A Definition of the Exterior Derivative in Terms of Lie Derivatives Author(S): Richard S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Laplacians in Geometric Analysis
LAPLACIANS IN GEOMETRIC ANALYSIS Syafiq Johar syafi[email protected] Contents 1 Trace Laplacian 1 1.1 Connections on Vector Bundles . .1 1.2 Local and Explicit Expressions . .2 1.3 Second Covariant Derivative . .3 1.4 Curvatures on Vector Bundles . .4 1.5 Trace Laplacian . .5 2 Harmonic Functions 6 2.1 Gradient and Divergence Operators . .7 2.2 Laplace-Beltrami Operator . .7 2.3 Harmonic Functions . .8 2.4 Harmonic Maps . .8 3 Hodge Laplacian 9 3.1 Exterior Derivatives . .9 3.2 Hodge Duals . 10 3.3 Hodge Laplacian . 12 4 Hodge Decomposition 13 4.1 De Rham Cohomology . 13 4.2 Hodge Decomposition Theorem . 14 5 Weitzenb¨ock and B¨ochner Formulas 15 5.1 Weitzenb¨ock Formula . 15 5.1.1 0-forms . 15 5.1.2 k-forms . 15 5.2 B¨ochner Formula . 17 1 Trace Laplacian In this section, we are going to present a notion of Laplacian that is regularly used in differential geometry, namely the trace Laplacian (also called the rough Laplacian or connection Laplacian). We recall the definition of connection on vector bundles which allows us to take the directional derivative of vector bundles. 1.1 Connections on Vector Bundles Definition 1.1 (Connection). Let M be a differentiable manifold and E a vector bundle over M. A connection or covariant derivative at a point p 2 M is a map D : Γ(E) ! Γ(T ∗M ⊗ E) 1 with the properties for any V; W 2 TpM; σ; τ 2 Γ(E) and f 2 C (M), we have that DV σ 2 Ep with the following properties: 1. -
1.2 Topological Tensor Calculus
PH211 Physical Mathematics Fall 2019 1.2 Topological tensor calculus 1.2.1 Tensor fields Finite displacements in Euclidean space can be represented by arrows and have a natural vector space structure, but finite displacements in more general curved spaces, such as on the surface of a sphere, do not. However, an infinitesimal neighborhood of a point in a smooth curved space1 looks like an infinitesimal neighborhood of Euclidean space, and infinitesimal displacements dx~ retain the vector space structure of displacements in Euclidean space. An infinitesimal neighborhood of a point can be infinitely rescaled to generate a finite vector space, called the tangent space, at the point. A vector lives in the tangent space of a point. Note that vectors do not stretch from one point to vector tangent space at p p space Figure 1.2.1: A vector in the tangent space of a point. another, and vectors at different points live in different tangent spaces and so cannot be added. For example, rescaling the infinitesimal displacement dx~ by dividing it by the in- finitesimal scalar dt gives the velocity dx~ ~v = (1.2.1) dt which is a vector. Similarly, we can picture the covector rφ as the infinitesimal contours of φ in a neighborhood of a point, infinitely rescaled to generate a finite covector in the point's cotangent space. More generally, infinitely rescaling the neighborhood of a point generates the tensor space and its algebra at the point. The tensor space contains the tangent and cotangent spaces as a vector subspaces. A tensor field is something that takes tensor values at every point in a space. -
Differential Forms Diff Geom II, WS 2015/16
