Semantic Web Technologies and Data Management
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Semantic Integration and Knowledge Discovery for Environmental Research
Journal of Database Management, 18(1), 43-67, January-March 2007 43 Semantic Integration and Knowledge Discovery for Environmental Research Zhiyuan Chen, University of Maryland, Baltimore County (UMBC), USA Aryya Gangopadhyay, University of Maryland, Baltimore County (UMBC), USA George Karabatis, University of Maryland, Baltimore County (UMBC), USA Michael McGuire, University of Maryland, Baltimore County (UMBC), USA Claire Welty, University of Maryland, Baltimore County (UMBC), USA ABSTRACT Environmental research and knowledge discovery both require extensive use of data stored in various sources and created in different ways for diverse purposes. We describe a new metadata approach to elicit semantic information from environmental data and implement semantics- based techniques to assist users in integrating, navigating, and mining multiple environmental data sources. Our system contains specifications of various environmental data sources and the relationships that are formed among them. User requests are augmented with semantically related data sources and automatically presented as a visual semantic network. In addition, we present a methodology for data navigation and pattern discovery using multi-resolution brows- ing and data mining. The data semantics are captured and utilized in terms of their patterns and trends at multiple levels of resolution. We present the efficacy of our methodology through experimental results. Keywords: environmental research, knowledge discovery and navigation, semantic integra- tion, semantic networks, -
Ontologies and Semantic Web for the Internet of Things - a Survey
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/312113565 Ontologies and Semantic Web for the Internet of Things - a survey Conference Paper · October 2016 DOI: 10.1109/IECON.2016.7793744 CITATIONS READS 5 256 2 authors: Ioan Szilagyi Patrice Wira Université de Haute-Alsace Université de Haute-Alsace 10 PUBLICATIONS 17 CITATIONS 122 PUBLICATIONS 679 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Physics of Solar Cells and Systems View project Artificial intelligence for renewable power generation and management: Application to wind and photovoltaic systems View project All content following this page was uploaded by Patrice Wira on 08 January 2018. The user has requested enhancement of the downloaded file. Ontologies and Semantic Web for the Internet of Things – A Survey Ioan Szilagyi, Patrice Wira MIPS Laboratory, University of Haute-Alsace, Mulhouse, France {ioan.szilagyi; patrice.wira}@uha.fr Abstract—The reality of Internet of Things (IoT), with its one of the most important task in an IoT system [6]. Providing growing number of devices and their diversity is challenging interoperability among the things is “one of the most current approaches and technologies for a smarter integration of fundamental requirements to support object addressing, their data, applications and services. While the Web is seen as a tracking and discovery as well as information representation, convenient platform for integrating things, the Semantic Web can storage, and exchange” [4]. further improve its capacity to understand things’ data and facilitate their interoperability. In this paper we present an There is consensus that Semantic Technologies is the overview of some of the Semantic Web technologies used in IoT appropriate tool to address the diversity of Things [4], [7]–[9]. -
Rdfa in XHTML: Syntax and Processing Rdfa in XHTML: Syntax and Processing
RDFa in XHTML: Syntax and Processing RDFa in XHTML: Syntax and Processing RDFa in XHTML: Syntax and Processing A collection of attributes and processing rules for extending XHTML to support RDF W3C Recommendation 14 October 2008 This version: http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014 Latest version: http://www.w3.org/TR/rdfa-syntax Previous version: http://www.w3.org/TR/2008/PR-rdfa-syntax-20080904 Diff from previous version: rdfa-syntax-diff.html Editors: Ben Adida, Creative Commons [email protected] Mark Birbeck, webBackplane [email protected] Shane McCarron, Applied Testing and Technology, Inc. [email protected] Steven Pemberton, CWI Please refer to the errata for this document, which may include some normative corrections. This document is also available in these non-normative formats: PostScript version, PDF version, ZIP archive, and Gzip’d TAR archive. The English version of this specification is the only normative version. Non-normative translations may also be available. Copyright © 2007-2008 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply. Abstract The current Web is primarily made up of an enormous number of documents that have been created using HTML. These documents contain significant amounts of structured data, which is largely unavailable to tools and applications. When publishers can express this data more completely, and when tools can read it, a new world of user functionality becomes available, letting users transfer structured data between applications and web sites, and allowing browsing applications to improve the user experience: an event on a web page can be directly imported - 1 - How to Read this Document RDFa in XHTML: Syntax and Processing into a user’s desktop calendar; a license on a document can be detected so that users can be informed of their rights automatically; a photo’s creator, camera setting information, resolution, location and topic can be published as easily as the original photo itself, enabling structured search and sharing. -
