Introduction to Master Data Management

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Master Data Management PROFESSIONAL PETROLEUM DATA MANAGEMENT ASSOCIATION Introduction to Master Data Management Master Data Management Data Quality Integration with PPDM 3.8 Data Management with PPDM 3.8 1 Copyright 2013, PPDM Association. All Rights Reserved LEARNING OBJECTIVES Understand and discuss Effective Data Management Strategies Understand and discuss Data Governance Understand and discuss Master Data Management Understand and discuss Data Quality Understand and discuss Data Organization and Architecture Understand how to use PPDM 3.8 for MDM 2 Copyright 2013, PPDM Association. All Rights Reserved PROFESSIONAL PETROLEUM DATA MANAGEMENT ASSOCIATION How Does Data Management Fit into Corporate Life? Mainstream vs “burden” 3 Copyright 2013, PPDM Association. All Rights Reserved EFFECTIVE DATA MANAGEMENT STRATEGIES • Effective data management is essentially being able to deliver the data that people need, when they need it, and in the format that they need it • Any data management strategy needs to start with the needs of the business and the key decisions that they make • What information is used to make the decisions? • What data is used to derive that information? • This can then be used to assess the value of data: • Who uses it and what do they use it for? • What impact does it have on business decisions? • This, in turn, will drive decisions around governance, architecture, organization, quality, and security. 4 Copyright 2013, PPDM Association. All Rights Reserved EFFECTIVE DATA MANAGEMENT STRATEGIES 5 Copyright 2013, PPDM Association. All Rights Reserved EFFECTIVE DATA MANAGEMENT STRATEGIES 6 Copyright 2013, PPDM Association. All Rights Reserved EFFECTIVE DATA MANAGEMENT STRATEGIES 7 Copyright 2013, PPDM Association. All Rights Reserved EFFECTIVE DATA MANAGEMENT STRATEGIES Data Value Data Master Data Governance Data Mgmt Quality Data Data Data Organization Architecture Security People Process Technology Effective Data Management 8 Copyright 2013, PPDM Association. All Rights Reserved ELEMENTS OF EFFECTIVE DATA MANAGEMENT STRATEGIES Data Management Capabilities Data Data Data Master Data Data Governance Organization Architecture & Metadata Quality . Data Sizing, . Data Policies . Data Taxonomy Storage & . Data Quality Rules . Data Definitions . Data Standards . Logical Data Movement & Policies . Master Data . Business Data Models Architecture . Data Cleansing . Metadata Ownership . Business Process . Data Retention & Standards Process . Reference Data . Data Workflow Flows Deletion Policies . Compliance Rules . Phys Data Models . Data . Data Stewards . Solution Architects Administration . Business Data Enterprise Data . Data Quality . Business Data . Storage/ Administration Owners Architects Technical Services Team . Data Stewards . Data Czar or Mgt. Data Modelers Architects . Data Governance People . Data Owners Committee . DBAs . DBAs . Archiving Tools . Master Data Mgt. Data Profiling, Data Rules Library Data Modeling Tools . Storage Quality & . Automated Tools Management & . Reference Data Monitoring Tools Notifications . Design/CASE Hardware Architecture . ETL Tools (Workflow) Tools . Technical . Metadata . Audit Reports Technology Architecture Repository Copyright 2006 Accenture All Rights Reserved 9 Copyright 2013, PPDM Association. All Rights Reserved PROFESSIONAL PETROLEUM DATA MANAGEMENT ASSOCIATION Data Governance 10 Copyright 2013, PPDM Association. All Rights Reserved DATA GOVERNANCE Data Governance is how an organization manages its data assets. • The business rules, policies, practices, procedures, roles, and responsibilities to create a consistent enterprise view of an organization’s data • Data Governance is the foundation of effective data management but is too often