IBM Industry Models and IBM Master Data Management Positioning And

Total Page:16

File Type:pdf, Size:1020Kb

IBM Industry Models and IBM Master Data Management Positioning And IBM Analytics White paper IBM Industry Models and IBM Master Data Management Positioning and Deployment Patterns 2 IBM Industry Models and IBM Master Data Management Introduction Although the value of implementing Master Data Management (MDM) • The Joint Value Proposition summarizes the scenarios in which solutions is widely acknowledged, it is challenging for organizations IBM Industry Models and MDM accelerate projects and bring to realize the promised value. While there are many reasons for this, value. ranging from organizational alignment to siloed system architecture, • Positioning of IBM MDM and IBM Industry Models explains, by certain patterns have been proven to dramatically increase the success using the IBM reference architecture, where each product brings rates of successful projects. value, and how they work together. • IBM Industry Models and MDM deployment options describes The first of these patterns, which is not unique to MDM projects, is the different reasons for which IBM Industry Models are that the most successful projects are tightly aligned with a clear, concise implemented, and how IBM Industry Models are used together business value. Beyond this, MDM projects create challenges to an with IBM MDM in implementing a solution. organization along several lines. • A comparison of IBM Industry Models and MDM discusses the similarities and differences in structure and content of IBM • MDM is a business application that acts like infrastructure. Industry Models and IBM MDM. Organizations need to learn what this means to them and how they are going to adapt to it. This document is intended for any staff involved in planning for or • Although MDM projects might not start with data governance, implementing a joint IBM Industry Models and MDM initiative within they quickly encounter it. MDM projects provide focus on their organization, including IT Architects, Enterprise Architects and what aspects of governance are required for the project’s value Business Analysts. proposition. • Mastering data implies that there are business processes concerned with establishing and maintaining the quality of that data. • For MDM programs to be truly successful, they need to use a service-oriented architecture. IBM’s experience is that industry-specific models can help organizations with the last three points, once they have identified the specific value proposition to be delivered by the project. This white paper explains what MDM is, what IBM® Industry Models are, and how the combination of the two can significantly improve the targeted value realization and can reduce project durations and overall costs. This document contains the following: Figure 1. MDM strategic components IBM Analytics 3 IBM Master Data Management Overview By providing a single view of people, products, services and more, IBM InfoSphere® Master Data Management is the most complete, MDM enhances strategic decision making across an organization. The proven and powerful MDM solution with collaborative and operational quality of that data shapes the decisions that are made and ultimately capabilities. affects everything from customer relationships and regulatory compliance to business agility and competitiveness. Master data is the information about customers, products, materials, accounts and other entities that is critical to the operation of the • Service-oriented architecture delivers functionality through business. But companies hold pieces of master data in many different intelligent, pre-packaged web services that can be used to applications, such as enterprise resource planning (ERP) and customer seamlessly integrate MDM into existing business processes and relationship management (CRM) systems. Each of those source systems technical architectures. creates and holds the data in its own unique way. As a result, information • Pre-built and extensible data models for any domain are does not match from one system to the next. Critical data elements optimized for MDM; an organization can import existing data might be missing, duplicated or inconsistent. Furthermore, each models or build data models from scratch. department can operate only from within its own compartmentalized • Collaborative tasks allow workflows to be set up that reflect view. existing and new business processes, delivering a system that closely aligns with business practices. IBM InfoSphere MDM software manages the creation, maintenance, • Business process management capabilities enable the delivery and use of master data, both to ensure that it is consistent and implementation of policies and coordinate multi-step / multi-role trustworthy, and to make it possible to see the data in an organization- workflows for data stewardship and data governance on-premises, wide context. in the cloud, and bridging between on-premises and cloud. • Policy management ensures high quality master data using a quantitative, probabilistic approach to monitoring and enforcing policies. • InfoSphere Governance Center allows business users, data stewards, and IT teams to