The Nexian Issue 2

Total Page:16

File Type:pdf, Size:1020Kb

The Nexian Issue 2 CONTENTS 01 A Remembrance of Alexander “Sasha” Shulgin Entropymancer 02 Entheogenic Tryptamines, Past and Present: Folkways of Resilience jamie & nen888 03 Feed Your Head: Harnessing Neurogenesis Sam Gandy 3 ~ 4 04 First Steps in Cacti Cultivation Hostilis 5 ~ 12 05 Citrus Growers Manufacture Huge Amounts of DMT Morris Crowley 13 ~ 18 06 Interview with Rick Strassman Nexus Asks The Doc 19 ~ 24 07 The Open Hyperspace Traveler Announcement 25 ~ 26 08 Criminals and Researchers: Perspectives on the Necessity of Underground Research David Nickles 27 ~ 35 09 The Art of Changa Olympus Mon 36 10 DMT and Frequency: The Musicality of Hyperspace Global 37 ~ 46 11 Caapi Propagation Ringworm 48 ~ 53 12 Phalaris Teachers: Temperate Sources of Tryptamine Gnosis jamie 55 ~ 60 13 Initiation of the Heart Aegle 61 ~ 62 14 Reflections on the Unfolding Journey : A Conversation with nen and gibran nen888 vs gibran2 63 ~ 68 The Nexian - Issue #2 69 71 ~ 75 A Remembrance of Alexander “Sasha” Shulgin A Remembrance of Alexander “Sasha” Shulgin By Entropymancer his June, we lost a truly great man. Alexander Theodore Shulgin, known as Sasha to his friends, was a chemist and psycho- Tpharmacologist specializing in psychedelic drugs. While mainstream outlets have eulogized him as the "godfather of ecstasy," due to his role in introducing MDMA to psychotherapy, Shulgin's most enduring legacy will likely be his extensive work developing novel phenethylamine and tryptamine psychedelics and exploring their structure-activity relationships. The Alchemist, By Mike Cole 2014 Inspired by a photo by Greg Manning of Team Shulgin Shulgin's life has been an inspiration to many. He had the heart of an explorer, boldly venturing into uncharted territory with each new drug he synthesized. He was driven by a conviction that humankind desperately needs these tools if we are to survive the destructive power of our own technology. Considering the prevailing political trends which seek to prohibit and marginalize these drugs, Shulgin drew the ire of the DEA when he courageously decided to publish his work, complete with syntheses and dosage commentary, in the popular volumes PiHKAL and TiHKAL. Shulgin's work ultimately touched many lives, including the lives of many who never met him. As news of his death spread, people expressed their thanks to Shulgin for the role his work played in their personal development through an outpouring of personal remembrances on social media sites. He inspired many psychonauts to study organic chemistry. His compounds helped many of us to examine ourselves, empower our creative expressions, overcome depression, and begin to live our lives in an authentic way. I can't help but feel that Shulgin's work came to us in the nick of time. We find ourselves at a pivotal moment in human history. Our population has exploded to the point where a simple disruption of supply chains could cause starvation on an unprecedented scale. Our consumption of resources has reached an unsustainable fever pitch. Our weapons have the power to wipe out huge swaths of life on earth. Our agricultural war against biodiversity pushes many segments of the community of life to the precipice of extinction and beyond. We need a new cultural paradigm. We need new ways of thinking. And Shulgin's toolbox has the potential to serve as a catalyst to the types of transformation we must undergo. It feels like the end of an era…but it is also a new beginning. In each generation, some heed the call of the mysterium tremendum. Already, other hands are busily expanding on the scaffolding that Shulgin erected. Wonderful wizard, you will be sorely missed. You can donate to the Shulgin Legacy Project, which will preserve and archive Sasha’s life’s work. http://www.shulginresearch.org/home/donate/ 3 The Nexian - Issue #2 A Remembrance of Alexander “Sasha” Shulgin Photo by Jon Hanna, 2008 4 The Nexian - Issue #2 Entheogenic