MVG04 Tropical Eucalypt Open Forests DRAFT

Total Page:16

File Type:pdf, Size:1020Kb

MVG04 Tropical Eucalypt Open Forests DRAFT MVG 4 - TROPICAL EUCALYPT OPEN FORESTS Tropical eucalypt savanna forest Kakadu National Park, NT (Photo: D. Keith) Overview Also known as tropical savannas. MVG 4 occurs in high rainfall areas of Cape York in Queensland, on Melville and Bathurst Islands, the Top End in Northern Territory, and in Western Australia close to Kimberley coast. Structurally it is an open forest with a tall grass-dominated groundlayer. Dominated by eucalypts, primarily species of Corymbia and Eucalyptus, notably the subgenera Fibridia and Leprolaena, but the tree canopy also includes a range of tropical non-eucalypt genera. The grassy understorey is dominated by annual and perennial species exclusively with C4 photosynthetic pathways. Closely associated with tropical monsoonal climates with wet summers and dry winters. Regularly fire-prone in dry seasons. Facts and figures Major Vegetation Group MVG 4 – Tropical Eucalypt Open Forests Major Vegetation Subgroups xx. Tropical eucalypt savanna forest NT, QLD, WA (number of NVIS descriptions) Typical NVIS structural formations Low open forest Number of IBRA regions 26 Most extensive in IBRA region Est. pre-1750: Jarrah Forest (WA) (Est. pre-1750 and present) Present: Nandewar (NSW) Estimated pre-1750 extent (km2) 4 726 Present extent (km2) 3 952 Area protected (km2) 1 417 Structure and physiognomy Open forests dominated by eucalypts with tall grass dominated understories. Trees are taller with straighter boles and the canopy cover is greater than in the savanna woodlands of MVG 12. Leaves of the tree canopies are sclerophyllous and vary in size from notophyll (20 – 45 cm2) to mesophyll (45 – 150 cm2). Broad-leaved shrubs, palms and cycads occur in the understorey (Dunlop 2001; Beard et al. 2013) Ground layer is dominated by annual and perennial grasses, all of which have C4 photosynthetic pathways. There are conspicuous variations in the features of the understorey and composition of the herb layer at different seasons (Dunlop 2001). The understorey may have a suite of evergreen and deciduous or semi-deciduous species (Dunlop 2001). Indicative Species Compositionally similar to MVG 12. Eucalyptus tetrodonta, Eucalyptus miniata and Corymbia nesophila are widespread across the tropics. Corymbia megasepala and Eucalyptus crebra occur on Cape York, Corymbia polysciada, Corymbia bleeseri and Eucalyptus ferruginea are common in the Top End (Dunlop 2001; Neldner et al. 2014). Non-eucalypt trees and tall shrubs include Alphitonia excelsa, Callitris intratropica, Erythrophleum chlorostachy and Terminalia species (Dunlop 2001; Beard et al. 2013; Neldner et al. 2014). Other species in the shrub and small tree layer include Acacia oncinocarpa, Alphitonia excelsa, Buchanania obovata, Cochlospermum fraseri, Cycas armstrongii, Livistona eastonii, Livistona humilis, Xanthostemon paradoxus and species of Petalostigma, Gardenia and Grevillea (Dunlop 2001; Beard et al. 2013; Neldner et al. 2014). Grasses of the ground layer include Heteropogon triticeus, Chrysopogon fallax, Sorghum plumosum, Sorghum intrans and numerous other species (Dunlop 2001; Beard et al. 2013; Neldner et al. 2014). A range of forbs, including native legumes (family Fabaceae) occur amongst grass tussocks. Environment Restricted to tropical monsoonal climates receiving approximately 1000 - 1400 mm mean annual rainfall in the summer months, with a dry season during the winter months. Occur on sandy and lateritic plains and rises. Seasonally fire-prone due to curing of annual and perennial grassy ground layers. Geography Principally found across monsoonal and tropical northern Australia on sandy and lateritic plains and rises from the northern Kimberley to Cape York Peninsula. Change Contemporary land use changes associated with development of plantations, irrigated cropping and pastoral intensification involve clearing of tropical open forests and increased stocking rates of cattle. Changed fire regimes associated with pastoral intensification and unplanned ignitions are having significant regional impacts on the biodiversity of savanna ecosystems (Woinarski et al. 2011; Russell-Smith et al. 2012) Introduction of large grazing animals has led to profound changes in vegetation structure, abundance and distribution with flow on effects to native fauna (Kutt and Gordon 2012). Threats include weed invasion, inappropriate fire regimes (e.g. frequent high intensity fires) and