Cobalt Recovery from Copper Leach Solutions

Total Page:16

File Type:pdf, Size:1020Kb

Cobalt Recovery from Copper Leach Solutions PLEASE DO NOT RE , MOVE FROM LIBRA '. £ I'.] RY RI8927 , 2 n 27 % Bureau of Mines Report of Investigations/1985 Cobalt Recovery From Copper Leach Solutions By T. H. Jeffers and M. R. Harvey UNITED STATES DEPARTMENT OF THE INTERIOR r I Report of Investigations 8927 Cobalt Recovery From Copper Leach Solutions By T. H. Jeffers and M. R. Harvey UNITED STATES DEPARTMENT OF THE INTERIOR Donald Paul Hodel, Secretary BUREAU OF MINES Robert C. Horton, Director Library of Congress Cataloging in Publication Data: Jeffers, T. H. (Thomas H.) Cobalt recovery from copper leach solutions. (Report of investigations; 8927) Bibliography: p. 12. Supt. of Docs. no.: [28.23:8927. 1. Cobalt-Metallurgy., 2. Leaching. 3. Copper. 1. Harvey, M. R. (Malcolm R.). II. Title. III. Series: Report of investigations (United SUites. Bureau of Mines) ; 8927. TN23. U43 ['fN799. C6] 6228 [66H'. 733] 84·600288 " I l' CONTENTS Abstract .•••...••••...••..•••...••..•.•..•.... !t •••••••••••••••••••••••••••••• 1 Int roduc tion •••••••••• " ...................................................... 2 Description of the resource •••••••••••••••••••••••••••••••••••••••••••••••••• 3 Resin selection •••••••••••• I) ••••••••••••••••••••••••••••••••••••• It ••••••••••• 3 Process description •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 4 Experimental results •••••••••••••••••••••• ~ •••••••••••••••••••••••••••••••••• 5 Ion exehange ••••••••••••••• it ••••••••••••••••••••••••••••••••••••••••••••••• 5 I Res in loading •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 5 I Selective impurity removal ••••••••••••••••••••••••••••••••••••••••••••••• 7 , Res in elution ............................................................ 7 ! Iron, zinc, and aluminum impurity removal •••••••••••••••••••••••••••• ,•••••• 7 ! Preliminary tea ts ........................................................ 8 D2EHPA semi continuous circuit •••••••••••••••••••••••••••••••••••••••••••• 8 Cobalt-nickel separation ••••••••••••••••••••••••••••••••••••••••••••••••••• 9 I Preliminary tes ts ........................................................ 9 Final iron and zinc impurity removal ••••••••••••••••••••••••••••••••••••• 10 Cyanex 272 semicontinuous circuit •••••••••••••••••••••••••••••••••••••••• 10 Summary and conclua ions ................................................................. 11 References •••••• " ............................................................. 12 ILLUSTRATIONS 1. Copper dump leaching with cobalt recovery circuit •••••••••••••••••••••• 3 2. Simplified flow diagram for cobalt and nickel recovery from copper processing solution ••••••••••••••••••••••••••••••••••••••••••••••••••••• 4 3. Typical two-stage cobalt extraction profile •••••••••••••••••••••••••••••• 6 TABLES 1. Loading and elution results using XFS-4195 in 4-ft-high columns ••••••••• 5 2. Metal extractions and resin loadings using various flow rates and solu­ tion volumes in 4-ft-high columns ••••••••••••••••••••••••••••••••••••••• 6 3. Selective elution of iron, zinc, and aluminum impurities ••••••••••••••••• 7 4. Process streams resulting from recovery of cobalt from copper leach solutions .••••.••••••••.••.••.•.••.•••••..••.•.••.•••.••••.••••.••• "'.... 11 UNIT OF MEASURE ABBREVIATIONS USED IN THIS REPORT ft foot mg/L milligram per liter g gram min minute giL gram per liter mL milliliter gpm/ft 2 gallon per minute per mL/min milliliter per minute square foot pct percent h hour vol pct volume percent in inch Ib pound 'I' .1 COBALT RECOVERY FROM COPPER LEACH SOLUTIONS By T. H. JeHers 1 and M. R. Harvey 1 \ I I ABSTRACT Significant amounts of cobalt, a strategic and critical metal, are present in readily accessible spent copper leach solutions. For exam­ ple, recovery of cobalt at two major u.S. copper operations could pro­ duce about 1,300,000 lb Co annually, about 13 pct of domestic consump­ tion. However, techniques such as solvent extraction and precipitation have not proven cost effective in separating and recovering the cobalt from these low-grade domestic sources. The Bureau of Mines has devised a procedure using a chelating ion­ exchange resin to extract cobalt from a pH 3.0 copper leach solution containing 30 mg/L Co. Cyclic tests in 4-ft-high by 1-in-diam columns gave an average cobalt extraction of 95 pct when 65 bed volumes of solu­ tion were processed at a flow rate of 4 gpm/ft 2 of resin area. After an impurity scrub, eluates contained, in grams per liter, 0.4 Co, 0.2 Ni, <0.001 Cu, 1.3 Fe, 2.8 Zn, and 0.008 AI. Solvent extraction procedures to remove impurities, reject nickel, and concentrate cobalt produced a cobalt sulfate solution containing 80 g/L Co, 0.05 g/L Ni, and not more than 1 mg/L Cu, Fe, Zn, or AI. Based on data from commercial electro­ winning operations, this solution appears suitable for production of metallic cobalt. 