Tryptamines, Past and Present: Folkways of Resilience Entheogenic Tryptamines Past and Present : Folkways of Resilience By jamie and nen888 additional research by dreamer042 & the Nexian editorial staff Before and Beyond Ayahuasca he first thing that comes to mind at the mention of Amazonian plant medicines or tryptamine use is, more often than not, ayahuasca. Indeed, ayahuasca has represented the pinnacle of entheogenic tryptamine folkways, for some time, in the West. It has been regarded by many Tas the “entheogen ” both in the ceremonial elegance of its delivery to the Western consciousness and the profound, yet gentle flowering of collective visions that seem to bloom in its wake. Ayahuasca is, no doubt, a medicine worthy of great respect. However, in this article, we would like to take a look beyond the ayahuasca meme that has predominated within Western entheogenic culture. We will examine the larger world of folk DMT and tryptamine use that existed before ayahuasca and continues to extend from the far past into the present in a par excellence, myriad of continually evolving forms. The use of DMT and similar tryptamines within folk traditions is not simply a relic revived from a long forgotten past, or an exotic cultural artifact reconstructed in contemporary Western culture. We would posit that it represents a range of cultural modalities, both ancient and modern, from indigenous tribal cultures to contemporary Western folk traditions, which have grown beyond the cultural modality comprising ayahuasca in the Western mind. Ayahuasca itself represents an interesting paradigm within Magic Leaves ( ) by Blue Lunar Night the larger world of entheogenic DMT practice, . Ayahuasca is the modality that has been put in the spotlight within the entheogenic subculture. And yet, there has been a blooming of contemporary practice in the West that arguably more closely resembles these other traditional practices—all while maintaining a sovereign, grassroots, neo-folk approach as a living, evolving Western tradition. crop There is good evidence, for instance, of the cultural usage of tryptamine-containing plants such as acacia trees in Africa, the Middle East, India, China/East Asia, and the Pacific/Oceania, dating back to antiquity—each with different traditions. (Rätsch 2005, Voogelbreinder 2009). There is even the possibility that ancient Egyptians may have smoked entheogenic acacias, considering that acabcuia t ittr edeose sfi gnuorte r epprroemseinnet nthtlayt inw oarnldc iienn itt sE geynptitrieatny symbolism, and a practice of inhaling the vapor from 5 The Nexian - Issue #2 Entheogenic Tryptamines, Past and Present: Folkways of Resilience burnt acacia flowers still exists in contemporary Egypt (Osborn 1968). The harmala alkaloid-containing plant, , also has a history of traditional and ritual use in North Africa, Iran, Turkey, and India. (Flattery & Schwartz 1989). The environments of these plants are, like their associated traditions, very different to those of the ayahuasca regions, which are restricted to South America. Phalaris grasses containing DMT and harmalas (MAOIs) are native to Europe (Festi & Samorini 1994), perhaps having lost their accompanying traditions. Also, as most of these traditions are secretive, obscure, or lost, the modern tryptamine explorer is left without much reference for the experience, particularly that of shorter acting methods. Hence, a new folklore emerges through experimentation, exploration, and garnPereignagn wumha ht acramna bla e found in the remnants of older traditions. Throughout the Amazon basin and elsewhere, a diverse number of tryptamine-based medicinal and entheogenic modalities are expressed. is a genus of trees in the family Fabaceae (legumes), comprising two species and a variety of subspecies of tryptamine-bearing specimens occurring in South America. The Fabaceae family contains nitrogen fixers with astonishing numbers of DMT and other tryptamine-containing genera, including , , , , , , and