overgrazing. There are issues associated with understanding and managing these areas for multiple values. Part of this is providing support to Indigenous groups and developing among these groups an understanding of methods of feral animal and weed control. Tenure Northern Territory: in protected areas Queensland: in protected areas Western Australia: scattered in freehold land, protected areas, state forest and crown land Key values Biodiversity including a unique mixture of biota with arid and wet tropical origins. Globally significant as one of the most extensive continuous tracts of savanna, and the only one dominated by eucalypts. Product of recent global evolutionary processes associated with the spread of C4 grasses. Critical habitat for populations of a wide range of tropical vertebrate and invertebrate species. Ecotourism and scenic landscapes. Globally significant, growing carbon pool. Beef cattle production. List of key management issues Total grazing pressure management. Feral animal impacts e.g. cats, and cane toads, and associated decline in mammal populations (Russell-Smith 2014). Fire management particularly mitigating fire regimes with a high frequency of severe fire brought about by the fuel loads of introduced grasses and ignitions associated with grazing land management practices. Weed control of invasive grasses and other weeds. Expansion and intensification of mining and agriculture. Long term monitoring to inform future management strategies. References Australian Surveying and Land Information Group (1990) Atlas of Australian Resources. Volume 6 Vegetation. AUSMAP, Department of Administrative Services, Canberra, 64pp. & 2 maps. Beadle N.C.W. (1981) The Vegetation of Australia. Cambridge Univ. Press, Cambridge, 690pp. Beard J.S., Beetson, G.R, Harvey J.M. Hopkins A.J.M and Shepherd D.P. (2013) The Vegetation of Western Australia at 1:3,000,000 Scale. Explanatory Memoir. Second Edition. Science Division, Department of Parks and Wildlife, Western Australia Dunlop C.R.(2001) Eucalyptus Communities. In. Native Plants of Northern Australia (ed. Brock J.)pp. 13 - 17. Reed New Holland, Sydney Dyer R., Jacklyn P., Partridge I., Russell-Smith J., Williams R.J. (eds) (2001) Savanna Burning: Understanding and using Fire in northern Australia. Tropical Savanna CRC, Darwin. Kutt A.S., Gordon I.J. (2012) Variation in terrestrial mammal abundance on pastoral and conservation land tenures in north-eastern Australian tropical savannas Animal Conservation 15, 416 – 425. Lehmann C.E.R., Archibald S.A., Hoffmann W.A., Bond W.J. (2001). Deciphering the distribution of the savanna biome. New Phytologist 191, 197 – 209. National Land and Water Resources Audit (2001) Australian Native Vegetation Assessment 2001. National Land and Water Resources Audit, Canberra, 332pp. Neldner, V.J., Niehus, R.E., Wilson, B.A., McDonald, W.J.F. and Ford, A.J. (2014). The Vegetation of Queensland. Descriptions of Broad Vegetation Groups. Version 1.1. Queensland Herbarium, Department of Science, Information Technology, Innovation and the Arts. Russell-Smith J., Edwards A.C., Price O.F. (2012). Simplifying the savanna: the trajectory of fire- sensitive vegetation mosaics in northern Australia. Journal of Biogeography 39, 1303 – 1317. Russell-Smith J., Edwards A., Woinarski J., Fisher A., Murphy B., Lawes M., Crase B. and Thurgate N. (2014) Northern Australian tropical savannas: the Three Parks Savanna Fire Effects Plot Network. In. Biodiversity and Environmental Change Monitoring, Challenges and Direction (ed. Lindenmayer D, Burns E, Thurgate N and Lowe A.) pp. 335 - 378. CSIRO, Victoria. Williams R.J., Griffiths A.D., Allan G.E. (2002). Fire regimes and biodiversity in the wet-dry tropical landscapes of northern Australia. In Flammable Australia. The fire regimes and biodiversity of a continent. (ed Bradstock R.A., Williams J.E and Gill A.M.) pp. 281 - 304. Cambridge University Pres, Cambridge. Woinarski J.C.Z., Fitzsimons J.A., Traill B.J., Burbidge A.A., Fisher A. (2011) The disappearing mammal fauna of Australia: context, cause and response. Conservation Letters 4, 192 – 201. Data sources Interim Biogeographic Regionalisation for Australia (IBRA), Version 6.1. National Vegetation Information System, Version 4.1. 1996/97 Land Use of Australia, Version 2. Collaborative Australian Protected Areas Database – CAPAD 2004 – Terrestrial. Notes This fact sheet should be read in conjunction with MVG 12: Tropical Eucalypt Woodlands See the Introduction to the MVG fact sheets for further background on this series .