neglected • It involves a great deal of work to establish and maintain a comprehensive Data Governance program • The PPDM 3.7/3.8 data management module provides a strong framework for Data Governance 11 Copyright 2013, PPDM Association. All Rights Reserved DATA GOVERNANCE Legislation Shareholders PPP Policy Upper mgmt Associations Practice Standards Mid mgmt People Procedure Docs SW 12 Copyright 2013, PPDM Association. All Rights Reserved DATA GOVERNANCE • POLICY – We need accountability each master data store to establish a focal point for responsibility. • PRACTICE – We must document what job functions are responsible for data creation, updates and deletes. • PRACTICE – We must document what software applications are responsible for data creation, updates and deletes. • PRACTICE – We must document where in the life cycle of a business asset it is created and used by various functional groups in our organization. • PROCEDURE – all replicated (or derived) copies will be derived from the master store, using an appropriate mechanism for replication management. 13 Copyright 2013, PPDM Association. All Rights Reserved DATA GOVERNANCE • Business Rules describe database or application procedures that are used to enforce Policies, Practices, and Procedures • These rules help ensure that the data within the database: • Conforms to convention in terms of meaning and loading practice • Is the most trusted data available; the source is known, the history is known, and the quality is consistent and understood • Is maintained consistently over its lifecycle 14 Copyright 2013, PPDM Association. All Rights Reserved BUSINESS RULES Business rules • Create rules and associate with tables, columns, procedures etc. PPDM_RULE • Rules enforcement methods R_PPDM_RULE_CLASS Kinds of business rules R_PPDM_RULE_PURPOSE • Policies, Practices, Procedures PPDM_RULE_XREF PPDM_RULE_DETAIL • Quality (trustworthiness) PPDM_RULE_COMPONENT • Entitlements and security R_PPDM_XREF_TYPE • Relationships PPDM_GROUP • Constraints (database and data) PPDM_RULE_ENFORCEMENT • Conversions or transformations R_PPDM_ENFORCE_METHOD R_PPDM_FAIL_RESULT • Calculations 15 Copyright 2013, PPDM Association. All Rights Reserved PROFESSIONAL PETROLEUM DATA MANAGEMENT ASSOCIATION Master Data Management 16 Copyright 2013, PPDM Association. All Rights Reserved WHAT DO WE HOPE TO ACHIEVE? Any kind of data management is a lot of work. Data management is not always recognized as a good value proposition by management. - As a company - As an industry 17 Copyright 2013, PPDM Association. All Rights Reserved THE CHALLENGE TIP: SOURCE SYSTEMS LIE • Source systems may not be able to accurately reflect the business! • Legacy systems • Assume out dated processes • May flatten or denormalize your data • May not account for regional variations • May not account for temporal variations • May not capture all the important information • May replicate information that they don’t “own” • …. • Just because data is in a legacy system does not mean you should load it into an MDM! • Ask lots of questions; ask everybody! • Don’t be afraid to recommend against loading certain data types! 19 Copyright 2013, PPDM Association. All Rights Reserved COST VS BENEFIT What is the cost of bad data? • Use the fear factor to engage management • Threat management succeeds in the short term – sometimes. • Does it really help you to avoid costly errors? What is the value of good data management? • Is data management really a “core” function? • Does it really save time and effort? • Can’t I just leave this to my vendors? Is data an asset? • How much is it worth? • Can data be put “on the books” as a tangible asset? - Will the IFRS help us? 20 Copyright 2013, PPDM Association. All Rights Reserved INTEGRATED ARCHITECTURE Ontologies Meta Data Taxonomies Physical Spatial/GIS PPDM SOR