others. The oldest documented use of entheogenic tryptamines in South America predates any documented use of ayahuasca. Analysis of snuffs dating back to 780 CE from the region of San Pedro de Atacama, a town in Chile, identified DMT, 5- MeO-DMT, and bufotenine. seeds and smoking pipes dating back to 2130 BCE have been found in Argentina, representing the earliest known entheogenic tryptamine use in South America. (Torres & Repke 1996) Anadenanthera Similarly, the resin collected from the Abacrakc ioa f aM nuimmobsea r oDf etrsemesa notfh tuhs e Anadenanthera Lespedeza Desmodium Myristicaceae family such as and , are used to make potent tryptamine Anadenanthera colubrina snuffs. These snuffs mainly contain 5-MeO-DMT, DMT, and other tryptamines and beta- carbolines, but not bufotenine. 5-MeO-DMT is the main tryptamine in many virola snuffs. However, in the Vmiraoilna thryepiotadmoriane presVeirnotl aisc raelpooprhteyldla to be seeds, cebil snuff, and a modern DMT snuff made from a chaliponga extraction DMT. (Schultes & Hofmann 1980) The use of DMT-, 5-MeO-DMT-, and bufotenine-containing snuffs and smoking mixtures present paradigms of tryptamine use that are possibly far older than oral tryptamine/beta-carboline mixtures, such as ayahuasca. Ayahuasca itself often contains nothing more than the Anadenantohera colubrina vine, or any of a number of other vines, such as , which are now being sold on the online market as "ayahuasca" (McKenna et al. 1995). The commonly (mis)understood paradigm of what ayahuasca iVsi raomlao ng cWaleosptheyrnll a psychedelic and entheogenic enthusiasts presents a very limited and often misleading model. The harmala alkaloids, such as harmine, found within both and are profoundly visionary and entheogenic medicines on their own—producing deep, dreamy sequences of visions often of a very personal quality. Some tribes never use DMT admixtures at all (McKenna et al. 1995). The use of itself is not limited to aqueous potions; its use has been observed among the Piaroa as an additive to yopo preparations—a snuff made from the seeds of Banisteriopsis caapi —Bansi swterlli oapss bise imngu rcicoantsa umed before the ingestion of the snuff (Rodd 2002). Tetrapterys methystica 6 The Nexian - Issue #2 B. caapi B.
Recommended publications
  • Psychoactive Plants Used in Designer Drugs As a Threat to Public Health
    From Botanical to Medical Research Vol. 61 No. 2 2015 DOI: 10.1515/hepo-2015-0017 REVIEW PAPER Psychoactive plants used in designer drugs as a threat to public health AGNIESZKA RONDZISTy1, KAROLINA DZIEKAN2*, ALEKSANDRA KOWALSKA2 1Department of Humanities in Medicine Pomeranian Medical University Chłapowskiego 11 70-103 Szczecin, Poland 2Department of Stem Cells and Regenerative Medicine Institute of Natural Fibers and Medicinal Plants Kolejowa 2 62-064 Plewiska, Poland *corresponding author: e-mail: [email protected] Summary Based on epidemiologic surveys conducted in 2007–2013, an increase in the consumption of psychoactive substances has been observed. This growth is noticeable in Europe and in Poland. With the ‘designer drugs’ launch on the market, which ingredients were not placed on the list of controlled substances in the Misuse of Drugs Act, a rise in the number and diversity of psychoactive agents and mixtures was noticed, used to achieve a different state of mind. Thus, the threat to the health and lives of people who use them has grown. In this paper, the authors describe the phenomenon of the use of plant psychoactive sub- stances, paying attention to young people who experiment with new narcotics. This article also discusses the mode of action and side effects of plant materials proscribed under the Misuse of Drugs Act in Poland. key words: designer drugs, plant materials, drugs, adolescents INTRODUCTION Anthropological studies concerning preliterate societies have shown that psy- choactive substances have been used for ages. On the individual level, they help to Herba Pol 2015; 61(2): 73-86 A. Rondzisty, K.