'Chemical engineer, Salt Lake City Research Center, Bureau of Mines, Salt Lake City, UT. 2 INTRODUCTION Cobalt is a strategic and critical met­ Several processing schemes utilizing al because of its use in jet engines, solvent extraction and precipitation have tool steels, and catalysts. In many ap­ been developed for recovering cobalt from plications, substitution of other metals acidic sulfate solutions. Flett and West is not possible. Currently, the United (2) used di-2-ethylhexyl phosphoric acid States does not produce any primary co­ to extract cobalt from sulfate solutions, balt and depends entirely upon imported Ogata, Namihisa, and Fujii (3) used 2- supplies and a small recycling industry. ethylhexyl hydrogen 2-ethYlhexylphosphon­ In 1982, the United States imported about ate. Solvent extraction of cobalt using 90 pct of its cobalt supply, much of it these or other reagents for the copper from Africa (l).2 leach streams would not be effective be­ cause of poor selectivity and excessive Although domestic cobalt reserves are solvent losses incurred while extracting limited, significant amounts are present cobalt from very large volumes of solu­ in some copper leach solutions produced tion. Likewise, precipitation of cobalt by sulfuric acid leaching of low-grade directly from the acidic sulfate solu­ copper ores. The total quantity of co­ tions (4-5) would be ineffective owing balt available in these solutions is not to selectivity problems and filtration known, but cobalt recovery from two recy­ requirements. cle streams located at major U.s. copper operations could produce about 1,300,000 The Bureau of Mines has investigated lb of cobalt annually. This would sat­ ion-exchange cobalt recovery from copper isfy 13 pct of domestic consumption leach solutions. The process consists of and help relieve the need for imported ion exchange to extract cobalt from the cobalt. high-volume copper leach streams, result­ ing in small volumes of cobalt-rich elu­ Presently, cost-effective technology is ates. These eluates are then processed not available to separate and recover using solvent extraction to remove coex­ cobalt from these low-grade solutions. tracted impurities and to further concen­ The complex solutions contain copper, trate the cobalt. A cobalt sulfate solu­ nickel, iron, zinc, aluminum, magnesium, tion suitable for cobalt electrowinning manganese, and other elements, in add­ is produced. This process has signif­ ition to cobalt. Although significant icant advantages compared with processes amounts of cobalt may be recoverable, recovering cobalt from primary sources. cobalt solution concentrations are only Since the cobalt in the copper leach so­ 15 to 30 mg!L. Since economic consider­ lution has already been solubilized, the ations dictate that copper leach stream often difficult and expensive dissolution i flows of several thousand gallons per step is avoided. Also, existing support minute must be processed, pH and temper­ facilities are available, and thus the ature adjustments would not be practical. initial capital investment for site de­ Also, the addition of reagents to the velopment would be minimal. streams to enhance cobalt extraction would be costly and could affect affili­ Only very limited studies have pre­ ated leaching and copper recovery viously been conducted using ion exchang­ operations. ers for cobalt-bearing solutions (6). These ion-exchange resins were generally unacceptable for use with dilute copper 2underlined numbers in parentheses re­ leach solutions because of their poor fer to items in the list of references at selectivity for cobalt and low cobalt the end of this report. loadings. 