collaboratively improve master data quality by resolving data quality tasks and creating master data in compliance with corporate governance policies. • InfoSphere MDM Application Toolkit delivers business value rapidly with governance applications through pre-built blueprints and widgets for embedding within existing applications. • Common matching and search engine employs advanced statistical techniques to automatically resolve and manage data quality issues using probabilistic or deterministic options. Figure 2. Logical view of the MDM Hub 4 IBM Industry Models and IBM Master Data Management IBM InfoSphere MDM Standard and Advanced Editions (MDM IBM Industry Models Overview Operational Server) deliver single, trusted and complete versions of IBM Industry Models provide predefined data model industry content critical data assets and their relationships to applications and users to for banking, financial markets, telecommunications, healthcare, support efficient operational business processes and strategic decision insurance, retail and energy & utilities. The main components of the making. MDM helps clients in many industries share information data model are: across multiple systems to improve the services they provide to patients, citizens and customers. Business Terms Business terms define industry concepts in plain business language, with IBM InfoSphere MDM Collaborative Edition (MDM Collaboration no modeling or abstraction involved. Business terms have a standard set Server) manages master product data to maintain a single view of of properties and are organized by business category. Clearly defined product information for use throughout an organization and as part of a business terms help standardization and communication within an comprehensive MDM strategy. organization. IBM InfoSphere MDM Reference Data Management Hub (RDM) is a Supportive Content robust MDM solution for centralized management and distribution of Supportive Content represents data elements in the language of a given reference data across the enterprise. (Reference data is static data, such source requirement. For example, requirements such as Health Level as code tables, used to classify business entities – for example, salutation, 7 (HL7), which is the standard series of predefined data formats for gender, country code). It provides the governance, process, security and packaging and exchanging healthcare data in the form of messages that audit control for managing reference data as an enterprise standard, are transmitted between disparate IT systems, or BASEL, which defines resulting in fewer errors, reduced business risk and cost savings. the capital requirements for banks. IBM InfoSphere Big Match for Hadoop helps analyze large volumes of Analytical Requirements structured and unstructured data to derive deeper customer insight on a Analytical Requirements reflect the most common queries and analyses Big Data platform. for business performance measurement and reporting. They help with the rapid scoping and prototyping of data marts, which provide a subject-specific analytical layer in a data warehouse solution. IBM Analytics 5 Business Data Model (BDM) Dimensional Warehouse Model (DWM) The Business Data Model is the first point at which the various The Dimensional Warehouse Model is a logical model that is derived business requirements are brought together and modeled in an entity from the BDM and is an optimized data repository for supporting relationship format. It helps organizations to perform the initial analytical queries. This repository holds data to meet the needs of modeling of their business requirements and understand the various business-user-required analyses. constraints, relationships and structures that can be implied in their business requirements. Atomic Warehouse Model (AWM) The Atomic Warehouse Model is a logical, specialized model that is derived from the BDM. It is optimized as a data repository, which can hold long-term history, usually across the entire enterprise in a flexible manner. Figure 3. IBM Industry Model components 6 IBM Industry Models and IBM Master Data Management In the case of Banking, Financial Markets and Insurance, IBM Industry Analysis Process Model (APM) Process and Services Models are also available. This extended landscape The Analysis Process Model provides the initial Business specification consists of the following model components: of processes, which is used to underpin the initial analysis activities
Recommended publications
  • Data Warehouse Fundamentals for Storage Professionals – What You Need to Know EMC Proven Professional Knowledge Sharing 2011
