Theoretical and Mathematical Physics New Books and Highlights in 2020/2021

Total Page:16

File Type:pdf, Size:1020Kb

Theoretical and Mathematical Physics New Books and Highlights in 2020/2021 Now available on WorldSciNet Theoretical and Mathematical Physics New Books and Highlights in 2020/2021 Textbook Textbook Textbook Mathematical Methods of Theoretical Physics Roman Jackiw by Karl Svozil (Technische Universität Wien, Austria) 80th Birthday Festschrift edited by Antti Niemi (University of Stockholm, Sweden), This book contains very detailed proofs and demonstrations of common Terry Tomboulis (University of California, Los Angeles, USA) & mathematical methods used in theoretical physics. It combines and unifies Kok Khoo Phua (Nanyang Technological University, Singapore) many expositions of the subject and thus is accessible to a very wide range of students, such as those interested in experimental and applied physics. The ○ Dedicated to Roman Jackiw, a theoretical physicist known for content is divided into three parts: linear vector spaces, functional analysis his fundamental contributions in high energy physics, gravita- and differential equations. tion, condensed matter and the physics of fluids. ○ With contributions from prominent scientists including two No- 332pp Mar 2020 bel laureates and one Field Medalist. 978-981-120-840-9 US$78 £70 ○ Also included are personal recollections and humorous anec- dotes from Jackiw’s friends and colleagues. Lectures on Quantum Field Theory 336pp Aug 2020 (2nd Edition) 978-981-121-066-2 US$118 £105 by Ashok Das (University of Rochester, USA) “Comprehensive yet at the beginner’s level, lucid and informal, this new An Introduction to Inverse Problems in Physics edition of Lectures on Quantum Field Theory contains new material by M Razavy (University of Alberta, Canada) including two new chapters and two additional appendices. The book This book is a compilation of different methods of formulating and solving will be of interest to students of mathematics and theoretical physics, inverse problems in physics from classical mechanics to the potentials and teachers and researchers.” nucleus-nucleus scattering. The emphasis here is on finding numerical SirReadaLot.org solutions to complicated equations. A detailed discussion is presented on This book comprises the lectures of a two-semester course on quantum field the use of continued fractional expansion, its power and its limitation as theory, presented in an informal and personal manner. The course starts applied to various physical problems. In particular, the inverse problem with relativistic one-particle systems, and develops the basics of quantum for discrete form of the wave equation is given a detailed exposition and field theory with an analysis on the representations of the Poincaré group. applied to atomic and nuclear scattering. This technique is also used for inverse problem of geomagnetic induction and one-dimensional electrical 940pp Aug 2020 conductivity. Among other topics covered are the inverse problem of torsional 978-981-122-086-9 US$198 £175 vibration, and also a chapter on the determination of the motion of a body 978-981-122-216-0(pbk) US$98 £85 with reflecting surface from its reflection coefficient. Subscribe / Recommend 388pp Jul 2020 to your Librarian! 978-981-122-166-8 US$118 £105 FREE Access to featured articles at https://worldscientific.com/ijmpc Prefer Digital? View this online at *Please log in to your existing account or Details on https://tinyurl.com/mathphys21 register for a FREE account to enjoy this. page 6 THEORETICAL AND MATHEMATICAL PHYSICS: NEW AND BESTSELLING BOOKS IN 2020/2021 Concepts in Relativistic Understanding Gravity Dynamics The Generation Model Approach by Lawrence Horwitz (Tel Aviv University, by Brian Albert Robson (Australian National University, Australia) Ramat Aviv, Israel & Bar Ilan University, Ramat At present, one of the deepest problems in theoretical physics is harmonizing Gan, Israel & Ariel University, Ariel, Israel) General Relativity, which describes gravitation, with quantum mechanics, This book deals with underlying basic concepts in which describes the other three fundamental forces acting on the atomic relativity. The fundamental work of Stueckelberg, scale. This book aims to provide an understanding of gravity in terms of a who formulated a consistent relativistic classical quantum theory given by the Generation Model, an alternative to the Standard and quantum dynamics, generalized for application Model of particle physics. The author presents a fully quantum theory of to many-body systems by Horwitz and Piron (SHP gravity, which describes both the large cosmological scale and the small theory), is explained with emphasis on its conceptual content. This book atomic scale interactions between all particles. also includes a wealth of new concepts this work has uncovered, such as 200pp Jul 2021 the recent embedding of SHP theory into general relativity which generates 978-981-121-491-2 US$88 £75 many new ideas with application to stellar dynamics and cosmology. 