3 DESCRIPTION OF THE RESOURCE Solutions from two copper leaching op­ downward through the are, leaching out erations were studied; one contained 30 materials that accumulated in the solu­ mg/L Co and the other 15 mg/L Co. The tion. This leach liquor was then col­ 30-mg/L solution, used in the majority of lected in a reservoir and processed using the semicontinuous testing, was copper cementation with scrap iron to remove cementation plant effluent containing, in most of the copper. At this point, solu­ grams per liter, 0.03 Co, 0.035 Ni, 0.06 tion was removed for testing in the co­ Cu, 2.0 Fe, 0.2 Zn, 4.5 AI, 7.2 Mg, and balt recovery system. Because large 0.4 Mn. The solution pH was 3.0. amounts of solution were required in cer­ tain phases of the test program, synthet­ The copper leach solutions were produc­ ic solutions were sometimes used. How­ ed by dump leaching of low-grade ores ever, continual cross-checking showed with dilute sulfuric acid. A schematic similar test results regardless of wheth­ of this process is shown in figure
Recommended publications
  • Developing a Solvent Extraction Process for the Separation of Cobalt and Iron from Nickel Sulfate Solutions
    Abstract DEVELOPING A SOLVENT EXTRACTION PROCESS FOR THE SEPARATION OF COBALT AND IRON FROM NICKEL SULFATE SOLUTIONS By Michiel Casparus Olivier Thesis presented in partial fulfilment of the requirements for the Degree of MASTER OF SCIENCE IN ENGINEERING (EXTRACTIVE METALLURGICAL ENGINEERING) In the faculty of Engineering at Stellenbosch University Supervised by Christie Dorfling December 2011 i Stellenbosch University http://scholar.sun.ac.za DeclarationAbstract DECLARATION By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. …………………………… ………………. Signature Date Copyright © 2011 Stellenbosch University All rights reserved i Stellenbosch University http://scholar.sun.ac.za Abstract ABSTRACT Crude NiSO4 solutions are often produced as a product of Sherrit based matte leach processes leading to iron and cobalt contaminated solutions of NiSO4. To upgrade the quality of these solutions for either, the production of NiSO4 crystals or cathode/precipitated nickel, the iron and cobalt must be removed. Conventional processes use either pure or saponified Cyanex 272 in solvent extraction to extract iron and cobalt from pregnant nickel leach solutions. These processes require the addition of an alkali like NaOH to neutralise the protons being exchanged for the different metal species since extraction is a strong function of pH. Hence, while removing iron and cobalt from the solution, sodium is added instead.
    [Show full text]
  • Principles of Extractive Metallurgy Lectures Note
    PRINCIPLES OF EXTRACTIVE METALLURGY B.TECH, 3RD SEMESTER LECTURES NOTE BY SAGAR NAYAK DR. KALI CHARAN SABAT DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING PARALA MAHARAJA ENGINEERING COLLEGE, BERHAMPUR DISCLAIMER This document does not claim any originality and cannot be used as a substitute for prescribed textbooks. The information presented here is merely a collection by the author for their respective teaching assignments as an additional tool for the teaching-learning process. Various sources as mentioned at the reference of the document as well as freely available material from internet were consulted for preparing this document. The ownership of the information lies with the respective author or institutions. Further, this document is not intended to be used for commercial purpose and the faculty is not accountable for any issues, legal or otherwise, arising out of use of this document. The committee faculty members make no representations or warranties with respect to the accuracy or completeness of the contents of this document and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. BPUT SYLLABUS PRINCIPLES OF EXTRACTIVE METALLURGY (3-1-0) MODULE I (14 HOURS) Unit processes in Pyro metallurgy: Calcination and roasting, sintering, smelting, converting, reduction, smelting-reduction, Metallothermic and hydrogen reduction; distillation and other physical and chemical refining methods: Fire refining, Zone refining, Liquation and Cupellation. Small problems related to pyro metallurgy. MODULE II (14 HOURS) Unit processes in Hydrometallurgy: Leaching practice: In situ leaching, Dump and heap leaching, Percolation leaching, Agitation leaching, Purification of leach liquor, Kinetics of Leaching; Bio- leaching: Recovery of metals from Leach liquor by Solvent Extraction, Ion exchange , Precipitation and Cementation process.