    [Show full text]
  • Erowid Extracts — Number 13 / November 2007 Erowid Extracts Table of Contents Number 13, November 2007
    Erowid® Extracts D OCUMENTING THE C OMPLEX R ELATIONSHIP B ETWEEN H UMANS AN D P SYCHOACTIVES November 2007 Number 13 “The problem to be faced is: how to combine loyalty to one’s own tradition with reverence for different traditions.” — Abraham J. Heschel The Absinthe Enigma • Wormwood and Thujone • P. viridis vs. M. tenuiflora Varieties of Nicotine Experience • Khat Legal Challenges LETTERS & FEEDBACK Hi there Erowid staff, First of all, thank you for such Awesome website! A more thoughtfully a wonderful site. I’m not a serious compiled compendium of information I’m just writing to say how much I recreational user, but having some on the topic of psychoactives does appreciate your website. My father chronic pain issues, I tend to experiment not exist—at least not for the public showed it to me several years ago a little to find ways to alleviate the at large. Bravo. and it’s been fun to watch it grow pain (aside from standard Rx’s from in quality and content over the — ANOnymOus doctors). […] years. My dad adjunctly teaches a Letter to Erowid psychopharmacology class in town and Keep up the good work. Although always lists Erowid on his syllabus of some might look at Erowid negatively, recommended readings. I’m a college I look at it positively, in the sense that After looking up information on the student and am surprised, once I I’m smart enough to research things antitussive properties of DXM, how start talking to other kids, how many before I try them, and hopefully keep shocked I was to find your website, of them know about the information myself from an early demise.
    [Show full text]
  • Mimosa Tenuiflora (Willd.) Poiret Under Water Deficit and Rewatering
    Journal of Agricultural Studies ISSN 2166-0379 2019, Vol. 7, No. 4 Gas Exchange of Mimosa tenuiflora (Willd.) Poiret Under Water Deficit and Rewatering Francisco Jose Basilio Alves, Antonio Lucineudo Oliveira Freire (Corresponding Author) Dept. of Forest Engineering, Federal University of Campina Grande, Brazil Received: Aug. 26, 2019 Accepted: Oct. 29, 2019 Published: Oct. 30, 2019 doi:10.5296/jas.v7i4.15338 URL: https://doi.org/10.5296/jas.v7i4.15338 Abstract This research aimed to evaluate the physiological responses of Mimosa tenuiflora plants submitted to variable water availability conditions during the nursery stage. Twelve-month-old plants kept in plastic pots containing 5 kg of the substrate composed of the subsoil soil mixture and bovine manure (2:1) were submitted to two treatments: irrigated (control) and water stress, which was imposed through the suspension of irrigation, rewatering after seven days of stress. The relative water content (RWC) and stomatal parameters were evaluated. The M. tenuiflora plants responded quickly to the irrigation suspension, promoting the closure of the stomata, occurring reduction in stomatal conductance, transpiration rate and photosynthesis. The instantaneous efficiency in water use of plants under water deficit remained high only until the middle of the period when irrigation was suspended, and then declined until the last day of the water deficit. After rehydration, the plants showed recovery in all evaluated parameters, indicating that the level of stress imposed did not cause irreversible damages in the cells and tissues. Keywords: water stress, drought tolerance, water relations 1. Introduction Mimosa tenuiflora (Willd.) Poiret.), popularly named ‘jurema-preta’, is one of the most commonly woody species in the Brazilian semiarid, belonging to the Mimosaceae family.