    Data Warehouse Fundamentals for Storage Professionals – What You Need To Know EMC Proven Professional Knowledge Sharing 2011 Bruce Yellin Advisory Technology Consultant EMC Corporation [email protected] Table of Contents Introduction ................................................................................................................................ 3 Data Warehouse Background .................................................................................................... 4 What Is a Data Warehouse? ................................................................................................... 4 Data Mart Defined .................................................................................................................. 8 Schemas and Data Models ..................................................................................................... 9 Data Warehouse Design – Top Down or Bottom Up? ............................................................10 Extract, Transformation and Loading (ETL) ...........................................................................11 Why You Build a Data Warehouse: Business Intelligence .....................................................13 Technology to the Rescue?.......................................................................................................19 RASP - Reliability, Availability, Scalability and Performance ..................................................20 Data Warehouse Backups .....................................................................................................26
    [Show full text]
  • Design and Integration of Data Marts and Various Techniques Used for Integrating Data Marts
    Rashmi Chhabra et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.4, April- 2014, pg. 74-79 Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320–088X IJCSMC, Vol. 3, Issue. 4, April 2014, pg.74 – 79 RESEARCH ARTICLE Data Mart Designing and Integration Approaches 1 2 Rashmi Chhabra , Payal Pahwa 1Research Scholar, CSE Department, NIMS University, Jaipur (Rajasthan), India 2Bhagwan Parshuram Institute of Technology, I.P.University, Delhi, India 1 [email protected], 2 [email protected] ________________________________________________________________________________________________ Abstract— Today companies need strategic information to counter fiercer competition, extend market share and improve profitability. So they need information system that is subject oriented, integrated, non volatile and time variant. Data warehouse is the viable solution. It is integrated repository of data gathered from many sources and used by the entire enterprise. In order to standardize data analysis and enable simplified usage patterns, data warehouses are normally organized as problem driven, small units called data marts. Each data mart is dedicated to the study of a specific problem. The data marts are merged to create data warehouse. This paper discusses about design and integration of data marts and various techniques used for integrating data marts. Keywords - Data Warehouse; Data Mart; Star schema; Multidimensional Model; Data Integration __________________________________________________________________________________________________________ I. INTRODUCTION A data warehouse is a subject-oriented, integrated, time variant, non-volatile collection of data in support of management’s decision-making process [1]. Most of the organizations these days rely heavily on the information stored in their data warehouse.
    [Show full text]
  • Data Mart Setup Guide V3.2.0.2
    Agile Product Lifecycle Management Data Mart Setup Guide v3.2.0.2 Part Number: E26533_03 May 2012 Data Mart Setup Guide Oracle Copyright Copyright © 1995, 2012, Oracle and/or its affiliates. All rights reserved. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable: U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
    [Show full text]
  • Data Warehousing on AWS
    Data Warehousing on AWS March 2016 Amazon Web Services – Data Warehousing on AWS March 2016 © 2016, Amazon Web Services, Inc. or its affiliates. All rights reserved. Notices This document is provided for informational purposes only. It represents AWS’s current product offerings and practices as of the date of issue of this document, which are subject to change without notice. Customers are responsible for making their own independent assessment of the information in this document and any use of AWS’s products or services, each of which is provided “as is” without warranty of any kind, whether express or implied. This document does not create any warranties, representations, contractual commitments, conditions or assurances from AWS, its affiliates, suppliers or licensors. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements, and this document is not part of, nor does it modify, any agreement between AWS and its customers. Page 2 of 26 Amazon Web Services – Data Warehousing on AWS March 2016 Contents Abstract 4 Introduction 4 Modern Analytics and Data Warehousing Architecture 6 Analytics Architecture 6 Data Warehouse Technology Options 12 Row-Oriented Databases 12 Column-Oriented Databases 13 Massively Parallel Processing Architectures 15 Amazon Redshift Deep Dive 15 Performance 15 Durability and Availability 16 Scalability and Elasticity 16 Interfaces 17 Security 17 Cost Model 18 Ideal Usage Patterns 18 Anti-Patterns 19 Migrating to Amazon Redshift 20 One-Step Migration 20 Two-Step Migration 20 Tools for Database Migration 21 Designing Data Warehousing Workflows 21 Conclusion 24 Further Reading 25 Page 3 of 26 Amazon Web Services – Data Warehousing on AWS March 2016 Abstract Data engineers, data analysts, and developers in enterprises across the globe are looking to migrate data warehousing to the cloud to increase performance and lower costs.