MDM SOR SOR Business Rules Policies, Practices & Procedures VALUE OF INTEGRATED ARCHITECTURES The asset value of core data is Life cycle based management recognised • You know who the “real owners” of • By the users data are • By the data managers Data flows can be identified and managed • By IT staff • Beware the “rogue” user! • By managers Maintenance effort should be Business rules can be applied reduced consistently Integration effort is probably higher! Key data is stored once, used many times! • Managed replication • May require translation, granularity shifts, equivalences … 22 Copyright 2013, PPDM Association. All Rights Reserved SOR ORDER FROM CHAOS MDM / SOR SOR Warehouse SOR = System of Record Gold Standard MDM = Master Data Management 23 Copyright 2013, PPDM Association. All Rights Reserved MASTER DATA MANAGEMENT Financial Data Physical Data Spatial Data HSE Data Unstructured / Semi-structured Data Operational Structured Data Data 24 Copyright 2013, PPDM Association. All Rights Reserved AN OBJECTIVE: THE DIGITAL OILFIELD 001111000111011101100101011011000110110001011111010010010100010000111110001100010011001000110011001101000011010100110110001101 110011100000111001001100000011110000101111011101110110010101101100011011000101111101001001010001000011111000101100001111000101 001101010000010101010100010001011111010001000100000101010100010001010011111000110010001100000011000000110111010111110011000000 110110010111110011001000110111001111000010111101010011010100000101010101000100010111110100010001000001010101000100010100111110 <well_ID>1234567890</well_ID>,<SPUD_DATE>2007_06_27</SPUD_DATE>… 25 Copyright 2013, PPDM Association. All Rights Reserved OBJECTIVES REALITY Correct Complete Current 26 Copyright 2013, PPDM Association. All Rights Reserved WORK SMARTER – NOT HARDER! 2005 study at Institute of Psychiatry • University of London IQ test with distraction is 10 points lower than with no distractions. 100 95 90 85 80 IQ test with distraction is No Smoking Pot Distractions
Recommended publications
  • Master Data Management Whitepaper.Indd
    Creating a Master Data Environment An Incremental Roadmap for Public Sector Organizations Master Data Management (MDM) is the processes and technologies used to create and maintain consistent and accurate representations of master data. Movements toward modularity, service orientation, and SaaS make Master Data Management a critical issue. Master Data Management leverages both tools and processes that enable the linkage of critical data through a unifi ed platform that provides a common point of reference. When properly done, MDM streamlines data management and sharing across the enterprise among different areas to provide more effective service delivery. CMA possesses more than 15 years of experience in Master Data Management and more than 20 in data management and integration. CMA has also focused our efforts on public sector since our inception, more than 30 years ago. This document describes the fundamental keys to success for developing and maintaining a long term master data program within a public service organization. www.cma.com 2 Understanding Master Data transactional data. As it becomes more volatile, it typically is considered more transactional. Simple Master Data Behavior entities are rarely a challenge to manage and are rarely Master data can be described by the way that it interacts considered master-data elements. The less complex an with other data. For example, in transaction systems, element, the less likely the need to manage change for master data is almost always involved with transactional that element. The more valuable the data element is to data. This relationship between master data and the organization, the more likely it will be considered a transactional data may be fundamentally viewed as a master data element.