150pp Dec 2021 978-981-120-731-0 US$78 £70 Mathematical Models in Science by Olav Arnfinn Laudal (University of Oslo, Norway) A Mathematics Primer for Physics Students Mathematical Models in Science treats General by Andrew E Blechman (Wayne State University, USA) Relativity and Quantum Mechanics in a non- Key Features: commutative Algebraic Geometric framework. ○ Covers mathematical methods needed in advanced The author proposes a Toy Model as a Theory of undergraduate or early graduate physics studies Everything, starting with the notion of the Big Bang ○ Includes a wide range of topics: linear algebra, vector and in Cosmology modelled as the non-commutative tensor analysis, geometric tools such as metrics and curvature, deformation of a thick point. From this point, the mathematical groups, etc., avoiding the need to get several author shows how to extract reasonable models for books or plow through more advanced texts. both General Relativity and Quantum Theory. This book concludes that the ○ Emphasizes on examples that you would see in physics universe turns out to be the 6-dimensional Hilbert scheme of pairs of points problems with less formalism and proof, suitable for students in affine 3-space. With this in place, one may develop within the model much who are not necessarily studying the pure mathematics of the physics known to the reader. In particular, this theory is applicable to the concept of Dark Matter and its effects on our visual universe. 300pp Jun 2021 978-981-3238-01-5 US$78 £69 274pp Jun 2021 Textbook 978-1-80061-027-9 US$88 £75 Lectures of David Olive on Gauge Theories and Lie Algebras Solid Acoustic Waves and Vibration Theory and With Some Applications to Spontaneous Applications Symmetry Breaking and Integrable Dynamical by Li-Feng Ge (Anhui University, China) Systems With Foreword by Lars Brink This book discusses the fundamental theory of solid acoustic waves edited by Andreas Fring (City, University of and vibration that plays a key role in the modelling of micro- and nano- London, UK) & Neil Turok (Perimeter Institute electromechanical systems. There is a complex and delicate structure for Theoretical Physics, Canada) in characteristic values, which is revealed by introducing a conceptual Professor David Olive was a renowned British system including space operator, space-time variable, reference Poisson’s theoretical physicist who made seminal ratio, etc., and developing the analytical models for all limiting cases. This contributions to superstrings, quantum gauge theories and mathematical interdisciplinary approach provides a physical basis for the study of some physics, for which he was awarded the Dirac Medal together with his long- frontier subject areas, such as mCUTs for biomedical imaging, mUMRs for standing collaborator Peter Goddard. These lectures, delivered by David biochemical sensing and monitoring including micro-nano plate, micro-nano Olive in 1982 at the University of Virginia, show his visionary conjectures beam, nanowire, FBAR, LAW and SAW ultrasonic resonators. and exceptionally clear and insightful style of exposition. They provide a 380pp Jul 2021 pedagogical, self-contained introduction to some of the most complex topics 978-981-123-500-9 US$138 £120 in quantum gauge theory, such as Lie algebras, electromagnetic duality and integrable models. Readership: Graduate students and academics interested in quantum field theory. Textbook Inspection Copy 170pp Jun 2021 Email: [email protected] 978-981-3237-57-5 US$68 £60 Textbook or scan the QR code FIND THESE BOOKS VALUABLE TO YOUR COMMUNITY? eTextbooks Available! RECOMMEND THEM Digital resources made convenient TO YOUR LIBRARIAN. for your students at a lower cost. 2 Prefer Digital? View this flyer online at https://tinyurl.com/mathphys21 THEORETICAL AND MATHEMATICAL PHYSICS: NEW AND BESTSELLING BOOKS IN 2020/2021 Structural Aspects of Quantum Field Differential Geometry through Theory and Noncommutative Geometry Supersymmetric Glasses In 2 Volumes (2nd Edition) by A V Smilga (University of Nantes, France) by (University of Kiel, Germany) Gerhard Grensing “Professor Smilga has contributed in many of these Reviews of the First Edition: developments and the book has been written by expert “This self-contained, comprehensive first volume presents a hands. The reader will navigate through the theory of fundamental and careful introduction to quantum field theory. Special Geometric Structures explained both from traditional It will be welcomed by students as well as researchers, since Differential Geometry and Supersymmetry points of view. The it gives an overview of the origin and development of the material