Recommended publications
  • Toward Sustainable Management: Southern Africa's Afromontane, And
    Proceedings 6th National Conference of the Australian Forest History Society Inc, Michael Calver et al. (eds) © 2005 Millpress, Rotterdam, ISBN 90 5966 026 9 Toward sustainable management: Southern Africa’s Afromontane, and Western Australia’s jarrah forests Grant Wardell-Johnson Natural and Rural Systems Management, The University of Queensland, Gatton, 4343 Michael Calver Biological Sciences, Murdoch University, Murdoch, Western Australia 6150 Peer reviewed contribution Keywords: logging, Afromontane forest, jarrah forest, management regimes, sustainability, silviculture, employment, plantations ABSTRACT: We review the history of forest management in two southern hemisphere forest types: Western Australia’s jarrah Eucalyptus marginata forests and the Afromontane forests of southern Africa to determine approaches for achieving sustainable forest management. We argue that despite major differences in the ecology and biogeography of these two forest types, a shared pattern in the history of exploitation may provide lessons for achieving sustainable management across forest types. While advanced silvicultural understanding has long been achieved in both for- est types, this in itself has not led to either sustainable management or to public acceptance of forest management regimes. In both areas an early, rapid expansion of uncontrolled timber removal and in the number of operating timber mills was followed by controlled exploitation, a rapid decline in the numbers of mills and, more recently, a general decline in yield. In neither case was increased con- cern about conservation responsible for the reduction in either yield or in employment in the indus- try. Rather, in WA jarrah forests, amendments in purpose and tenure were subsequent to the loss of most mills and towns, while in southern Africa’s Afromontane forests, timber workers were pen- sioned by 1939 because of scanty remaining merchantable timber.
    [Show full text]
  • BIODIVERSITY CONSERVATION on the TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and Plants
    BIODIVERSITY CONSERVATION ON THE TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and plants Report prepared by John Woinarski, Kym Brennan, Ian Cowie, Raelee Kerrigan and Craig Hempel. Darwin, August 2003 Cover photo: Tall forests dominated by Darwin stringybark Eucalyptus tetrodonta, Darwin woollybutt E. miniata and Melville Island Bloodwood Corymbia nesophila are the principal landscape element across the Tiwi islands (photo: Craig Hempel). i SUMMARY The Tiwi Islands comprise two of Australia’s largest offshore islands - Bathurst (with an area of 1693 km 2) and Melville (5788 km 2) Islands. These are Aboriginal lands lying about 20 km to the north of Darwin, Northern Territory. The islands are of generally low relief with relatively simple geological patterning. They have the highest rainfall in the Northern Territory (to about 2000 mm annual average rainfall in the far north-west of Melville and north of Bathurst). The human population of about 2000 people lives mainly in the three towns of Nguiu, Milakapati and Pirlangimpi. Tall forests dominated by Eucalyptus miniata, E. tetrodonta, and Corymbia nesophila cover about 75% of the island area. These include the best developed eucalypt forests in the Northern Territory. The Tiwi Islands also include nearly 1300 rainforest patches, with floristic composition in many of these patches distinct from that of the Northern Territory mainland. Although the total extent of rainforest on the Tiwi Islands is small (around 160 km 2 ), at an NT level this makes up an unusually high proportion of the landscape and comprises between 6 and 15% of the total NT rainforest extent. The Tiwi Islands also include nearly 200 km 2 of “treeless plains”, a vegetation type largely restricted to these islands.