    [Show full text]
  • Value and Implications of Master Data Management (MDM) and Metadata Management
    Value and Implications of Master Data Management (MDM) and Metadata Management Prepared for: Dimitris A Geragas GARTNER CONSULTING Project Number: 330022715 CONFIDENTIAL AND PROPRIETARY This presentation, including any supporting materials, is owned by Gartner, Inc. and/or its affiliates and is for the sole use of the intended Gartner audience or other intended recipients. This presentation may contain information that is confidential, proprietary or otherwise legally protected, and it may not be further copied, distributed or publicly displayed without the express written permission of Gartner, Inc. or its affiliates. © 2015 Gartner, Inc. and/or its affiliates. All rights reserved. Enterprise Information Management Background CONFIDENTIAL AND PROPRIETARY 330022715 | © 2015 Gartner, Inc. and/or its affiliates. All rights reserved. 1 Enterprise Information Management is Never Information Enterprise Information Management (EIM) is about . Providing business value . Managing information (EIM) to provide business value . Setting up a business and IT program to manage information EIM is an integrative discipline for structuring, describing and governing information assets across organizational and technological boundaries. CONFIDENTIAL AND PROPRIETARY 330022715 | © 2015 Gartner, Inc. and/or its affiliates. All rights reserved. 2 Enterprise Information Management and the Information-Related Disciplines Enterprise Information Management (EIM) is about how information gets from a multitude of sources to a multitude of consumers in a relevant,
    [Show full text]
  • Master Data Management Services (MDMS) System
    ADAMS ML19121A465 U.S. Nuclear Regulatory Commission Privacy Impact Assessment Designed to collect the information necessary to make relevant determinations regarding the applicability of the Privacy Act, the Paperwork Reduction Act information collection requirements, and records management requirements. Master Data Management Services (MDMS) System Date: April 16, 2019 A. GENERAL SYSTEM INFORMATION 1. Provide a detailed description of the system: The Nuclear Regulatory Commission (NRC) has established the Master Data Management Services (MDMS) system to address both short and long-term enterprise data management needs. The MDMS is a major agencywide initiative to support the processes and decisions of NRC through: • Improving data quality • Improving re-use and exchange of information • Reducing or eliminating the storage of duplicate information • Providing an enterprise-wide foundation for information sharing • Establishing a data governance structure The MDMS provides an overall vision for, and leadership focused on, an enterprise solution that establishes authoritative data owners, delivers quality data in an efficient manner to the systems that require it, and effectively meets business needs. The MDMS is also focused on data architecture and includes projects that will identify and define data elements across the agency. The MDMS system is a web-based application accessible to representatives from every NRC office—that provides standardized and validated dockets and data records that support dockets, including licenses, contact and billing information, to all downstream NRC systems that require that data. The NRC collects digital identification data for individuals to support the agency core business operations, issue credentials, and administer access to agency‘s physical and logical resources. To support this need, the MDMS system also serves as a centralized repository for the accessibility of organization and personnel data.
    [Show full text]
  • What to Look for When Selecting a Master Data Management Solution What to Look for When Selecting a Master Data Management Solution
    What to Look for When Selecting a Master Data Management Solution What to Look for When Selecting a Master Data Management Solution Table of Contents Business Drivers of MDM .......................................................................................................... 3 Next-Generation MDM .............................................................................................................. 5 Keys to a Successful MDM Deployment .............................................................................. 6 Choosing the Right Solution for MDM ................................................................................ 7 Talend’s MDM Solution .............................................................................................................. 7 Conclusion ..................................................................................................................................... 8 Master data management (MDM) exists to enable the business success of an orga- nization. With the right MDM solution, organizations can successfully manage and leverage their most valuable shared information assets. Because of the strategic importance of MDM, organizations can’t afford to make any mistakes when choosing their MDM solution. This article will discuss what to look for in an MDM solution and why the right choice will help to drive strategic business initiatives, from cloud computing to big data to next-generation business agility. 2 It is critical for CIOs and business decision-makers to understand the value
    [Show full text]
  • Centralized Or Federated Data Management Models, IT Professionals' Preferences
    Paper ID #8737 CENTRALIZED OR FEDERATED DATA MANAGEMENT MODELS, IT PROFESSIONALS’ PREFERENCES Dr. Gholam Ali Shaykhian, NASA Ali Shaykhian has received a Master of Science (M.S.) degree in Computer Systems from University of Central Florida and a second M.S. degree in Operations Research from the same university and has earned a Ph.D. in Operations Research from Florida Institute of Technology. His research interests include knowledge management, data mining, object-oriented methodologies, design patterns, software safety, genetic and optimization algorithms and data mining. Dr. Shaykhian is a professional member of the American Society for Engineering Education (ASEE). Dr. Mohd A. Khairi, Najran University B.Sc of computer science from Khartoum university. Earned my masters from ottawa university in system science. My doctoral degree in information system from University of Phoenix( my dissertation was in Master Data Management). I worked in IT industry over 20 years, 10 of them with Microsoft in different groups and for the last 4 years was with business intelligence group. My focus was in Master Data Management. For the last 2 years I teach at universify of Najran in the college of Computer Science and Information System . My research interest in Master Data Management. c American Society for Engineering Education, 2014 CENTRALIZED OR FEDERATED DATA MANAGEMENT MODELS, IT PROFESSIONALS’ PREFERENCES Gholam Ali Shaykhian, Ph.D. Mohd Abdelgadir Khairi, Ph.D. Abstract The purpose of this paper is to evaluate IT professionals’ preferences and experiences with the suitable data management models (Centralized Data Model or Federated Data Model) selection. The goal is to determine the best architectural model for managing enterprise data; and help organizations to select an architectural model.