Recommended publications
  • Interview Call List for the Junior Research Fellow (JRF) Positions Department of Solid State Physics (SSP), IACS Kolkata
    Interview call list for the Junior Research Fellow (JRF) positions Department of Solid State Physics (SSP), IACS Kolkata Research opportunities at the Department of Solid State Physics, IACS Kolkata: The faculty members of the Department of Solid State Physics are actively engaged in cutting edge research in various areas of Experimental and Theoretical Condensed Matter Physics. JRF positions are available in the group of following faculty members: Available positions: 1). Experimental Condensed Matter Physics: Prof. A.J. Pal, Prof. S. Giri, Dr. S. Datta, Dr. M. Mandal and Dr. D. Mukherjee 2). Theoretical and Computational Condensed Matter Physics: Prof. I. Dasgupta More details about the research activities of the above mentioned faculty members are available in their respective web-page. -------------------------------------------- Interview Schedule Wednesday, 03/January/2018 Time - 10:30 am to 2 pm Reporting at 10 am, Office of SSP, Room-215, Centenary Building, IACS Sr No Name Address Vill-Hatabari(Malancha Abasan), P.O-Contai A_1 Abhishek Maiti, Jadavpur University Dist-Purba Medinipur, West Bengal-721401 ARNAB BERA VILL-CHABBISHPUR, P.O-DHARASIMUL, A_2 Ramakrishna Mission DIST-HOOGHLY, PIN-712416 Vivekananda University WEST BENGAL ASHOK DAS VILL- NIRODGARH, P.O+ P.S- PANDUA, A_3 Burdwan University DIST- HOOGHLY, PIN NO-712149 BISWAJIT PABI Vill- Bonsujapur, P.O.- Galigram (M.P.), P.S.- A_4 Burdwan University Galsi, Dist- Purba Bardhaman Pin-713406 Chumki Nayak Vill+P.O- Jamgora, Dist- Paschim , Bardhaman, A_5 Kazi Nazrul University Pin- 713385,W.B. C/O-SUKDEB DINDA, Deb Kumar Dinda VILL+P.O.-SUBDI, P.S.-NANDIGRAM, A_6 West Bengal State University DIST-PURBA MEDINIPUR, PIN-721430 Debjani Banerjee vill.-Goswamipur, P.O.- Beliatore, P.S.- A_7 Kazi Nazrul University Beliatore, Dist.-Bankura, West Bengal-722203 Debraj Bose 118/1, Briji West Manikanchan Appt, Garia A_8 University of Hyderabad Kolkata -700084 Time - 3 pm to 6:30 pm Reporting at 2:30 pm, Office of SSP, Room-215, Centenary Building, IACS Sr.
    [Show full text]
  • Roman Jackiw: a Beacon in a Golden Period of Theoretical Physics
    Roman Jackiw: A Beacon in a Golden Period of Theoretical Physics Luc Vinet Centre de Recherches Math´ematiques, Universit´ede Montr´eal, Montr´eal, QC, Canada [email protected] April 29, 2020 Abstract This text offers reminiscences of my personal interactions with Roman Jackiw as a way of looking back at the very fertile period in theoretical physics in the last quarter of the 20th century. To Roman: a bouquet of recollections as an expression of friendship. 1 Introduction I owe much to Roman Jackiw: my postdoctoral fellowship at MIT under his supervision has shaped my scientific life and becoming friend with him and So Young Pi has been a privilege. Looking back at the last decades of the past century gives a sense without undue nostalgia, I think, that those were wonderful years for Theoretical Physics, years that have witnessed the preeminence of gauge field theories, deep interactions with modern geometry and topology, the overwhelming revival of string theory and remarkably fruitful interactions between particle and condensed matter physics as well as cosmology. Roman was a main actor in these developments and to be at his side and benefit from his guidance and insights at that time was most fortunate. Owing to his leadership and immense scholarship, also because he is a great mentor, Roman has always been surrounded by many and has thus arXiv:2004.13191v1 [physics.hist-ph] 27 Apr 2020 generated a splendid network of friends and colleagues. Sometimes, with my own students, I reminisce about how it was in those days; I believe it is useful to keep a memory of the way some important ideas shaped up and were relayed.