    [Show full text]
  • Mimosa Tenuiflora) (Willd.) Poir
    ETHNOGRAPHIC NOTES ON THE USE OF JUREM A (MIMOSA TENUIFLORA) (WILLD.) POIR. BY THE PANKARARE INDIANS (NORTHEAST BRAZIL). Submetido em: 02/11/2014. Aprovado em: 10/12/2014. Edilson Alves dos Santos1, Juracy Marques dos Santos1, Antônio Euzébio Goulart Santana2 1 Universidade do Estado da Bahia Campus VIII, Rua do Bom Conselho, 179, CEP 48.600-000 Paulo Afonso-BA Brazil. 2 Universidade Federal de Alagoas, Instituto de Química e Biotecnologia, Laboratório de Produtos Naturais – 57.0720970, Maceió-AL - Brazil. Corresponding author: Edilson Alves dos Santos, Departamento de Educação, Universidade do Estado da Bahia, Campus VIII, Rua do Bom Conselho, 179, CEP: 48.600-000 Paulo Afonso, BA Brazil. The Pankarare Indians are located in one of the richest areas of biodiversity in the northeastern state of Bahia in Brazi, located within the region known as the Raso da Catarina, in a quadrilateral bounded by the cities of Paulo Afonso, Jeremoabo, Canudos and Macururé. This is one of the driest regions of the state, where the caatinga (savanna) and the basins of the San Francisco and Vaza-Barris rivers served as the stage for the Cangaço (social banditry in northeast Brazil), the Canudos Revolt and the development of the hydro-based energy industry. The climate is semi-arid and the vegetation predominantly caatinga (savanna), with deciduous woody vegetation dominated by prickly seagrass, especially cacti and bromeliads (Costa Neto, 1999). More precisely, this indigenous group is found concentrated in Brejo do Burgo, 40 km from Paulo Afonso, on the northern border of Raso. A small portion of the indigenous people inhabit the Serrota (6 km south of Brejo), below Chico (Bandeira, 2003).
    [Show full text]
  • Texto Completo (Pdf)
    Etnobiología 8: 1-10, 2010 ETNOBOTÂNICA HISTÓRICA DA JUREMA NO NORDESTE BRASILEIRO Talita Maria Araújo Silva1 Valeria Veronica Dos Santos2 Argus Vasconcelos De Almeida3 1Estudante do Curso de Licenciatura em Ciências Biológicas da Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Biologia. Avenida Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, Pernambuco, CEP: 52171-900 2Estudante do Curso de Licenciatura em Ciências Biológicas da Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Biologia. Avenida Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, Pernambuco, CEP: 52171-900 3Professor Associado do Departamento de Biologia da Universidade Federal Rural de Pernambuco. Avenida Dom Manoel de Medeiros S/N, Dois Irmãos, Recife, Pernambuco, Brasil. CEP: 52171-900 [email protected] RESUMO Através da Etnobotânica é possível ter acesso a inúmeras informações que esclarecem e enriquecem os saberes a cerca dos recursos vegetais da natureza que nos rodeiam e as suas formas de utilização caracterizados pelas práticas culturais. No contexto cultural, essa ciência define a jurema como a “droga mágica” do Nordeste. Pode ser ainda mencionada como uma planta, uma bebida ou uma entidade. Atualmente, no Nordeste brasileiro são utilizadas três espécies de juremas pelos povos indígenas e nos cultos afro-brasileiros: Mimosa tenuiflora (Willd.), Mimosa verrucosa Benth. e Vitex agnus-castus L. Dessa forma, a jurema projetou-se como uma das expressivas plantas do repertório tradicional do sertanejo. Palavras-chave: etnobotânica histórica, jurema, cultura ABSTRACT By the ethnobotanical approach it is possible to have access ofinformation that clarifies and enriches the knowledge about the botanical resources ofnature around us and their ways ofuse within cultural practices.