    [Show full text]
  • IBM Infosphere Master Data Management
    Data and AI Solution Brief IBM InfoSphere Master Data Management Maintain a trusted, accurate view of Highlights critical business data in a hybrid environment • Support comprehensive, cost-effective information Organizations today have more data about products, governance services, customers and transactions than ever before. • Monitor master data quality Hidden in this data are vital insights that can drive business using dashboards and results. But without comprehensive, well-governed data proactive alerts sources, decision-makers cannot be sure that the information • Simplify the management they are using is the latest, most accurate version. As data and enforcement of master volumes continue to grow, the problem is compounded over data policies time. Businesses need to find new ways to manage and • Integrate master data govern the increasing variety and volume of data and deliver management into existing it to end users as quickly as possible and in a trusted manner, business processes regardless of the computing modality. • Quickly scale to meet changing business needs IBM InfoSphere Master Data Management (InfoSphere MDM) provides a single, trusted view of critical business data to • Optimize resources using users and applications, helping to reduce costs, minimize risk flexible deployment options and improve decision-making speed and precision. InfoSphere MDM achieves the single view through highly accurate and comprehensive matching that helps overcome differences and errors that often occur in the data sources. The MDM server manages your master data entities centrally, reducing reliance on incomplete or duplicate data while consolidating information from across the enterprise. Data and AI Solution Brief With InfoSphere MDM, you can enforce information governance at an organizational level, enabling business and IT teams to collaborate on such topics as data quality and policy management.
    [Show full text]
  • Practical Fundamentals for Master Data Management How to Build an Effective Master Data Capability As the Cornerstone of an Enterprise Data Management Program
    Practical Fundamentals for Master Data Management How to build an effective master data capability as the cornerstone of an enterprise data management program WHITE PAPER SAS White Paper Table of Contents Introduction . 1 Considering Master Data Management (MDM) Benefits . 2 They Sound Good, But… . 2 Master Data and Real Business Value . 3 Assessing Organizational Readiness for Enterprise Initiatives . 4 Horizontal Coordination . 4 Coordinating Systemic Change . 5 Consistency in Meaning . .. 5 Standardized Business Rules . 5 Practical Master Data Management . 6 Technical Data Improvement . 6 Reconsidering MDM . 7 Purpose-Driven MDM . 7 Start with the Fundamentals . 8 Standardize Semantics . 8 Consolidate Enterprise Metadata . 8 Improve Data Quality . 9 Balance Business and Technical Benefits . 9 Establishing the Fundamentals . 10 Ready? . 10 Set … . 10 Go! . 11 About the Author . 11 Practical Fundamentals for Master Data Management Introduction Enterprisewide programs are often designed to improve business processes and business decisions through enhanced information sharing – based on a more reliable foundation of data . For this purpose, these initiatives promise significant organizational benefits along a number of dimensions of value, but, as with any business project, they can also carry significant risks and complexity . Since the early tangible value Organizations that have successfully deployed programs that span the enterprise are of an MDM strategy comes prime candidates for a successful enterprise master data management (MDM) initiative; from standardized semantics, those lacking this experience are at greater risk for MDM failure . However, since the consolidated metadata, and early tangible value of an MDM strategy comes from standardized semantics, consolidated metadata, and most critically, data quality improvement, focusing on most critically, data quality these fundamental aspects of MDM reduces the risks while providing practical utility to improvement, focusing on the data user community .