    [Show full text]
  • No. 112 SEPTEMBER 2002 Price: $5.00
    No. 112 SEPTEMBER 2002 Price: $5.00 AUSTRALIAN SYSTEMATIC BOTANY SOCIETY INCORPORATED Office Bearers President Vice President Stephen Hopper John Clarkson Kings Park & Botanic Garden Centre for Tropical Agriculture West Perth PO Box 1054 WA 6005 Mareeba QLD tel: (08) 9480 3605 tel: (07) 4048 4745 email: [email protected] email: [email protected] Secretary Treasurer Brendan Lepschi Anthony Whalen Centre for Plant Biodiversity Research Centre for Plant Biodiversity Research Australian National Herbarium Australian National Herbarium GPO Box 1600, Canberra GPO Box 1600, Canberra ACT 2601 ACT 2601 tel: (02) 6246 5167 tel: (02) 6246 5175 email: [email protected] email: [email protected] Councillor Councillor R.O.(Bob) Makinson Andrew Rozefelds Royal Botanic Gardens Sydney Tasmanian Herbarium Mrs Macquaries Road GPO Box 252-40 Sydney NSW 2000 Hobart, Tasmania 7001 tel: (02) 9231 8111 tel.: (03) 6226 2635 email: [email protected] email: [email protected] Public Officer Annette Wilson Australian Biological Resources Study Environment Australia GPO Box 787 CANBERRA ACT 2601 tel: (02) 6250 9417 email: [email protected] Affiliate Society Papua New Guinea Botanical Society ASBS Web site www.anbg.gov.au/asbs Webmaster: Murray Fagg Centre for Plant Biodiversity Research Australian National Herbarium Email: [email protected] Loose-leaf inclusions with this issue · CSIRO Publishing advertising catalogue · Notice re September 2003 Plant Systematics in Australia conference in Melbourne Publication dates of previous issue Austral.Syst.Bot.Soc.Nsltr 111 (June 2002 issue) Hardcopy: 12th July 2002; ASBS Web site: 12th July 2002 Australian Systematic Botany Society Newsletter 112 (September 2002) ASBS Inc.
    [Show full text]
  • Workshop Notes Perth Region Plant Biodiversity Project Jarrah Forest Reference Sites of the Perth Metropolitan Area: the Southe
    Workshop Notes Perth Region Plant Biodiversity Project Jarrah Forest Reference Sites of the Perth Metropolitan Area: The Southern Transect Shaun Molloy February 2008 Lithic complex (reference point MN2) Photograph by Shaun Molloy - 1 - Introduction Bush Forever is a 10 year strategic plan instigated by the Western Australian Government in conjunction with the general community and appropriate Local Government organisations to protect some 51,200 hectares of regionally significant bushland in 287 Bush Forever Sites, representing, where achievable, a target of at least 10 percent of each of the original 26 vegetation complexes of the Swan Coastal Plain portion of the Perth Metropolitan Region. Subsequent to Bush Forever, the Perth Biodiversity Project identified the need to catalogue and describe a series reference sites to facilitate consistency in the assessment of local natural areas and to further enhance the capacity of relevant people to undertake site recording tasks. To this end 40 reference sites were established based on Bush Forever on the Swan Coastal Plain part of the Perth Metropolitan Region (PMR) as part of the Perth Region Plant Biodiversity Project (PRPBP), a collaborative project between the WA Local Government Association’s Perth Biodiversity Project and the Department of Environment and Conservation. The PRPBP recognises a need to provide a fuller appreciation of the diversity of native vegetation found within the PMR. To that end, it was decided to establish reference sites within, or in close proximity to, Darling Plateau part of the PMR. It is proposed that these reference sites are established so as to represent major variations found in the plant communities found within this area thereby complementing reference sites already set up on the Swan Coastal Plain as part of the Perth Biodiversity Project.