J.M. Sullivan, TU Berlin B: Differential Forms Diff Geom II, WS 2015/16 B. DIFFERENTIAL FORMS instance, if S has k elements this gives a k-dimensional vector space with S as basis. We have already seen one-forms (covector fields) on a Given vector spaces V and W, let F be the free vector space over the set V × W. (This consists of formal sums manifold. In general, a k-form is a field of alternating k- P linear forms on the tangent spaces of a manifold. Forms ai(vi, wi) but ignores all the structure we have on the set are the natural objects for integration: a k-form can be in- V × W.) Now let R ⊂ F be the linear subspace spanned by tegrated over an oriented k-submanifold. We start with ten- all elements of the form: sor products and the exterior algebra of multivectors. (v + v0, w) − (v, w) − (v0, w), (v, w + w0) − (v, w) − (v, w0), (av, w) − a(v, w), (v, aw) − a(v, w). B1. Tensor products These correspond of course to the bilinearity conditions Recall that, if V, W and X are vector spaces, then a map we started with. The quotient vector space F/R will be the b: V × W → X is called bilinear if tensor product V ⊗ W. We have started with all possible v ⊗ w as generators and thrown in just enough relations to b(v + v0, w) = b(v, w) + b(v0, w), make the map (v, w) 7→ v ⊗ w be bilinear. b(v, w + w0) = b(v, w) + b(v, w0), The tensor product is commutative: there is a natural linear isomorphism V⊗W → W⊗V such that v⊗w 7→ w⊗v. -
Vector Calculus and Differential Forms with Applications To
Vector Calculus and Differential Forms with Applications to Electromagnetism Sean Roberson May 7, 2015 PREFACE This paper is written as a final project for a course in vector analysis, taught at Texas A&M University - San Antonio in the spring of 2015 as an independent study course. Students in mathematics, physics, engineering, and the sciences usually go through a sequence of three calculus courses before go- ing on to differential equations, real analysis, and linear algebra. In the third course, traditionally reserved for multivariable calculus, stu- dents usually learn how to differentiate functions of several variable and integrate over general domains in space. Very rarely, as was my case, will professors have time to cover the important integral theo- rems using vector functions: Green’s Theorem, Stokes’ Theorem, etc. In some universities, such as UCSD and Cornell, honors students are able to take an accelerated calculus sequence using the text Vector Cal- culus, Linear Algebra, and Differential Forms by John Hamal Hubbard and Barbara Burke Hubbard. Here, students learn multivariable cal- culus using linear algebra and real analysis, and then they generalize familiar integral theorems using the language of differential forms. This paper was written over the course of one semester, where the majority of the book was covered. Some details, such as orientation of manifolds, topology, and the foundation of the integral were skipped to save length. The paper should still be readable by a student with at least three semesters of calculus, one course in linear algebra, and one course in real analysis - all at the undergraduate level. -
6.10 the Generalized Stokes's Theorem
6.10 The generalized Stokes’s theorem 645 6.9.2 In the text we proved Proposition 6.9.7 in the special case where the mapping f is linear. Prove the general statement, where f is only assumed to be of class C1. n m 1 6.9.3 Let U R be open, f : U R of class C , and ξ a vector field on m ⊂ → R . a. Show that (f ∗Wξ)(x)=W . Exercise 6.9.3: The matrix [Df(x)]!ξ(x) adj(A) of part c is the adjoint ma- b. Let m = n. Show that if [Df(x)] is invertible, then trix of A. The equation in part b (f ∗Φ )(x) = det[Df(x)]Φ 1 . is unsatisfactory: it does not say ξ [Df(x)]− ξ(x) how to represent (f ∗Φ )(x) as the ξ c. Let m = n, let A be a square matrix, and let A be the matrix obtained flux of a vector field when the n n [j,i] × from A by erasing the jth row and the ith column. Let adj(A) be the matrix matrix [Df(x)] is not invertible. i+j whose (i, j)th entry is (adj(A))i,j =( 1) det A . Show that Part c deals with this situation. − [j,i] A(adj(A)) = (det A)I and f ∗Φξ(x)=Φadj([Df(x)])ξ(x) 6.10 The generalized Stokes’s theorem We worked hard to define the exterior derivative and to define orientation of manifolds and of boundaries. Now we are going to reap some rewards for our labor: a higher-dimensional analogue of the fundamental theorem of calculus, Stokes’s theorem. -