    [Show full text]
  • Essential Elements of a Master Data Management Architecture
    The Fourth MIT Information Quality Industry Symposium, July 14-16, 2010 Essential Elements of a Master Data Management Architecture ABSTRACT Building master data management (MDM) into an IT infrastructure is not as simple as buying a product and plugging it in. Rather, selecting the right MDM architecture is a function of business and technological considerations. Business considerations include management style, organizational structure, and governance. Technical considerations include vendor affinity policy, middleware architecture, and modeling capabilities. In this presentation, Burton Group Principal Analyst, Joe Bugajski, will examine the MDM architecture selection decision, and four of the most common MDM architectural styles: local MDM, hub MDM, federated database MDM, and hybrid MDM. He also will review the characteristics of an MDM system. BIOGRAPHY Joseph M. Bugajski Burton Group Joe Bugajski is principal analyst for Gartner’s Burton Group Research. He covers IT governance, enterprise architecture, and data standards, data access, master data management, information quality, and data integration. Prior to Burton Group, Joe was founder and managing partner of Venture KPI Research Partners who deliver due diligence for venture capitalists. Before this, Joe was chief data officer for Visa International bearing global responsibility for information interoperability. He was Visa’s resident entrepreneur and chief enterprise architect of back office, risk control, and business intelligence infrastructure systems. Prior to Visa, Joe was CEO of Triada, a global business intelligence software maker. Before Triada, Joe was an executive at Ford Motor Company, responsible for engineering information systems and prototype vehicle manufacturing in which function he architected the legendary Taurus/Sable engineering program. Joe is also a data analytics researcher with four patents and twenty-six peer-reviewed publications.
    [Show full text]
  • Learning Data Modelling by Example Chapter 9) Master Data Management
    Learning Data Modelling by Example Chapter 9) Master Data Management 9. Master Data Management (MDM)...............................................................................................2 9.0 Welcome .............................................................................................................................................2 9.1 Introduction ........................................................................................................................................2 9.2 MDM for CRM.....................................................................................................................................3 9.3 MDM for Law Enforcement ................................................................................................................9 9.4 MDM for Local Government.............................................................................................................16 9.5 What have we learned ? ...................................................................................................................21 Page 1 Learning Data Modelling by Example Chapter 9) Master Data Management 9. Master Data Management (MDM) 9.0 Welcome You are invited to follow developments on our Web Site :- http://www.databaseanswers.org/index.htm You can also join our Database Answers Community http://databaseanswers.ning.com/ Barry Williams Principal Consultant Database Answers Ltd. [email protected] 9.1 Introduction This Chapter will discuss MDM for CRM, Law Enforcement and Local Government.
    [Show full text]
  • Master Data Management (MDM) Improves Information Quality to Deliver Value
    MIT Information Quality Industry Symposium, July 15-17, 2009 Master Data Management (MDM) Improves Information Quality to Deliver Value ABSTRACT Master Data Management (MDM) reasserts IT’s role in responsibly managing business-critical information—master data—to reasonable quality and reliability standards. Master data includes information about products, customers, suppliers, locations, codes, and other critical business data. For most commercial businesses, governmental, and non-governmental organizations, master data is in a deplorable state. This is true although MDM is not new—it was, is, and will be IT’s job to remediate and control. Poor-quality master data is an unfunded enterprise liability. Bad data reduces the effectiveness of product promotions; it causes unnecessary confusion throughout the organization; it misleads corporate officers, regulators and shareholders; and it dramatically increases the IT cost burden with ceaseless and fruitless spending for incomplete error remediation projects. This presentation describes—with examples—why senior IT management should launch an MDM process, what governance they should institute for master data, and how they can build cost-effective MDM solutions for the enterprises they serve. BIOGRAPHY Joe Bugajski Senior Analyst Burton Group Joe Bugajski is a senior analyst for Burton Group. He covers IT governance, architecture, and data – governance, management, standards, access, quality, and integration. Prior to Burton Group, Joe was chief data officer at Visa responsible worldwide for information interoperability. He also served as Visa’s chief enterprise architect and resident entrepreneur covering risk systems and business intelligence. Prior to Visa, Joe was CEO of Triada, a business intelligence software provider. Before Triada, Joe managed engineering information systems for Ford Motor Company.