    [Show full text]
  • Sudibyo S, Et Al. Optimization of Electrometal-Elektrowinning Cobalt Process from the Slag Copyright© Sudibyo S, Et Al
    Physical Science & Biophysics Journal MEDWIN PUBLISHERS ISSN: 2641-9165 Committed to Create Value for Researchers Optimization of Electrometal-Elektrowinning Cobalt Process from the Slag of Nickel Pig Iron (NPI) Hermida L1, Sudibyo S2*, Supriyatna YI2, Herlina U2, Handoko AS2, Prasetyo E2, Almutaqii M2 and Reswari PA1 Research Article Volume 4 Issue 2 1Department of Chemical Engineering, Engineering Faculty, Lampung University, Indonesia Received Date: October 09, 2020 2Research Unit for Mineral Technology, Indonesian Institute of Sciences (LIPI), Indonesia Published Date: October 27, 2020 *Corresponding author: Sudibyo Sudibyo, Research Unit for Mineral Technology, Indonesian Institute of Sciences (LIPI), Ir. Sutami street Km. 15, Tanjung Bintang, South Lampung district, Lampung Province, Indonesia, Tel: +6285881020870; Email: [email protected] Abstract Slag from the manufacturing of nickel pig iron (NPI) from laterite soil is still containing 823.7 ppm of cobalt. In this research, the separation process is carried out from slag NPI by using the Response Surface Method (RSM). This method is to determine the optimum conditional process of Electrometal Electrowinning (EMEW) and get an equation model to see the correlation isbetween leach the a variable slag using and acetic know acid,the most and significantthen extracted interfactor in two interaction.steps by versatic This research acid 10 andwas thenconducted with cyanex using three 272. parameters,The organic phaseconsists from of duration this extraction of operation, then stripped potential using voltage, 6 M and sulphuric variable acid of boric so obtained acid. The aqueous first step phase in electro-metal at pH 5.5 with electrowinning the highest cobalt content. The best condition of electro-metal electrowinning is obtained at 4.5 V, 2 hours, and 0.5 M of boric acid with 45.8273% of cobalt recovery.
    [Show full text]
  • Development of the New Method for Oxidized Nickel Ore Processing
    NIOKR-2018 Theoretical and practical conference with international participation and School KnE Materials Science for young scientists «FERROALLOYS: Development prospects of metallurgy and machine building based on completed Research and Development» Volume 2019 Conference Paper Development of the New Method for Oxidized Nickel Ore Processing Boris Dmitrievich Khalezov, Oleg Vadimovich Zayakin, Alexey Sergeevich Gavrilov, and Vladimir Ivanovich Zhuchkov IMET UB RAS, Ekaterinburg, Russia Abstract In modern conditions of sharp fluctuations in nickel prices on world markets, the problem of profitability of processing Russian poor oxidized nickel ores (ONO) has arisen. As an alternative to the previously existing in Russia, a sulphidation-reducing smelting on a matte, a hydro-pyrometallurgical method has been proposed for the preparation of complex nickel-, chromium-, manganese-containing ferroalloys. At the first stage, hydrolytic precipitation (with sodium hydroxide) is considered as a method of processing production solutions from heap leaching of ONO. It is established that Corresponding Author: at pH = 5.5, Al is completely removed in the precipitate as hydroxide. After washing Oleg Vadimovich Zayakin from impurities and calcining, a concentrate containing 50 wt.% Al was obtained. At the [email protected] second stage, at pH = 9.5, more than 99% of nickel and cobalt oxides, as well as 92% Received: 5 February 2019 MnO and 46% MgO, are precipitated. Obtained after washing and calcination at 700∘C Accepted: 6 March 2019 oxide concentrate contains, by weight. %: 67 NiO; 3 CoO; 20 MnO; 9 MgO; 0,2 S. At the Published: 17 March 2019 third stage, a pyrometallurgical method for smelting complex ferroalloys of the Fe-Ni-Cr- Publishing services provided by Mn-Si system using refractory ferrosilicochrome as a reducing agent is proposed for the Knowledge E processing of nickel-containing concentrate.