    [Show full text]
  • Australian Vegetation Classification and the International Vegetation Classification Framework: an Overview with Case Studies
    Australian Journal of Botany © CSIRO 2021 https://doi.org/10.1071/BT20076_AC Supplementary material Australian Vegetation Classification and the International Vegetation Classification framework: an overview with case studies Esteban H. MuldavinA,G, Eda AddicottB,F, John T. HunterC, Donna LewisD and Don Faber-LangendoenE ANatural Heritage New Mexico, Biology Department, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA. BQueensland Herbarium, Department of Environmental Science, Brisbane Botanic Gardens Mount Coot-tha, Mt Coot-tha Road, Toowong Qld 40066, Australia. CSchool of Environmental & Rural Science, Natural Resources Building, University of New England, Armidale, NSW 2351, Australia. DNorthern Territory Herbarium, Department of Environment, Parks and Water Security, PO Box 496, Palmerston, NT 0831, Australia. ENatureServe, 2550 South Clark Street, Suite 930, Arlington, VA 22202, USA. FAustralian Tropical Herbarium, James Cook University, PO Box 6811, Cairns, Qld 4870, Australia. GCorresponding author. Email: [email protected] Page 1 of 14 Characterising species for Australian Darwin Stringybark Scleromorphic Woodland Macrogroup (Eucalyptus tetrodonta Scleromorphic Woodland macrogroup), Groups and Alliances Methods for determining Characterising species are outlined in the Methods section of the manuscript. Table S1. Characterising species for Australian Darwin Stringybark Scleromorphic Woodland Macrogroup (Eucalyptus tetrodonta Scleromorphic Woodland Macrogroup) and for Corymbia ferruginea and Eucalyptus tetrodonta
    [Show full text]
  • Northern Territory NT Page 1 of 204 21-Jan-11 Species List for NRM Region Northern Territory, Northern Territory
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Northern Jarrah Forest – Is There a Mesopredator Release Effect?
    Invasive Animals Cooperative Research Centre Uptake of Products and Strategies Program: Project:10.U.1 Western Australian Demonstration Site Subproject 2: Introduced predator control and sustained fauna recovery in south- west Western Australia. The importance of fox, cat and native predator interactions to sustained fauna recovery in the northern jarrah forest – is there a mesopredator release effect? Progress Report at 30 June 2008 Paul de Tores, Duncan Sutherland, Al Glen, Rob Hill, Lenny Bloomfield, Sean Garretson, Lauren Strümpher, Deb Feeniks, Helen Darby, Sheree Mammone, Jennyffer Cruz and Gillian Bryant Not for citation without discussion with the authors Contents 1 The project team, collaborators and volunteers .............................................. 1 2 Overview and background ................................................................................. 5 3 The northern jarrah forest predator interaction project .................................. 7 4 Objectives and hypotheses................................................................................ 9 5 Methodology ...................................................................................................... 16 5.1 The baiting treatments – spatial and temporal design ....................................16 5.2 Trials to assess non-target uptake of the cat bait, Eradicat............................18 5.3 Indices of Activity and estimates of density - sandplots..................................18 5.3.1 Fox and cat indices and density estimates......................................................