    [Show full text]
  • Arquivo2747 1.Pdf
    UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS DA SAÚDE DEPARTAMENTO DE CIÊNCIAS FARMACÊUTICAS PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS FARMACÊUTICAS DISSERTAÇÃO DE MESTRADO AVALIAÇÃO DE ATIVIDADES FARMACOLÓGICAS DE Mimosa tenuiflora (Willd.) Poir. Lucileide Batista de Oliveira Recife – PE Fevereiro, 2011 LUCILEIDE BATISTA DE OLIVEIRA AVALIAÇÃO DE ATIVIDADES FARMACOLÓGICAS DE Mimosa tenuiflora (Willd.) Poir. Dissertação apresentada ao Programa de Pós- graduação em Ciências Farmacêuticas da Universidade Federal de Pernambuco, como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas. Área de Concentração: Avaliação e Obtenção de Produtos Naturais e Bioativos Orientadora: Profª Dra. Ivone Antônia de Souza Coorientadores: Profº Dr. Haroudo Satiro Xavier Prof° Dr. Edvaldo Rodrigues de Almeida Recife-PE Fevereiro, 2011 Oliveira, Lucileide Batista de Avaliação de atividades farmacológicas de Mimosa tenuiflora (Willd.) Poir. / Lucileide Batista de Oliveira. – Recife: O Autor, 2011. 105 folhas: il., fig. tab. Quadro. Graf.; 30 cm. Orientador: Ivone Antônia de Souza Coorientadores: Haroudo Satiro Xavier e Edvaldo Rodrigues de Almeida Dissertação (mestrado) – Universidade Federal de Pernambuco. CCS. Ciências Farmacêuticas, 2011. Inclui bibliografia e apêndice. 1. Mimosa tenuiflora. 2. Fitoquímica. 3. Toxidade aguda. 4. Sistema nervoso central. I. Souza, Ivone Antônia de. II. Xavier, Haroudo Satiro. III. Almeida, Edvaldo Rodrigues de. IV. Título. UFPE 615.7 CDD (20. Ed.) CCS2011-122 UNIVERSIDADE FEDERAL DE PERNAMBUCO
    [Show full text]
  • Current Neuropharmacology, 2019, 17, 108-128 REVIEW ARTICLE
    108 Send Orders for Reprints to [email protected] Current Neuropharmacology, 2019, 17, 108-128 REVIEW ARTICLE ISSN: 1570-159X eISSN: 1875-6190 Ayahuasca: Psychological and Physiologic Effects, Impact Factor: Pharmacology and Potential Uses in Addiction and 4.068 Mental Illness BENTHAM SCIENCE Jonathan Hamilla, Jaime Hallaka,b, Serdar M. Dursuna and Glen Bakera,* aDepartment of Psychiatry (Neurochemical Research Unit) and Neuroscience & Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; bDepartment of Neurosciences and Behavior and National Institute of Science and Technology (Translational Medicine), Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil Abstract: Background: Ayahuasca, a traditional Amazonian decoction with psychoactive proper- ties, is made from bark of the Banisteriopsis caapi vine (containing beta-carboline alkaloids) and leaves of the Psychotria viridis bush (supplying the hallucinogen N,N-dimethyltryptamine, DMT). Originally used by indigenous shamans for the purposes of spirit communication, magical experi- ences, healing, and religious rituals across several South American countries, ayahuasca has been incorporated into folk medicine and spiritual healing, and several Brazilian churches use it routinely to foster a spiritual experience. More recently, it is being used in Europe and North America, not only for religious or healing reasons, but also for recreation. Objective: To review ayahuasca’s behavioral effects, possible adverse effects, proposed mechanisms A R T I C L E H I S T O R Y of action and potential clinical uses in mental illness. Received: July 26, 2017 Method: We searched Medline, in English, using the terms ayahuasca, dimethyltryptamine, Banis- Revised: November 07, 2017 teriopsis caapi, and Psychotria viridis and reviewed the relevant publications.
    [Show full text]
  • Chemical Composition of Traditional and Analog Ayahuasca
    Journal of Psychoactive Drugs ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ujpd20 Chemical Composition of Traditional and Analog Ayahuasca Helle Kaasik , Rita C. Z. Souza , Flávia S. Zandonadi , Luís Fernando Tófoli & Alessandra Sussulini To cite this article: Helle Kaasik , Rita C. Z. Souza , Flávia S. Zandonadi , Luís Fernando Tófoli & Alessandra Sussulini (2020): Chemical Composition of Traditional and Analog Ayahuasca, Journal of Psychoactive Drugs, DOI: 10.1080/02791072.2020.1815911 To link to this article: https://doi.org/10.1080/02791072.2020.1815911 View supplementary material Published online: 08 Sep 2020. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ujpd20 JOURNAL OF PSYCHOACTIVE DRUGS https://doi.org/10.1080/02791072.2020.1815911 Chemical Composition of Traditional and Analog Ayahuasca Helle Kaasik a, Rita C. Z. Souzab, Flávia S. Zandonadib, Luís Fernando Tófoli c, and Alessandra Sussulinib aSchool of Theology and Religious Studies; and Institute of Physics, University of Tartu, Tartu, Estonia; bLaboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil; cInterdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil ABSTRACT ARTICLE HISTORY Traditional ayahuasca can be defined as a brew made from Amazonian vine Banisteriopsis caapi and Received 17 April 2020 Amazonian admixture plants. Ayahuasca is used by indigenous groups in Amazonia, as a sacrament Accepted 6 July 2020 in syncretic Brazilian religions, and in healing and spiritual ceremonies internationally.