    [Show full text]
  • ENVIRONMENTAL CODE of PRACTICE Base Metals Smelters and Refineries
    ENVIRONMENTAL CODE OF PRACTICE C ANADIAN E NVIRONMENTAL P ROTECTION A CT , 1999 First Edition Base Metals Smelters and Refineries March 2006 EPS 1/MM/11 E Metals Section Natural Resource Sectors Pollution Prevention Directorate Environmental Stewardship Branch Environment Canada Library and Archives Canada Cataloguing in Publication Main entry under title: Environmental Code of Practice for Base Metals Smelters and Refineries: Code of Practice, Canadian Environmental Protection Act, 1999. Issued also in French under title: Code de pratiques écologiques pour les fonderies et affineries de métaux communs : Code de pratique de la Loi canadienne sur la protection de l’environnement (1999). “First Edition”. Available also on the Internet. Includes bibliographical references. ISBN 0-662-42221-X Cat. no.: En84-34/2005E EPS 1/MM/11 E 1. Non-ferrous metal industries – Waste disposal – Canada. 2. Non-ferrous metals – Metallurgy – Environmental aspects – Canada. 3. Non-ferrous metals – Refining – Environmental aspects – Canada. 4. Smelting – Environmental aspects – Canada. 5. Best management practices (Pollution prevention) – Canada. i. Canada. Pollution Prevention Directorate. Metals Section. ii. Canada. Environment Canada. TD195.F6E58 2005 669'.028'6 C2005-980316-9 READERS’ COMMENTS Inquiries and comments on this Code of Practice, as well as requests for additional copies of the Code, should be directed to: Metals Section Natural Resources Sectors Division Pollution Prevention Directorate Environmental Stewardship Branch Environment Canada Place Vincent Massey 351 St. Joseph Blvd. Gatineau, Quebec K1A 0H3 Fax (819) 953-5053 Note: Website addresses mentioned in this document may have changed or references cited may have been removed from websites since the publication of the document.
    [Show full text]
  • Study on the Extraction and Separation of Zinc, Cobalt, and Nickel Using Ionquest 801, Cyanex 272, and Their Mixtures
    metals Article Study on the Extraction and Separation of Zinc, Cobalt, and Nickel Using Ionquest 801, Cyanex 272, and Their Mixtures Wensen Liu 1,2,3, Jian Zhang 3,4,5, Zhenya Xu 6, Jie Liang 1,* and Zhaowu Zhu 2,3,4,* 1 School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; [email protected] 2 Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China 3 National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing 100190, China; [email protected] 4 Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 5 School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 6 The College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100028, China; [email protected] * Correspondence: [email protected] (J.L.); [email protected] (Z.Z.) Abstract: Both Cyanex 272 (bis (2,4,4-trimethylpentyl) phosphinic acid) and Ionquest 801 (2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester) are commonly used for metal extraction and separation, particularly for zinc, cobalt, and nickel, which are often found together in processing solutions. Detailed metal extractions of zinc, cobalt, and nickel were studied in this paper using Cya-nex 272, Ionquest 801, and their mixtures. It was found that they performed very similarly in zinc selectivity over cobalt. Cyanex 272 performed much better than Ionquest 801 in cobalt separation from nickel. Citation: Liu, W.; Zhang, J.; Xu, Z.; However, very good separation of them was also obtained with Ionquest 801 at its low concentration Liang, J.; Zhu, Z.
    [Show full text]
  • Identifying Materials, Recipes and Choices: Some Suggestions for the Study of Archaeological Cupels
    IDENTIFYING MATERIALS, RECIPES AND CHOICES: SOME SUGGESTIONS FOR THE STUDY OF ARCHAEOLOGICAL CUPELS Marcos Martinón-Torres – UCL Institute of Archaeology, London, United Kingdom Thilo Rehren – UCL Institute of Archaeology, London, United Kingdom Nicolas Thomas – INRAP and Université Paris I, Panthéon-Sorbonne, France Aude Mongiatti– UCL Institute of Archaeology, London, United Kingdom ABSTRACT Used cupels are increasingly identified in archaeological assemblages related to coin minting, alchemy, assaying and goldsmithing across the world. However, notwithstanding some valuable studies, the informative potential of cupellation remains is not always being exploited in full. Here we present a review of past and ongoing research on cupels, involving analytical studies, experiments and historical enquiry, and suggest some strategies for more productive future work. The archaeological case studies discussed are medieval and later assemblages from France (Pymont and Montbéliard) and Austria (Oberstockstall and Kapfenberg), which have been analysed using optical microscopy, SEM-EDS, ED-XRF, WD-EPMA and ICP-AES. Using suitable analytical and data processing methodologies, it is possible to obtain an insight into the metallurgical processes carried out in cupels, and the knowledge and skill of the craftspeople involved. Furthermore, we can also discern the specific raw materials used for manufacturing the cupels themselves, including varying mixtures of bone and wood ash. The variety of cupel-making recipes raises questions as to the versatility of craftspeople and the material properties and performance of different cupels. Can we assess the efficiency of different cupels? Are these variations the results of different technological traditions, saving needs or peculiar perceptions of matter? KEYWORDS Lead, silver, cupellation, fire assay, technological choice, bone ash, wood ash INTRODUCTION Cupellation is a high-temperature oxidising reaction aimed at refining noble metals.