Linearization Via the Lie Derivative ∗
Electron. J. Diff. Eqns., Monograph 02, 2000 http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu or ejde.math.unt.edu (login: ftp) Linearization via the Lie Derivative ∗ Carmen Chicone & Richard Swanson Abstract The standard proof of the Grobman–Hartman linearization theorem for a flow at a hyperbolic rest point proceeds by first establishing the analogous result for hyperbolic fixed points of local diffeomorphisms. In this exposition we present a simple direct proof that avoids the discrete case altogether. We give new proofs for Hartman’s smoothness results: A 2 flow is 1 linearizable at a hyperbolic sink, and a 2 flow in the C C C plane is 1 linearizable at a hyperbolic rest point. Also, we formulate C and prove some new results on smooth linearization for special classes of quasi-linear vector fields where either the nonlinear part is restricted or additional conditions on the spectrum of the linear part (not related to resonance conditions) are imposed. Contents 1 Introduction 2 2 Continuous Conjugacy 4 3 Smooth Conjugacy 7 3.1 Hyperbolic Sinks . 10 3.1.1 Smooth Linearization on the Line . 32 3.2 Hyperbolic Saddles . 34 4 Linearization of Special Vector Fields 45 4.1 Special Vector Fields . 46 4.2 Saddles . 50 4.3 Infinitesimal Conjugacy and Fiber Contractions . 50 4.4 Sources and Sinks . 51 ∗Mathematics Subject Classifications: 34-02, 34C20, 37D05, 37G10. Key words: Smooth linearization, Lie derivative, Hartman, Grobman, hyperbolic rest point, fiber contraction, Dorroh smoothing. c 2000 Southwest Texas State University. Submitted November 14, 2000. -
Hamilton's Ricci Flow
The University of Melbourne, Department of Mathematics and Statistics Hamilton's Ricci Flow Nick Sheridan Supervisor: Associate Professor Craig Hodgson Second Reader: Professor Hyam Rubinstein Honours Thesis, November 2006. Abstract The aim of this project is to introduce the basics of Hamilton's Ricci Flow. The Ricci flow is a pde for evolving the metric tensor in a Riemannian manifold to make it \rounder", in the hope that one may draw topological conclusions from the existence of such \round" metrics. Indeed, the Ricci flow has recently been used to prove two very deep theorems in topology, namely the Geometrization and Poincar´eConjectures. We begin with a brief survey of the differential geometry that is needed in the Ricci flow, then proceed to introduce its basic properties and the basic techniques used to understand it, for example, proving existence and uniqueness and bounds on derivatives of curvature under the Ricci flow using the maximum principle. We use these results to prove the \original" Ricci flow theorem { the 1982 theorem of Richard Hamilton that closed 3-manifolds which admit metrics of strictly positive Ricci curvature are diffeomorphic to quotients of the round 3-sphere by finite groups of isometries acting freely. We conclude with a qualitative discussion of the ideas behind the proof of the Geometrization Conjecture using the Ricci flow. Most of the project is based on the book by Chow and Knopf [6], the notes by Peter Topping [28] (which have recently been made into a book, see [29]), the papers of Richard Hamilton (in particular [9]) and the lecture course on Geometric Evolution Equations presented by Ben Andrews at the 2006 ICE-EM Graduate School held at the University of Queensland. -
On Lie Derivation of Spinors Against Arbitrary Tangent Vector Fields
