSITY CONSERVATION ON THE TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and plants Report prepared by John Woinarski, Kym Brennan, Ian Cowie, Raelee Kerrigan and Craig Hempel. Darwin, August 2003 Cover photo: Tall forests dominated by Darwin stringybark Eucalyptus tetrodonta, Darwin woollybutt E. miniata and Melville Island Bloodwood Corymbia nesophila are the principal landscape element across the Tiwi islands (photo: Craig Hempel). i SUMMARY The Tiwi Islands comprise two of Australia’s largest offshore islands - Bathurst (with an area of 1693 km 2) and Melville (5788 km 2) Islands. These are Aboriginal lands lying about 20 km to the north of Darwin, Northern Territory. The islands are of generally low relief with relatively simple geological patterning. They have the highest rainfall in the Northern Territory (to about 2000 mm annual average rainfall in the far north-west of Melville and north of Bathurst). The human population of about 2000 people lives mainly in the three towns of Nguiu, Milakapati and Pirlangimpi. Tall forests dominated by Eucalyptus miniata, E. tetrodonta, and Corymbia nesophila cover about 75% of the island area. These include the best developed eucalypt forests in the Northern Territory. The Tiwi Islands also include nearly 1300 rainforest patches, with floristic composition in many of these patches distinct from that of the Northern Territory mainland. Although the total extent of rainforest on the Tiwi Islands is small (around 160 km 2 ), at an NT level this makes up an unusually high proportion of the landscape and comprises between 6 and 15% of the total NT rainforest extent. The Tiwi Islands also include nearly 200 km 2 of “treeless plains”, a vegetation type largely restricted to these islands.
    [Show full text]
  • Buchanania Obovata: Functionality and Phytochemical Profiling of the Australian Native Green Plum
    foods Article Buchanania obovata: Functionality and Phytochemical Profiling of the Australian Native Green Plum Selina A. Fyfe 1,2 ID , Gabriele Netzel 2, Michael E. Netzel 2 and Yasmina Sultanbawa 2,* ID 1 School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072 Australia; [email protected] 2 Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Health and Food Sciences Precinct, 39 Kessels Rd Coopers Plain;, PO Box 156, Archerfield, QLD 4108, Australia; [email protected] (G.N.); [email protected] (M.E.N.) * Correspondence: [email protected]; Tel.: +61-7-3443-2471 Received: 13 April 2018; Accepted: 26 April 2018; Published: 4 May 2018 Abstract: The green plum is the fruit of Buchanania obovata Engl. and is an Australian Indigenous bush food. Very little study has been done on the green plum, so this is an initial screening study of the functional properties and phytochemical profile found in the flesh and seed. The flesh was shown to have antimicrobial properties effective against gram negative (Escherichia coli 9001—NCTC) and gram positive (Staphylococcus aureus 6571—NCTC) bacteria. Scanning electron microscopy analysis shows that the antimicrobial activity causes cell wall disintegration and cytoplasmic leakage in both bacteria. Antioxidant 2,2-diphenyl-1-picrylhydrazyl (DPPH) testing shows the flesh has high radical scavenging activity (106.3 ± 28.6 µM Trolox equivalant/g Dry Weight in methanol). The flesh and seed contain a range of polyphenols including gallic acid, ellagic acid, p-coumaric acid, kaempferol, quercetin and trans-ferulic acid that may be responsible for this activity.
    [Show full text]
  • The Nature of Northern Australia
    THE NATURE OF NORTHERN AUSTRALIA Natural values, ecological processes and future prospects 1 (Inside cover) Lotus Flowers, Blue Lagoon, Lakefield National Park, Cape York Peninsula. Photo by Kerry Trapnell 2 Northern Quoll. Photo by Lochman Transparencies 3 Sammy Walker, elder of Tirralintji, Kimberley. Photo by Sarah Legge 2 3 4 Recreational fisherman with 4 barramundi, Gulf Country. Photo by Larissa Cordner 5 Tourists in Zebidee Springs, Kimberley. Photo by Barry Traill 5 6 Dr Tommy George, Laura, 6 7 Cape York Peninsula. Photo by Kerry Trapnell 7 Cattle mustering, Mornington Station, Kimberley. Photo by Alex Dudley ii THE NATURE OF NORTHERN AUSTRALIA Natural values, ecological processes and future prospects AUTHORS John Woinarski, Brendan Mackey, Henry Nix & Barry Traill PROJECT COORDINATED BY Larelle McMillan & Barry Traill iii Published by ANU E Press Design by Oblong + Sons Pty Ltd The Australian National University 07 3254 2586 Canberra ACT 0200, Australia www.oblong.net.au Email: [email protected] Web: http://epress.anu.edu.au Printed by Printpoint using an environmentally Online version available at: http://epress. friendly waterless printing process, anu.edu.au/nature_na_citation.html eliminating greenhouse gas emissions and saving precious water supplies. National Library of Australia Cataloguing-in-Publication entry This book has been printed on ecoStar 300gsm and 9Lives 80 Silk 115gsm The nature of Northern Australia: paper using soy-based inks. it’s natural values, ecological processes and future prospects. EcoStar is an environmentally responsible 100% recycled paper made from 100% ISBN 9781921313301 (pbk.) post-consumer waste that is FSC (Forest ISBN 9781921313318 (online) Stewardship Council) CoC (Chain of Custody) certified and bleached chlorine free (PCF).
    [Show full text]