    [Show full text]
  • Master Data Management Whitepaper.Indd
    Creating a Master Data Environment An Incremental Roadmap for Public Sector Organizations Master Data Management (MDM) is the processes and technologies used to create and maintain consistent and accurate representations of master data. Movements toward modularity, service orientation, and SaaS make Master Data Management a critical issue. Master Data Management leverages both tools and processes that enable the linkage of critical data through a unifi ed platform that provides a common point of reference. When properly done, MDM streamlines data management and sharing across the enterprise among different areas to provide more effective service delivery. CMA possesses more than 15 years of experience in Master Data Management and more than 20 in data management and integration. CMA has also focused our efforts on public sector since our inception, more than 30 years ago. This document describes the fundamental keys to success for developing and maintaining a long term master data program within a public service organization. www.cma.com 2 Understanding Master Data transactional data. As it becomes more volatile, it typically is considered more transactional. Simple Master Data Behavior entities are rarely a challenge to manage and are rarely Master data can be described by the way that it interacts considered master-data elements. The less complex an with other data. For example, in transaction systems, element, the less likely the need to manage change for master data is almost always involved with transactional that element. The more valuable the data element is to data. This relationship between master data and the organization, the more likely it will be considered a transactional data may be fundamentally viewed as a master data element.
    [Show full text]
  • Value and Implications of Master Data Management (MDM) and Metadata Management
    Value and Implications of Master Data Management (MDM) and Metadata Management Prepared for: Dimitris A Geragas GARTNER CONSULTING Project Number: 330022715 CONFIDENTIAL AND PROPRIETARY This presentation, including any supporting materials, is owned by Gartner, Inc. and/or its affiliates and is for the sole use of the intended Gartner audience or other intended recipients. This presentation may contain information that is confidential, proprietary or otherwise legally protected, and it may not be further copied, distributed or publicly displayed without the express written permission of Gartner, Inc. or its affiliates. © 2015 Gartner, Inc. and/or its affiliates. All rights reserved. Enterprise Information Management Background CONFIDENTIAL AND PROPRIETARY 330022715 | © 2015 Gartner, Inc. and/or its affiliates. All rights reserved. 1 Enterprise Information Management is Never Information Enterprise Information Management (EIM) is about . Providing business value . Managing information (EIM) to provide business value . Setting up a business and IT program to manage information EIM is an integrative discipline for structuring, describing and governing information assets across organizational and technological boundaries. CONFIDENTIAL AND PROPRIETARY 330022715 | © 2015 Gartner, Inc. and/or its affiliates. All rights reserved. 2 Enterprise Information Management and the Information-Related Disciplines Enterprise Information Management (EIM) is about how information gets from a multitude of sources to a multitude of consumers in a relevant,
    [Show full text]
  • Data Warehouse Applications in Modern Day Business
    California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 2002 Data warehouse applications in modern day business Carla Mounir Issa Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Business Intelligence Commons, and the Databases and Information Systems Commons Recommended Citation Issa, Carla Mounir, "Data warehouse applications in modern day business" (2002). Theses Digitization Project. 2148. https://scholarworks.lib.csusb.edu/etd-project/2148 This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. DATA WAREHOUSE APPLICATIONS IN MODERN DAY BUSINESS A Project Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Business Administration by Carla Mounir Issa June 2002 DATA WAREHOUSE APPLICATIONS IN MODERN DAY BUSINESS A Project Presented to the Faculty of California State University, San Bernardino by Carla Mounir Issa June 2002 Approved by: Date Dr. Walter T. Stewart ABSTRACT Data warehousing is not a new concept in the business world. However, the constant changing application of data warehousing is what is being innovated constantly. It is these applications that are enabling managers to make better decisions through strategic planning, and allowing organizations to achieve a competitive advantage. The technology of implementing the data warehouse will help with the decision making process, analysis design, and will be more cost effective in the future.