    [Show full text]
  • Optimize Master Data Management Through Federated Data Governance
    SAP Thought Leadership Paper | PUBLIC Data Management in the Cloud Optimize Master Data Management Through Federated Data Governance An Adaptive Model for Trusted, Process-Relevant Data to Drive Greater Insights, Efficiencies, and ROI 1 / 17 © 2021 SAP SE or an SAP affiliate company. All rights reserved. All rights company. affiliate SE or an SAP SAP © 2021 Table of Contents 3 The Master Data Imperative 5 The Importance of Master Data Integration 8 A New Paradigm: Federated Data Governance 11 The Case for Cloud-Centered Federation 12 Master Data Governance in the Cloud 15 Becoming an Intelligent Enterprise 17 First Steps to Federated Data Governance 2 / 17 © 2021 SAP SE or an SAP affiliate company. All rights reserved. Optimize Master Data Management Through Federated Data Governance The Master Data Imperative Organizations have seldom faced greater chal- analysis and insights to respond quickly and lenges. Financial markets and corporate finance accurately to a rearranged business landscape. remain volatile. Customer behaviors are evolving as more people shop electronically. Employee But effective master data management (MDM) behaviors are adapting as more staff work has long been an escalating imperative. You need remotely. And operations are adjusting as supply the right data in the hands of the right people chains recoil from sudden shocks. to optimize operations, understand and serve customers, and speed innovations to market It has never been more important for your enter- (see Figure 1). And in a digital economy, you need prise and your lines of business (LoBs) to have those insights fast. access to trusted, high-quality data. They require Figure 1: Business-Critical Initiatives Supported by MDM E nsure r ies.
    [Show full text]
  • IBM Industry Models and IBM Master Data Management Positioning And
    IBM Analytics White paper IBM Industry Models and IBM Master Data Management Positioning and Deployment Patterns 2 IBM Industry Models and IBM Master Data Management Introduction Although the value of implementing Master Data Management (MDM) • The Joint Value Proposition summarizes the scenarios in which solutions is widely acknowledged, it is challenging for organizations IBM Industry Models and MDM accelerate projects and bring to realize the promised value. While there are many reasons for this, value. ranging from organizational alignment to siloed system architecture, • Positioning of IBM MDM and IBM Industry Models explains, by certain patterns have been proven to dramatically increase the success using the IBM reference architecture, where each product brings rates of successful projects. value, and how they work together. • IBM Industry Models and MDM deployment options describes The first of these patterns, which is not unique to MDM projects, is the different reasons for which IBM Industry Models are that the most successful projects are tightly aligned with a clear, concise implemented, and how IBM Industry Models are used together business value. Beyond this, MDM projects create challenges to an with IBM MDM in implementing a solution. organization along several lines. • A comparison of IBM Industry Models and MDM discusses the similarities and differences in structure and content of IBM • MDM is a business application that acts like infrastructure. Industry Models and IBM MDM. Organizations need to learn what this means to them and how they are going to adapt to it. This document is intended for any staff involved in planning for or • Although MDM projects might not start with data governance, implementing a joint IBM Industry Models and MDM initiative within they quickly encounter it.
    [Show full text]