On Lie derivation of spinors against arbitrary tangent vector fields Andras´ LASZL´ O´ [email protected] Wigner RCP, Budapest, Hungary (joint work with L.Andersson and I.Rácz) CERS8 Workshop Brno, 17th February 2018 On Lie derivation of spinors against arbitrary tangent vector fields – p. 1 Preliminaries Ordinary Lie derivation. Take a one-parameter group (φt)t∈R of diffeomorphisms over a manifold M. Lie derivation against that is defined on the smooth sections χ of the mixed tensor algebra of T (M) and T ∗(M), with the formula: L φ∗ χ := ∂t φ∗ −t χ t=0 It has explicit formula: on T (M) : Lu(χ)=[u,χ] , a on F (M) := M× R : Lu(χ)= u da (χ) , ∗ a a on T (M) : Lu(χ)= u da (χ) + d(u χa), where u is the unique tangent vector field underlying (φt)t∈R. The map u 7→ Lu is faithful Lie algebra representation. On Lie derivation of spinors against arbitrary tangent vector fields – p. 2 Lie derivation on a vector bundle. Take a vector bundle V (M) over M. Take a one-parameter group of diffeomorphisms of the total space of V (M), which preserves the vector bundle structure. The ∂t() against the flows of these are vector bundle Lie derivations. t=0 (I.Kolár,P.Michor,K.Slovák:ˇ Natural operations in differential geometry; Springer 1993) Explicit expression: take a preferred covariant derivation ∇, then over the sections χ of V (M) one can express these as ∇ A a A A B L χ = u ∇a χ − CB χ (u,C) That is: Lie derivations on a vector bundle are uniquely characterized by their horizontal a A part u ∇a and vertical part CB . -
Intrinsic Differential Geometry with Geometric Calculus
MM Research Preprints, 196{205 MMRC, AMSS, Academia Sinica No. 23, December 2004 Intrinsic Di®erential Geometry with Geometric Calculus Hongbo Li and Lina Cao Mathematics Mechanization Key Laboratory Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing 100080, China Abstract. Setting up a symbolic algebraic system is the ¯rst step in mathematics mechanization of any branch of mathematics. In this paper, we establish a compact symbolic algebraic framework for local geometric computing in intrinsic di®erential ge- ometry, by choosing only the Lie derivative and the covariant derivative as basic local di®erential operators. In this framework, not only geometric entities such as the curva- ture and torsion of an a±ne connection have elegant representations, but their involved local geometric computing can be simpli¯ed. Keywords: Intrinsic di®erential geometry, Cli®ord algebra, Mathematics mecha- nization, Symbolic geometric computing. 1. Introduction Mathematics mechanization focuses on solving mathematical problems with symbolic computation techniques, particularly on mathematical reasoning by algebraic manipulation of mathematical symbols. In di®erential geometry, the mechanization viz. mechanical the- orem proving, is initiated by [7] using local coordinate representation. On the other hand, in modern di®erential geometry the dominant algebraic framework is moving frames and di®erential forms [1], which are independent of local coordinates. For mechanical theorem proving in spatial surface theory, [3], [4], [5] proposed to use di®erential forms and moving frames as basic algebraic tools. It appears that di®erential geometry bene¯ts from both local coordinates and global invariants [6]. For extrinsic di®erential geometry, [2] proposed to use Cli®ord algebra and vector deriva- tive viz. -
3. Algebra of Vector Fields. Lie Derivatives