Semantic Integration Across Heterogeneous Databases Finding Data Correspondences Using Agglomerative Hierarchical Clustering and Artificial Neural Networks
DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2018 Semantic Integration across Heterogeneous Databases Finding Data Correspondences using Agglomerative Hierarchical Clustering and Artificial Neural Networks MARK HOBRO KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Semantic Integration across Heterogeneous Databases Finding Data Correspondences using Agglomerative Hierarchical Clustering and Artificial Neural Networks MARK HOBRO Master in Computer Science Date: April 11, 2018 Supervisor: John Folkesson Examiner: Hedvig Kjellström Swedish title: Semantisk integrering mellan heterogena databaser: Hitta datakopplingar med hjälp av hierarkisk klustring och artificiella neuronnät School of Computer Science and Communication iii Abstract The process of data integration is an important part of the database field when it comes to database migrations and the merging of data. The research in the area has grown with the addition of machine learn- ing approaches in the last 20 years. Due to the complexity of the re- search field, no go-to solutions have appeared. Instead, a wide variety of ways of enhancing database migrations have emerged. This thesis examines how well a learning-based solution performs for the seman- tic integration problem in database migrations. Two algorithms are implemented. One that is based on informa- tion retrieval theory, with the goal of yielding a matching result that can be used as a benchmark for measuring the performance of the machine learning algorithm. The machine learning approach is based on grouping data with agglomerative hierarchical clustering and then training a neural network to recognize patterns in the data. This al- lows making predictions about potential data correspondences across two databases. -
The Application of Semantic Web Technologies to Content Analysis in Sociology
THEAPPLICATIONOFSEMANTICWEBTECHNOLOGIESTO CONTENTANALYSISINSOCIOLOGY MASTER THESIS tabea tietz Matrikelnummer: 749153 Faculty of Economics and Social Science University of Potsdam Erstgutachter: Alexander Knoth, M.A. Zweitgutachter: Prof. Dr. rer. nat. Harald Sack Potsdam, August 2018 Tabea Tietz: The Application of Semantic Web Technologies to Content Analysis in Soci- ology, , © August 2018 ABSTRACT In sociology, texts are understood as social phenomena and provide means to an- alyze social reality. Throughout the years, a broad range of techniques evolved to perform such analysis, qualitative and quantitative approaches as well as com- pletely manual analyses and computer-assisted methods. The development of the World Wide Web and social media as well as technical developments like optical character recognition and automated speech recognition contributed to the enor- mous increase of text available for analysis. This also led sociologists to rely more on computer-assisted approaches for their text analysis and included statistical Natural Language Processing (NLP) techniques. A variety of techniques, tools and use cases developed, which lack an overall uniform way of standardizing these approaches. Furthermore, this problem is coupled with a lack of standards for reporting studies with regards to text analysis in sociology. Semantic Web and Linked Data provide a variety of standards to represent information and knowl- edge. Numerous applications make use of these standards, including possibilities to publish data and to perform Named Entity Linking, a specific branch of NLP. This thesis attempts to discuss the question to which extend the standards and tools provided by the Semantic Web and Linked Data community may support computer-assisted text analysis in sociology. First, these said tools and standards will be briefly introduced and then applied to the use case of constitutional texts of the Netherlands from 1884 to 2016. -
Representing and Reasoning About Semantic Conflicts in Heterogeneous Information Systems
Representing and Reasoning about Semantic Conflicts in Heterogeneous Information Systems Cheng Hian Goh CISL WP# 97-01 January 1997 The Sloan School of Management Massachusetts Institute of Technology Cambridge, MA 02142 Representing and Reasoning about Semantic Conflicts in Heterogeneous Information Systems by Cheng Hian Goh Submitted to the Sloan School of Management on Dec 5, 1996, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract The context INterchange (COIN) strategy [Sciore et al., 1994, Siegel and Madnick, 1991] presents a novel perspective for mediated data access in which semantic con- flicts among heterogeneous systems are not identified a priori, but are detected and reconciled by a Context Mediator through comparison of contexts associated with any two systems engaged in data exchange. In this Thesis, we present a formal character- ization and reconstruction of this strategy in a COIN framework, based on a deductive object-oriented data model and language called COIN. The COIN framework provides a logical formalism for representing data semantics in distinct contexts. We show that this presents a well-founded basis for reasoning about semantic disparities in heterogeneous systems. In addition, it combines the best features of loose- and tight- coupling approaches in defining an integration strategy that is scalable, extensible and accessible. These latter features are made possible by teasing apart context knowledge from the underlying schemas whenever feasible, by enabling sources and receivers to remain loosely-coupled to one another, and by sustaining an infrastructure for data integration. The feasibility and features of this approach have been demonstrated in a prototype implementation which provides mediated access to traditional database systems (e.g., Oracle databases) as well as semi-structured data (e.g., Web-sites). -