    [Show full text]
  • Lecture 12 Converter Steelmaking Practice & Combined Blowing
    Lecture 12 Converter Steelmaking Practice & combined blowing Contents: Refining of hot metal Composition and temperature during the blow Physico-chemical interactions Developments in Top blown steelmaking practice Concept of bottom stirring in top blowing Top blowing attributes Characteristic feature of converter steelmaking Environmental issues in oxygen steelmaking Causes of high turnover rates of BOF Key words: Top blown steelmaking, combined blowing, bottom stirring, hot metal refining Refining of hot metal After the previous heat is tapped and slag is drained, lining is inspected. Scrap and hot metal are charged. Converter is tilted into the vertical position and the lance is lowered in the vessel to start the blowing. Selection of the starting lance distance is such that the concentration of the force at the bath level should not cause ejection of tiny iron particles (sparking) and at the same time maximum bath surface area is covered by the oxygen jet. The starting lance distance(Xi) for specific oxygen blowing Nm 3 3 rate ton ×min can be calculated by 1.04 Xi = 0.541(db) db is bath diameter in meter. For 150 Tons converter, db = 4.87 m and Xi = 2.8 m, when oxygen flow rate in approximately 450 Nm3/min. Initially oxygen is blown soft by keeping lance distance higher to promote slag formation and to avoid ejection of small particles, because hot metal is not covered by slag. Lime may be added either at the beginning of the blow or in portion during the blow. Oxygen is blown for nearly 15-20 minutes by progressively decreasing the lance distance such that slag foaming remains under control and oxidation reactions occur uninterruptedly.
    [Show full text]
  • Analysis of 999.9 Fine Gold by the Fire Assay Method and Common Sources of Error
    Analysis of 999.9 fine gold by the fire assay method and common sources of error Dippal Manchanda MSc CSci CChem FRSC Technical Director & Chief Assayer The LBMA Assaying & Refining Conference London 2017 Chief Sources of Error The majority of errors in the fire assay operation comes from three sources: 1. Imperfection in even the finest balance. 2. Non-matching matrices i.e. differences in composition between the controlling proof assay sample and the alloy under examination. 3. Variations in temperature in different parts of the cupellation muffle. Other sources of error depend upon the skill of the worker who prepares the cupelled buttons for parting. We will identify these sources of errors and discuss ways to minimise them. The LBMA Assaying & Refining Conference London 2017 Two Pan Mechanical Balance vs Electronic Balance The LBMA Assaying & Refining Conference London 2017 Accuracy vs Weight Test Method Recommendation Why??? Weighing step. 999.9 fine gold - always weigh 500mg in Why 500mg? quadruplicate. Initial Fineness Final wt. (mg) Final Wt. (mg) Fineness Diff. in wt. (ppt.) [of 999.9 fine] [Say 0.01 mg error (ppt.) fineness (mg) occurred due to (+ side} any reason] 100 999.9 99.99 100.000 1000.00 0.1 ppt 250 999.9 249.975 249.985 999.94 0.04 ppt 500 999.9 499.95 499.960 999.92 0.02 ppt Higher the weight, better will be the accuracy The LBMA Assaying & Refining Conference London 2017 Silver to Gold Ratio Literature search reveals Optimum ratio??? Higher the silver content, lower will be the What is the optimum Ag: Au absorption loss during cupellation ratio? 1.
