Intrinsic Differential Geometry with Geometric Calculus
MM Research Preprints, 196{205 MMRC, AMSS, Academia Sinica No. 23, December 2004 Intrinsic Di®erential Geometry with Geometric Calculus Hongbo Li and Lina Cao Mathematics Mechanization Key Laboratory Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing 100080, China Abstract. Setting up a symbolic algebraic system is the ¯rst step in mathematics mechanization of any branch of mathematics. In this paper, we establish a compact symbolic algebraic framework for local geometric computing in intrinsic di®erential ge- ometry, by choosing only the Lie derivative and the covariant derivative as basic local di®erential operators. In this framework, not only geometric entities such as the curva- ture and torsion of an a±ne connection have elegant representations, but their involved local geometric computing can be simpli¯ed. Keywords: Intrinsic di®erential geometry, Cli®ord algebra, Mathematics mecha- nization, Symbolic geometric computing. 1. Introduction Mathematics mechanization focuses on solving mathematical problems with symbolic computation techniques, particularly on mathematical reasoning by algebraic manipulation of mathematical symbols. In di®erential geometry, the mechanization viz. mechanical the- orem proving, is initiated by [7] using local coordinate representation. On the other hand, in modern di®erential geometry the dominant algebraic framework is moving frames and di®erential forms [1], which are independent of local coordinates. For mechanical theorem proving in spatial surface theory, [3], [4], [5] proposed to use di®erential forms and moving frames as basic algebraic tools. It appears that di®erential geometry bene¯ts from both local coordinates and global invariants [6]. For extrinsic di®erential geometry, [2] proposed to use Cli®ord algebra and vector deriva- tive viz.
[Show full text]