INTRODUCTION TO MANIFOLDS | III Algebra of vector fields. Lie derivative(s). 1. Notations. The space of all C1-smooth vector ¯elds on a manifold M is n denoted by X(M). If v 2 X(M) is a vector ¯eld, then v(x) 2 TxM ' R is its value at a point x 2 M. The flow of a vector ¯eld v is denoted by vt: 8t 2 R vt : M ! M is a smooth map (automorphism) of M taking a point x 2 M into the point vt(x) 2 M which is the t-endpoint of an integral trajectory for the ¯eld v, starting at the point x. | Problem 1. Prove that the flow maps for a ¯eld v on a compact manifold M form a one-parameter group: 8t; s 2 R vt+s = vt ± vs = vs ± vt; and all vt are di®eomorphisms of M. | Problem 2. What means the formula ¯ ¯ d ¯ s ¯ v = v ds s=0 and is it true? 2. Star conventions. The space of all C1-smooth functions is denoted by C1(M). If F : M ! M is a smooth map (not necessary a di®eomorphism), then there appears a contravariant map F ¤ : C1(M) ! C1(M);F ¤ : f 7! F ¤f; F ¤(x) = f(F (x)): If F : M ! N is a smooth map between two di®erent manifolds, then F ¤ : C1(N) ! C1(M): Note that the direction of the arrows is reversed! | Problem 3. Prove that C1(M) is a commutative associative algebra over R with respect to pointwise addition, subtraction and multiplication of functions. -
Differential Geometry: Discrete Exterior Calculus
Differential Geometry: Discrete Exterior Calculus [Discrete Exterior Calculus (Thesis). Hirani, 2003] [Discrete Differential Forms for Computational Modeling. Desbrun et al., 2005] [Build Your Own DEC at Home. Elcott et al., 2006] Chains Recall: A k-chain of a simplicial complex Κ is linear combination of the k-simplices in Κ: c = ∑c(σ )⋅σ σ∈Κ k where c is a real-valued function. The dual of a k-chain is a k-cochain which is a linear map taking a k-chain to a real value. Chains and cochains related through evaluation: –Cochains: What we integrate –Chains: What we integrate over Boundary Operator Recall: The boundary ∂σ of a k-simplex σ is the signed union of all (k-1)-faces. ∂ ∂ ∂ ∂ +1 -1 The boundary operator extends linearly to act on chains: ∂c = ∂ ∑c(σ )⋅σ = ∑c(σ )⋅∂σ σ∈Κ k σ∈Κ k Discrete Exterior Derivative Recall: The exterior derivative d:Ωk→ Ωk+1 is the operator on cochains that is the complement of the boundary operator, defined to satisfy Stokes’ Theorem. -1 -2 -1 -3.5 -2 0.5 0.5 2 0 0.5 2 0 0.5 2 1.5 1 1 Since the boundary of the boundary is empty: ∂∂ = 0 dd = 0 The Laplacian Definition: The Laplacian of a function f is a function defined as the divergence of the gradient of f: ∆f = div(∇f ) = ∇ ⋅∇f The Laplacian Definition: The Laplacian of a function f is a function defined as the divergence of the gradient of f: ∆f = div(∇f ) = ∇ ⋅∇f Q. -
Arxiv:1412.2393V4 [Gr-Qc] 27 Feb 2019 2.6 Geodesics and Normal Coordinates
Riemannian Geometry: Definitions, Pictures, and Results Adam Marsh February 27, 2019 Abstract A pedagogical but concise overview of Riemannian geometry is provided, in the context of usage in physics. The emphasis is on defining and visualizing concepts and relationships between them, as well as listing common confusions, alternative notations and jargon, and relevant facts and theorems. Special attention is given to detailed figures and geometric viewpoints, some of which would seem to be novel to the literature. Topics are avoided which are well covered in textbooks, such as historical motivations, proofs and derivations, and tools for practical calculations. As much material as possible is developed for manifolds with connection (omitting a metric) to make clear which aspects can be readily generalized to gauge theories. The presentation in most cases does not assume a coordinate frame or zero torsion, and the coordinate-free, tensor, and Cartan formalisms are developed in parallel. Contents 1 Introduction 2 2 Parallel transport 3 2.1 The parallel transporter . 3 2.2 The covariant derivative . 4 2.3 The connection . 5 2.4 The covariant derivative in terms of the connection . 6 2.5 The parallel transporter in terms of the connection . 9 arXiv:1412.2393v4 [gr-qc] 27 Feb 2019 2.6 Geodesics and normal coordinates . 9 2.7 Summary . 10 3 Manifolds with connection 11 3.1 The covariant derivative on the tensor algebra . 12 3.2 The exterior covariant derivative of vector-valued forms . 13 3.3 The exterior covariant derivative of algebra-valued forms . 15 3.4 Torsion . 16 3.5 Curvature .