    [Show full text]
  • Descripción, Distribución, Anatomía, Composición Química Y Usos De Mimosa Tenuiflora (Fabaceae-Mimosoideae) En México
    Rev. Biol. Trop., 48(4): 939-954, 2000 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Descripción, distribución, anatomía, composición química y usos de Mimosa tenuiflora (Fabaceae-Mimosoideae) en México Sara Lucía Camargo-Ricalde Universidad Autónoma Metropolitana-Iztapalapa; División de Ciencias Biológicas y de la Salud; Departamento de Biología; Apdo. Postal 55-535; 09340 México, D. F. Fax 58-04-46-88; correo electrónico [email protected] Recibido 28-IX-1999. Corregido 11-V-2000. Aceptado 16-VI-2000. Abstract: Because of some catastrophic events which occurred in Mexico during the 1980 decade, the utiliza- tion of “tepescohuite” bark against skin wounds and burns was popularized. The media manipulated the lack of available information about its medical properties and gave erroneous information to the society propagating a lot of myths. Therefore, the aim of this paper is to determine its taxonomic identity and to study the distribution, bark and wood anatomy of this species, and to determine its actual and historic uses, and the compilation of the information about bark pharmacology and toxicity. Its taxonomic identity is established as Mimosa tenuiflora (Willd.) Poir. (Fabaceae-Mimosoideae). It blooms and fructifies from November to June, occurring in Mexico (the states of Oaxaca and Chiapas), Guatemala, Honduras, El Salvador, Nicaragua, Panama, Colombia, Venezuela and Brazil, at altitudes of 0-1110 (-1520) m. In Mexico, it is found in dry forests, thorny thickets, Pinus and Pinus-Quercus forests, and in M. tenuiflora pure thickets, along roads and in resting or abandoned culture lands. This species has an aggregate distribution in the forests and a uniform one in the thickets.
    [Show full text]
  • Fabaceae Medicinal Flora with Therapeutic Potential in Savanna
    Revista Brasileira de Farmacognosia 28 (2018) 738–750 ww w.elsevier.com/locate/bjp Original article Fabaceae medicinal flora with therapeutic potential in Savanna areas in the Chapada do Araripe, Northeastern Brazil a,∗ b a Márcia Jordana Ferreira Macêdo , Daiany Alves Ribeiro , Maria de Oliveira Santos , b a a Delmacia Gonc¸ alves de Macêdo , Julimery Gonc¸ alves Ferreira Macedo , Bianca Vilar de Almeida , a a a,b Manuele Eufrasio Saraiva , Maria Natália Soares de Lacerda , Marta Maria de Almeida Souza a Laboratório de Ecologia Vegetal, Departamento de Ciências Biológicas, Universidade Regional do Cariri, Crato, CE, Brazil b Programa de Pós-graduac¸ ão em Etnobiologia e Conservac¸ ão da Natureza, Universidade Regional do Cariri, Crato, CE, Brazil a b s t r a c t a r t i c l e i n f o Article history: Fabaceae is one of the largest families of ethnopharmacological importance. From this botanical group, Received 11 November 2017 important chemical constituents that act in the treatment and/or healing of various bodily systems arise. Accepted 28 June 2018 The objective of this study was to evaluate the most versatile Fabaceae species and the agreement of use Available online 18 September 2018 among the informants, in the Chapada do Araripe Savanna. The research included five rural communities located in the municipalities of Nova Olinda, Crato, Barbalha, Moreilândia and Exu, covering the states Keywords: of Ceará and Pernambuco. We conducted semi-structured interviews with 126 informants, adopting the Ethnopharmacology snowball technique and using a standardized form. The relative importance and the Informant Consensus Legumes Factor were analyzed for the selection of species with therapeutic potential.