    [Show full text]
  • Master Data Management Services (MDMS) System
    ADAMS ML19121A465 U.S. Nuclear Regulatory Commission Privacy Impact Assessment Designed to collect the information necessary to make relevant determinations regarding the applicability of the Privacy Act, the Paperwork Reduction Act information collection requirements, and records management requirements. Master Data Management Services (MDMS) System Date: April 16, 2019 A. GENERAL SYSTEM INFORMATION 1. Provide a detailed description of the system: The Nuclear Regulatory Commission (NRC) has established the Master Data Management Services (MDMS) system to address both short and long-term enterprise data management needs. The MDMS is a major agencywide initiative to support the processes and decisions of NRC through: • Improving data quality • Improving re-use and exchange of information • Reducing or eliminating the storage of duplicate information • Providing an enterprise-wide foundation for information sharing • Establishing a data governance structure The MDMS provides an overall vision for, and leadership focused on, an enterprise solution that establishes authoritative data owners, delivers quality data in an efficient manner to the systems that require it, and effectively meets business needs. The MDMS is also focused on data architecture and includes projects that will identify and define data elements across the agency. The MDMS system is a web-based application accessible to representatives from every NRC office—that provides standardized and validated dockets and data records that support dockets, including licenses, contact and billing information, to all downstream NRC systems that require that data. The NRC collects digital identification data for individuals to support the agency core business operations, issue credentials, and administer access to agency‘s physical and logical resources. To support this need, the MDMS system also serves as a centralized repository for the accessibility of organization and personnel data.
    [Show full text]
  • Data Warehousing
    DMIF, University of Udine Data Warehousing Andrea Brunello [email protected] April, 2020 (slightly modified by Dario Della Monica) Outline 1 Introduction 2 Data Warehouse Fundamental Concepts 3 Data Warehouse General Architecture 4 Data Warehouse Development Approaches 5 The Multidimensional Model 6 Operations over Multidimensional Data 2/80 Andrea Brunello Data Warehousing Introduction Nowadays, most of large and medium size organizations are using information systems to implement their business processes. As time goes by, these organizations produce a lot of data related to their business, but often these data are not integrated, been stored within one or more platforms. Thus, they are hardly used for decision-making processes, though they could be a valuable aiding resource. A central repository is needed; nevertheless, traditional databases are not designed to review, manage and store historical/strategic information, but deal with ever changing operational data, to support “daily transactions”. 3/80 Andrea Brunello Data Warehousing What is Data Warehousing? Data warehousing is a technique for collecting and managing data from different sources to provide meaningful business insights. It is a blend of components and processes which allows the strategic use of data: • Electronic storage of a large amount of information which is designed for query and analysis instead of transaction processing • Process of transforming data into information and making it available to users in a timely manner to make a difference 4/80 Andrea Brunello Data Warehousing Why Data Warehousing? A 3NF-designed database for an inventory system has many tables related to each other through foreign keys. A report on monthly sales information may include many joined conditions.