    [Show full text]
  • Environmental Protection Authority State of the Environment Report: Western Australia 2007 Website
    www.soe.wa.gov.au Environmental Protection Authority www.epa.wa.gov.au State of the Environment Report: Western Australia 2007 website www.soe.wa.gov.au Copyright © Government of Western Australia 2007 ISBN 1 920947 98 1 The preferred reference for this publication is: Environmental Protection Authority (2007) State of the Environment Report: Western Australia 2007, Department of Environment and Conservation, Perth, Western Australia. Reprinted September 2007 2007356-0907-750 This report was produced by the Environmental Protection Authority with oversight by the State of the Environment Steering Group, the assistance of the State of the Environment Project Team, and the advice of various working groups and independent reviewers. See Appendix for detailed acknowledgements. State of the Environment Project Team c/ Department of Environment and Conservation PO Box K822 Perth Western Australia 6842 Internet www.soe.wa.gov.au Email [email protected] Project manager: Dr Ray Wallis Principal authors: Brad Jakowyna, Karen Crews, Jelena May Spatial data co-ordination, analysis and maps: Rodney Nowrojee, Bernadette Streppel Editing of final report: Dr David Sutton; Editing of draft report: Dr David Sutton, Jan Knight (Flying Edits) and Amanda Ellis Graphic design and layout: Grant Fuller, John Pinneri (John Pinneri Design Services) Internet design: Freckle Creative Printing: Advance Press, a Level 2 Green Stamp accredited business. This report is printed in Western Australia on 9Lives, which is 80% recycled, chlorine free paper that is accredited under the Forest Stewardship Council. Dyes are vegetable based inks. Copies from: Department of Environment and Conservation Library The Atrium, Level 4, 168 St Georges Tce, Perth [email protected] Phone: +61 8 6364 6510 Fax: +61 8 6364 6511 Internet: www.soe.wa.gov.au Front cover and theme cover images courtesy of Tourism Western Australia, Department of Environment and Conservation, and Office of Energy.
    [Show full text]
  • Summary of Sites on the Northern Australian Tropical Transect
    S ummary of Sites on the Northern Australian Tropical Transect 2016 Ubirr Wetland, Kakadu National Park Acknowledgments AusPlots work would not be possible without siggnficant help from a range of people. Ausplots gratefully acknowledges Professor Alan Anderson for all of his help and support of the project. Thanks, are also due to the staff from Kakadu, in particular Kasia Gabrys, and to Dr Alaric fisher and Tahnee Thompson from the NT Deparment of Land Resource Management. AusPlots also acknowledges and thanks the traditional owners of Kakadu and all of the other landowners for allowing access to their land. Thanks, are also due the many volunteers who helped out with the field work and with the curation and processing of the data and samples and to the staff at the NT Herbarium, in particular Nick Cuff and Ian Cowie, for undertaking the plant identfications. Contents Introduction......................................................................................................................................................... 1 Accessing the Data ............................................................................................................................................... 3 Point intercept data .................................................................................................................................... 3 Plant collections .......................................................................................................................................... 3 Leaf tissue samples.....................................................................................................................................
    [Show full text]
  • Report-NT-Bradshaw-Appendix A