    [Show full text]
  • A Comprehensive Review of the Ethnotraditional Uses and Biological and Pharmacological Potential of the Genus Mimosa
    International Journal of Molecular Sciences Review A Comprehensive Review of the Ethnotraditional Uses and Biological and Pharmacological Potential of the Genus Mimosa Ismat Majeed 1, Komal Rizwan 2, Ambreen Ashar 1 , Tahir Rasheed 3 , Ryszard Amarowicz 4,* , Humaira Kausar 5, Muhammad Zia-Ul-Haq 6 and Luigi Geo Marceanu 7 1 Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan; [email protected] (I.M.); [email protected] (A.A.) 2 Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan; [email protected] 3 School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; [email protected] 4 Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, Poland 5 Department of Chemistry, Lahore College for Women University, Lahore 54000, Pakistan; [email protected] 6 Office of Research, Innovation & Commercialization, Lahore College for Women University, Lahore 54000, Pakistan; [email protected] 7 Faculty of Medicine, Transilvania University of Brasov, 500019 Brasov, Romania; [email protected] * Correspondence: [email protected]; Tel.: +48-89-523-4627 Abstract: The Mimosa genus belongs to the Fabaceae family of legumes and consists of about Citation: Majeed, I.; Rizwan, K.; 400 species distributed all over the world. The growth forms of plants belonging to the Mimosa Ashar, A.; Rasheed, T.; Amarowicz, R.; genus range from herbs to trees. Several species of this genus play important roles in folk medicine. Kausar, H.; Zia-Ul-Haq, M.; In this review, we aimed to present the current knowledge of the ethnogeographical distribution, Marceanu, L.G.
    [Show full text]
  • Evaluation of the Cytotoxicity of Ayahuasca Beverages
    molecules Article Evaluation of the Cytotoxicity of Ayahuasca Beverages Ana Y. Simão 1,2, Joana Gonçalves 1,2, Ana Gradillas 3 , Antonia García 3, José Restolho 1, Nicolás Fernández 4, Jesus M. Rodilla 5 ,Mário Barroso 6, Ana Paula Duarte 1,2 , Ana C. Cristóvão 1,7,* and Eugenia Gallardo 1,2,* 1 Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; [email protected] (A.Y.S.); [email protected] (J.G.); [email protected] (J.R.); [email protected] (A.P.D.) 2 Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal 3 CEMBIO, Center for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Campus Monteprincipe, Boadilla del Monte, 28668 Madrid, Spain; [email protected] (A.G.); [email protected] (A.G.) 4 Cátedra de Toxicología y Química Legal, Laboratorio de Asesoramiento Toxicológico Analítico (CENATOXA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Ciudad Autónoma de Buenos Aires (CABA), Buenos Aires C1113AAD, Argentina; nfernandez@ffyb.uba.ar 5 Materiais Fibrosos e Tecnologias Ambientais—FibEnTech, Departamento de Química, Universidade da Beira Interior, Rua Marquês D’Ávila e Bolama, 6201-001 Covilhã, Portugal; [email protected] 6 Instituto Nacional de Medicina Legal e Ciências Forenses, Serviço de Química e Toxicologia Forenses, Delegação do Sul, Rua Manuel Bento de Sousa n.◦3, 1169-201 Lisboa, Portugal; [email protected] 7 NEUROSOV, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal * Correspondence: [email protected] (A.C.C.); [email protected] (E.G.); Tel.: +351-275-329-002/3 (A.C.C.
    [Show full text]