    [Show full text]
  • Lecture @Dhbw: Data Warehouse Review Questions Andreas Buckenhofer, Daimler Tss About Me
    A company of Daimler AG LECTURE @DHBW: DATA WAREHOUSE REVIEW QUESTIONS ANDREAS BUCKENHOFER, DAIMLER TSS ABOUT ME Andreas Buckenhofer https://de.linkedin.com/in/buckenhofer Senior DB Professional [email protected] https://twitter.com/ABuckenhofer https://www.doag.org/de/themen/datenbank/in-memory/ Since 2009 at Daimler TSS Department: Big Data http://wwwlehre.dhbw-stuttgart.de/~buckenhofer/ Business Unit: Analytics https://www.xing.com/profile/Andreas_Buckenhofer2 NOT JUST AVERAGE: OUTSTANDING. As a 100% Daimler subsidiary, we give 100 percent, always and never less. We love IT and pull out all the stops to aid Daimler's development with our expertise on its journey into the future. Our objective: We make Daimler the most innovative and digital mobility company. Daimler TSS INTERNAL IT PARTNER FOR DAIMLER + Holistic solutions according to the Daimler guidelines + IT strategy + Security + Architecture + Developing and securing know-how + TSS is a partner who can be trusted with sensitive data As subsidiary: maximum added value for Daimler + Market closeness + Independence + Flexibility (short decision making process, ability to react quickly) Daimler TSS 4 LOCATIONS Daimler TSS Germany 7 locations 1000 employees* Ulm (Headquarters) Daimler TSS China Stuttgart Hub Beijing Berlin 10 employees Karlsruhe Daimler TSS Malaysia Hub Kuala Lumpur Daimler TSS India * as of August 2017 42 employees Hub Bangalore 22 employees Daimler TSS Data Warehouse / DHBW 5 WHICH CHALLENGES COULD NOT BE SOLVED BY OLTP? WHY IS A DWH NECESSARY? • Distributed
    [Show full text]
  • What to Look for When Selecting a Master Data Management Solution What to Look for When Selecting a Master Data Management Solution
    What to Look for When Selecting a Master Data Management Solution What to Look for When Selecting a Master Data Management Solution Table of Contents Business Drivers of MDM .......................................................................................................... 3 Next-Generation MDM .............................................................................................................. 5 Keys to a Successful MDM Deployment .............................................................................. 6 Choosing the Right Solution for MDM ................................................................................ 7 Talend’s MDM Solution .............................................................................................................. 7 Conclusion ..................................................................................................................................... 8 Master data management (MDM) exists to enable the business success of an orga- nization. With the right MDM solution, organizations can successfully manage and leverage their most valuable shared information assets. Because of the strategic importance of MDM, organizations can’t afford to make any mistakes when choosing their MDM solution. This article will discuss what to look for in an MDM solution and why the right choice will help to drive strategic business initiatives, from cloud computing to big data to next-generation business agility. 2 It is critical for CIOs and business decision-makers to understand the value
    [Show full text]
  • Lecture Notes on Data Mining& Data Warehousing
    LECTURE NOTES ON DATA MINING& DATA WAREHOUSING COURSE CODE:BCS-403 DEPT OF CSE & IT VSSUT, Burla SYLLABUS: Module – I Data Mining overview, Data Warehouse and OLAP Technology,Data Warehouse Architecture, Stepsfor the Design and Construction of Data Warehouses, A Three-Tier Data WarehouseArchitecture,OLAP,OLAP queries, metadata repository,Data Preprocessing – Data Integration and Transformation, Data Reduction,Data Mining Primitives:What Defines a Data Mining Task? Task-Relevant Data, The Kind of Knowledge to be Mined,KDD Module – II Mining Association Rules in Large Databases, Association Rule Mining, Market BasketAnalysis: Mining A Road Map, The Apriori Algorithm: Finding Frequent Itemsets Using Candidate Generation,Generating Association Rules from Frequent Itemsets, Improving the Efficiently of Apriori,Mining Frequent Itemsets without Candidate Generation, Multilevel Association Rules, Approaches toMining Multilevel Association Rules, Mining Multidimensional Association Rules for Relational Database and Data Warehouses,Multidimensional Association Rules, Mining Quantitative Association Rules, MiningDistance-Based Association Rules, From Association Mining to Correlation Analysis Module – III What is Classification? What Is Prediction? Issues RegardingClassification and Prediction, Classification by Decision Tree Induction, Bayesian Classification, Bayes Theorem, Naïve Bayesian Classification, Classification by Backpropagation, A Multilayer Feed-Forward Neural Network, Defining aNetwork Topology, Classification Based of Concepts from
    [Show full text]