    Bradshaw Field Training Area NT 2017 Appendix A - Flora species lists Family Species Flowering Plants Acanthaceae Avicennia marina subsp. eucalyptifolia Acanthaceae Brunoniella australis* Acanthaceae Dicliptera armata Acanthaceae Dipteracanthus australasicus subsp. dalyensis* Acanthaceae Hypoestes floribunda var. angustifolia Acanthaceae Nelsonia campestris Acanthaceae Rostellularia adscendens var. clementii* Aizoaceae Trianthema oxycalyptra var. oxycalyptra Aizoaceae Trianthema patellitectum Aizoaceae Trianthema pilosum Aizoaceae Trianthema rhynchocalyptrum Aizoaceae Trianthema triquetrum Alismataceae Butomopsis latifolia* Alismataceae Caldesia oligococca var. oligococca Amaranthaceae Aerva javanica^ Amaranthaceae Alternanthera denticulata* Amaranthaceae Alternanthera nodiflora Amaranthaceae Amaranthus undulatus* Amaranthaceae Gomphrena affinis* Amaranthaceae Gomphrena affinis subsp. affinis* Amaranthaceae Gomphrena brachystylis subsp. brachystylis Amaranthaceae Gomphrena breviflora* Amaranthaceae Gomphrena canescens Amaranthaceae Gomphrena canescens subsp. canescens Amaranthaceae Gomphrena connata Amaranthaceae Gomphrena flaccida* Amaranthaceae Gomphrena lacinulata Amaranthaceae Gomphrena lanata Amaranthaceae Ptilotus corymbosus Amaranthaceae Ptilotus crispus Amaranthaceae Ptilotus exaltatus var. exaltatus* Amaranthaceae Ptilotus fusiformis* Amaranthaceae Ptilotus giganteus* Amaranthaceae Ptilotus spicatus* Amaranthaceae Surreya diandra Anacardiaceae Blepharocarya depauperata Apocynaceae Alstonia spectabilis subsp. ophioxyloides Apocynaceae
    [Show full text]
  • Assessing the Conservation Reserve System in the Jarrah Forest Bioregion
    JournalJournal of ofthe the Royal Royal Society Society of ofWestern Western Australia, Australia, 79(4), 79:241–248, December 1996 1996 Assessing the conservation reserve system in the Jarrah Forest Bioregion N L McKenzie1, S D Hopper2, G Wardell-Johnson1,3 & N Gibson1 1 Science and Information Division, Department of Conservation and Land Management, P O Box 51, Wanneroo WA 6065; 2 Kings Park and Botanic Gardens, Fraser Avenue, West Perth WA 6005; 3 present address: Department of Biology, University of Namibia, Private Bag 13301, Windhoek Namibia Abstract Recent reviews have assessed the comprehensiveness of the conservation reserve system over the northern part of the Jarrah Forest Bioregion in terms of vegetation complexes. The complexes were distinguished in terms of geomorphology and dominant vegetation. The least reserved complexes are those of the Darling Scarp, Blackwood Plateau, Collie Coalfields and those with agriculturally desirable soils. Available maps can be used to estimate the reserved area of each of the Bioregion’s vegetation complexes or geomorphic units, but there are not enough data on patterns in biodiversity to assess other facets of its adequacy, even in the northern part of the region. A quadrat-based regional survey is necessary if the representativeness of the area’s reserve system is to be assessed from an ecosystem perspective. The sampling would need to cover a range of the different components of the biota (perennial floristics, vertebrates and selected invertebrate taxa). Such surveys are time-consuming and expensive. Current studies of rare, restricted and endemic spe- cies, of weed, feral animal and pathogen impacts, and of forest management effects, need to continue in parallel.
    [Show full text]
  • Propagation of Jarrah Forest Plants for Mine Restoration: Alcoa's Marrinup
    124 Combined Proceedings International Plant Propagators’ Society, Volume 60, 2010 Propagation of Jarrah Forest Plants for Mine Restoration: Alcoa’s Marrinup Nursery© David Willyams Marrinup Nursery, Mine Environmental Department, Alcoa of Australia Ltd., P.O. Box 52, Dwell- ingup, Western Australia. Australia 6213. Email: [email protected] INTRODUCTION Plant propagation has a useful role to play in disturbed land restoration. Alcoa of Aus- tralia (Alcoa) operates a nursery and tissue culture laboratory to produce plants for restoration following mining. This paper provides an overview of a 16-year program to develop ex situ propagation and large-scale production methods for plants absent from mine restoration. In Western Australia Alcoa operates two bauxite mines and Marrinup Nursery in the Darling Range south of Perth, and has three alumina re- fineries on the coastal plain. The principal vegetation of the Darling Range is Jarrah Forest. This forest has at least 784 plant species (Bell and Heddle, 1989) and is part of one of the world’s top 25 biodiversity hotspots (Myers et al., 2000). Alcoa aims to establish a self-sustaining jarrah forest ecosystem on its bauxite mine-sites (see Koch 2007a and 2007b for details on the general mining and restoration processes). With a large area to restore each year (over 550 ha) and such a large number of plant species in the pre-mining forest, any propagation and restoration work is com- plex. Southwest Australia has a dry Mediterranean-type climate (Beard, 1990), and this further challenges plant propagation for mine restoration. The nursery’s entire annual production has to be held onsite throughout the year, then planted in the first 2 months of the short winter wet season.
    [Show full text]