    [Show full text]
  • Kennecott Utah Copper Corporation
    Miningmining BestPractices Plant-Wide Assessment Case Study Industrial Technologies Program Kennecott Utah Copper Corporation: Facility Utilizes Energy Assessments to Identify $930,000 in Potential Annual Savings BENEFITS • Identified potential annual cost savings of $930,000 Summary • Identified potential annual savings of Kennecott Utah Copper Corporation (KUCC) used targeted energy assessments in the smelter 452,000 MMBtu in natural gas and refinery at its Bingham Canyon Mine, near Salt Lake City, Utah, to identify projects to • Found opportunities to reduce maintenance, conserve energy and improve production processes. By implementing the projects identified repair costs, waste, and environmental during the assessment, KUCC could realize annual cost savings of $930,000 and annual energy emissions savings of 452,000 million British thermal units (MMBtu). The copper smelting and refining • Found opportunities to improve industrial facilities were selected for the energy assessments because of their energy-intensive processes. Implementing the projects identified in the assessments would also reduce maintenance, hygiene and safety repair costs, waste, and environmental emissions. One project would use methane gas from • Identified ways to improve process an adjacent municipal dump to replace natural gas used to heat the refinery electrolyte. throughput Public-Private Partnership • Identified a potential payback period of less than 1 year for all projects combined The U.S. Department of Energy's (DOE) Industrial Technologies Program (ITP) cosponsored the assessment. DOE promotes plant-wide energy-efficiency assessments that will lead to improvements in industrial energy efficiency, productivity, and global competitiveness, while reducing waste and environmental emissions. In this case, DOE contributed $100,000 of the total $225,000 assessment cost.
    [Show full text]
  • Avoiding Slopping in Top-Blown BOS Vessels
    ISSN: 1402-1757 ISBN 978-91-7439-XXX-X Se i listan och fyll i siffror där kryssen är LICENTIATE T H E SI S Department of Chemical Engineering and Geosciences Division of Extractive Metallurgy Mats Brämming Avoiding Slopping in Top-Blown BOS Vessels BOS Top-Blown Slopping in Mats Brämming Avoiding ISSN: 1402-1757 ISBN 978-91-7439-173-2 Avoiding Slopping Luleå University of Technology 2010 in Top-Blown BOS Vessels Mats Brämming Avoiding Slopping in Top-blown BOS Vessels Mats Brämming Licentiate Thesis Luleå University of Technology Department of Chemical Engineering and Geosciences Division of Extractive Metallurgy SE-971 87 Luleå Sweden 2010 Printed by Universitetstryckeriet, Luleå 2010 ISSN: 1402-1757 ISBN 978-91-7439-173-2 Luleå 2010 www.ltu.se To my fellow researchers: “Half a league half a league, Half a league onward, All in the valley of Death Rode the six hundred: 'Forward, the Light Brigade! Charge for the guns' he said: Into the valley of Death Rode the six hundred. 'Forward, the Light Brigade!' Was there a man dismay'd ? Not tho' the soldier knew Some one had blunder'd: Theirs not to make reply, Theirs not to reason why, Theirs but to do & die, Into the valley of Death Rode the six hundred.” opening verses of the poem “The Charge Of The Light Brigade” by Alfred, Lord Tennyson PREFACE Slopping* is the technical term used in steelmaking to describe the event when the slag foam cannot be contained within the process vessel, but is forced out through its opening. This phenomenon is especially frequent in a top-blown Basic Oxygen Steelmaking (BOS) vessel, i.e.
    [Show full text]
  • Cobalt: Demand-Supply Balances in the Transition to Electric Mobility
    Cobalt: demand-supply balances in the transition to electric mobility Alves Dias P., Blagoeva D., Pavel C., Arvanitidis N. 2018 EUR 29381 EN This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. Contact information Name: Patrícia Alves Dias & Darina Blagoeva Address European Commission, Joint Research Centre, P.O. Box 2, NL-1755 ZG Petten, The Netherlands Email: [email protected] & [email protected] Tel.: +31 22456-5054 / +31 22456-5030 JRC Science Hub https://ec.europa.eu/jrc JRC112285 EUR 29381 EN PDF ISBN 978-92-79-94311-9 ISSN 1831-9424 doi:10.2760/97710 Luxembourg: Publications Office of the European Union, 2018 © European Union/European Atomic Energy Community, 2018 The reuse policy of the European Commission is implemented by Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Reuse is authorised, provided the source of the document is acknowledged and its original meaning or message is not distorted. The European Commission shall not be liable for any consequence stemming from the reuse. For any use or reproduction of photos or other material that is not owned by the EU, permission must be sought directly from the copyright holders.
    [Show full text]