Master Data Management Whitepaper.Indd
Creating a Master Data Environment An Incremental Roadmap for Public Sector Organizations Master Data Management (MDM) is the processes and technologies used to create and maintain consistent and accurate representations of master data. Movements toward modularity, service orientation, and SaaS make Master Data Management a critical issue. Master Data Management leverages both tools and processes that enable the linkage of critical data through a unifi ed platform that provides a common point of reference. When properly done, MDM streamlines data management and sharing across the enterprise among different areas to provide more effective service delivery. CMA possesses more than 15 years of experience in Master Data Management and more than 20 in data management and integration. CMA has also focused our efforts on public sector since our inception, more than 30 years ago. This document describes the fundamental keys to success for developing and maintaining a long term master data program within a public service organization. www.cma.com 2 Understanding Master Data transactional data. As it becomes more volatile, it typically is considered more transactional. Simple Master Data Behavior entities are rarely a challenge to manage and are rarely Master data can be described by the way that it interacts considered master-data elements. The less complex an with other data. For example, in transaction systems, element, the less likely the need to manage change for master data is almost always involved with transactional that element. The more valuable the data element is to data. This relationship between master data and the organization, the more likely it will be considered a transactional data may be fundamentally viewed as a master data element. -
The Semantic Web: the Origins of Artificial Intelligence Redux
The Semantic Web: The Origins of Artificial Intelligence Redux Harry Halpin ICCS, School of Informatics University of Edinburgh 2 Buccleuch Place Edinburgh EH8 9LW Scotland UK Fax:+44 (0) 131 650 458 E-mail:[email protected] Corresponding author is Harry Halpin. For further information please contact him. This is the tear-off page. To facilitate blind review. Title:The Semantic Web: The Origins of AI Redux working process managed to both halt the fragmentation of Submission for HPLMC-04 the Web and create accepted Web standards through its con- sensus process and its own research team. The W3C set three long-term goals for itself: universal access, Semantic Web, and a web of trust, and since its creation these three goals 1 Introduction have driven a large portion of development of the Web(W3C, 1999) The World Wide Web is considered by many to be the most significant computational phenomenon yet, although even by One comparable program is the Hilbert Program in mathe- the standards of computer science its development has been matics, which set out to prove all of mathematics follows chaotic. While the promise of artificial intelligence to give us from a finite system of axioms and that such an axiom system machines capable of genuine human-level intelligence seems is consistent(Hilbert, 1922). It was through both force of per- nearly as distant as it was during the heyday of the field, the sonality and merit as a mathematician that Hilbert was able ubiquity of the World Wide Web is unquestionable. If any- to set the research program and his challenge led many of the thing it is the Web, not artificial intelligence as traditionally greatest mathematical minds to work. -
Value and Implications of Master Data Management (MDM) and Metadata Management
Value and Implications of Master Data Management (MDM) and Metadata Management Prepared for: Dimitris A Geragas GARTNER CONSULTING Project Number: 330022715 CONFIDENTIAL AND PROPRIETARY This presentation, including any supporting materials, is owned by Gartner, Inc. and/or its affiliates and is for the sole use of the intended Gartner audience or other intended recipients. This presentation may contain information that is confidential, proprietary or otherwise legally protected, and it may not be further copied, distributed or publicly displayed without the express written permission of Gartner, Inc. or its affiliates. © 2015 Gartner, Inc. and/or its affiliates. All rights reserved. Enterprise Information Management Background CONFIDENTIAL AND PROPRIETARY 330022715 | © 2015 Gartner, Inc. and/or its affiliates. All rights reserved. 1 Enterprise Information Management is Never Information Enterprise Information Management (EIM) is about . Providing business value . Managing information (EIM) to provide business value . Setting up a business and IT program to manage information EIM is an integrative discipline for structuring, describing and governing information assets across organizational and technological boundaries. CONFIDENTIAL AND PROPRIETARY 330022715 | © 2015 Gartner, Inc. and/or its affiliates. All rights reserved. 2 Enterprise Information Management and the Information-Related Disciplines Enterprise Information Management (EIM) is about how information gets from a multitude of sources to a multitude of consumers in a relevant, -
A Semantic Query Method for Deep Web∗
Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013) A Semantic Query Method for Deep Web∗ Jiang Hao**,Liu Wen-ju, Lu Li-li School of Computer Science and Engineering Southeast University Nanjing, Jiangsu Province 210096, China [email protected] Abstract—Based on the idea of "functionality-centric", this Web environment. paper proposes a complete set of oriented semantic query methods for Deep Web, builds up the relevant software II. RELEVANT RESEARCH WORK architecture, provides a new method for full use of Deep Web Lots of relevant researches have been done at home data resources in semantic web environment through and abroad in recent years, including following describing the establishment of the semantic environment, implementations: re-writing the SPARQL-to-SQL query, semantic packaging of semantic query result, and the architecture of semantic query A. Web data integration services. It mainly includes two methods in traditional Web data Keywords-Deep Web; semantic query; SPARQ and RDF integration and ontology-based semantic integration. The view traditional Web data integration is typical for WISE-Integrator[4] and MetaQuerier[5] developed by I. INTRODUCTION American scholar with the idea of schema extracting of the Deep Web query interface, constructing the integrated The Deep Web, an important part of the current Web interface, implementing data query and integration through information, refers to the hidden information in the Web the meta-queries. While Ontology-based semantic database. With the continuous development of computer integration is mainly concentrated on the Deep Web depth, networks, the reality of how to use effectively the Deep Web describing the semantics of Web data sources through local data resources becomes a hot issue. -
A Survey of Geospatial Semantic Web for Cultural Heritage
heritage Review A Survey of Geospatial Semantic Web for Cultural Heritage Ikrom Nishanbaev 1,* , Erik Champion 1 and David A. McMeekin 2 1 School of Media, Creative Arts, and Social Inquiry, Curtin University, Perth, WA 6845, Australia; [email protected] 2 School of Earth and Planetary Sciences, Curtin University, Perth, WA 6845, Australia; [email protected] * Correspondence: [email protected] Received: 23 April 2019; Accepted: 16 May 2019; Published: 20 May 2019 Abstract: The amount of digital cultural heritage data produced by cultural heritage institutions is growing rapidly. Digital cultural heritage repositories have therefore become an efficient and effective way to disseminate and exploit digital cultural heritage data. However, many digital cultural heritage repositories worldwide share technical challenges such as data integration and interoperability among national and regional digital cultural heritage repositories. The result is dispersed and poorly-linked cultured heritage data, backed by non-standardized search interfaces, which thwart users’ attempts to contextualize information from distributed repositories. A recently introduced geospatial semantic web is being adopted by a great many new and existing digital cultural heritage repositories to overcome these challenges. However, no one has yet conducted a conceptual survey of the geospatial semantic web concepts for a cultural heritage audience. A conceptual survey of these concepts pertinent to the cultural heritage field is, therefore, needed. Such a survey equips cultural heritage professionals and practitioners with an overview of all the necessary tools, and free and open source semantic web and geospatial semantic web platforms that can be used to implement geospatial semantic web-based cultural heritage repositories. -
Master Data Management Services (MDMS) System
ADAMS ML19121A465 U.S. Nuclear Regulatory Commission Privacy Impact Assessment Designed to collect the information necessary to make relevant determinations regarding the applicability of the Privacy Act, the Paperwork Reduction Act information collection requirements, and records management requirements. Master Data Management Services (MDMS) System Date: April 16, 2019 A. GENERAL SYSTEM INFORMATION 1. Provide a detailed description of the system: The Nuclear Regulatory Commission (NRC) has established the Master Data Management Services (MDMS) system to address both short and long-term enterprise data management needs. The MDMS is a major agencywide initiative to support the processes and decisions of NRC through: • Improving data quality • Improving re-use and exchange of information • Reducing or eliminating the storage of duplicate information • Providing an enterprise-wide foundation for information sharing • Establishing a data governance structure The MDMS provides an overall vision for, and leadership focused on, an enterprise solution that establishes authoritative data owners, delivers quality data in an efficient manner to the systems that require it, and effectively meets business needs. The MDMS is also focused on data architecture and includes projects that will identify and define data elements across the agency. The MDMS system is a web-based application accessible to representatives from every NRC office—that provides standardized and validated dockets and data records that support dockets, including licenses, contact and billing information, to all downstream NRC systems that require that data. The NRC collects digital identification data for individuals to support the agency core business operations, issue credentials, and administer access to agency‘s physical and logical resources. To support this need, the MDMS system also serves as a centralized repository for the accessibility of organization and personnel data.