    [Show full text]
  • Ashok Das ADDRESS
    CURRICULUM VITAE NAME: Ashok Das ADDRESS: Department of Physics and Astronomy University of Rochester Rochester, NY 14627-0171 Telephone: 585-275-2955 Fax: 585-276-0018 Email: [email protected] 7 Dawn Valley Drive Rochester, NY 14623-5293 Telephone: 585-359-9054 DATE OF BIRTH: March 23, 1953 NATIONALITY: USA EDUCATION: B.S. (Honours) University of Delhi, India 1972 M.S. University of Delhi, India 1974 Ph.D. SUNY at Stony Brook, 1977 THESIS: Spin 3/2 Fields and Supergravity Theories HONOURS: lst in 40,000 candidates in H.S.C. Examination (1968). 2nd in 3,000 candidates in P.U.S. Examination (1969). 2nd in 300 candidates in B.S. (Honors) Examination (1972). 2nd in 200 candidates in M.S. Examination (1974). Excellence in Undergraduate Teaching Dept. of Physics and Astronomy, University of Rochester, 1987. Excellence in Undergraduate Teaching Dept. of Physics and Astronomy, University of Rochester, 1990. Edward Peck Curtis Award for Excellence in Undergraduate Teaching University of Rochester, 1991. Excellence in Undergraduate Teaching Dept. Physics and Astronomy, University of Rochester, 1997. Excellence in Undergraduate Teaching Dept. Physics and Astronomy, University of Rochester, 2005. William H. Riker University Award for Excellence in Graduate Teaching University of Rochester, 2005. 1 Outstanding Junior Investigator (DOE), 1983{1989. Head, High Energy Theory Group, 1990{1995. Fulbright Fellowship, 1997{1998. Fellow, American Physical Society, 2002. Rockefeller Foundation Award (for residency in Bellagio), 2004. Fulbright Fellowship, 2006-2007. SCHOLARSHIPS: National Merit Scholar 1968{1972 (India) University Grants Commission Scholar 1972{1974 (India) PROFESSIONAL POSITIONS: 1977{1979, City College of New York, Research Associate.
    [Show full text]
  • Quantum Field Theory for Economics and Finance Belal Ehsan Baaquie Frontmatter More Information
    Cambridge University Press 978-1-108-42315-1 — Quantum Field Theory for Economics and Finance Belal Ehsan Baaquie Frontmatter More Information QUANTUM FIELD THEORY FOR ECONOMICS AND FINANCE An introduction to how the mathematical tools from quantum field theory can be applied to economics and finance, this book provides a wide range of quan- tum mathematical techniques for designing financial instruments. The ideas of Lagrangians, Hamiltonians, state spaces, operators and Feynman path integrals are demonstrated to be the mathematical underpinning of quantum field theory and are employed to formulate a comprehensive mathematical theory of asset pricing as well as of interest rates, which are validated by empirical evidence. Numerical algorithms and simulations are applied to the study of asset pricing models as well as of nonlinear interest rates. A range of economic and financial topics is shown to have quantum mechanical formulations, including options, coupon bonds, nonlinear interest rates, risky bonds and the microeconomic action functional. This is an invaluable resource for experts in quantitative finance and in mathematics who have no specialist knowledge of quantum field theory. belal ehsan baaquie is a professor at the International Centre for Education in Islamic Finance. He received his training in theoretical physics at Caltech and Cornell University, specializing in quantum field theory. He later developed an interest in finance and economics, and started applying quantum mathematics to these fields. He has written two books on quantum finance: Quantum Finance (Cambridge University Press, 2007) and Interest Rates and Coupon Bonds in Quantum Finance (Cambridge University Press, 2009), in addition to several other books focusing on topics from quantum mechanics and mathematics to books on leading ideas in science.
    [Show full text]
  • Reflections on a Revolution John Iliopoulos, Reply by Sheldon Lee Glashow
    INFERENCE / Vol. 5, No. 3 Reflections on a Revolution John Iliopoulos, reply by Sheldon Lee Glashow In response to “The Yang–Mills Model” (Vol. 5, No. 2). Internal Symmetries As Glashow points out, particle physicists distinguish To the editors: between space-time and internal symmetry transforma- tions. The first change the point of space and time, leaving Gauge theories brought about a profound revolution in the the fundamental equations unchanged. The second do not way physicists think about the fundamental forces. It is this affect the space-time point but transform the dynamic vari- revolution that is the subject of Sheldon Glashow’s essay. ables among themselves. This fundamentally new concept Gauge theories, such as the Yang–Mills model, use two was introduced by Werner Heisenberg in 1932, the year mathematical concepts: group theory, which is the natural the neutron was discovered, but the real history is more language to describe the physical property of symmetry, complicated.3 Heisenberg’s 1932 papers are an incredible and differential geometry, which connects in a subtle way mixture of the old and the new. For many people at that symmetry and dynamics. time, the neutron was a new bound state of a proton and Although there exist several books, and many more an electron, like a small hydrogen atom. Heisenberg does articles, relating historical aspects of these theories,1 a not reject this idea. Although for his work he considers real history has not yet been written. It may be too early. the neutron as a spin one-half Dirac fermion, something When a future historian undertakes this task, Glashow’s incompatible with a proton–electron bound state, he notes precise, documented, and authoritative essay will prove that “under suitable circumstances [the neutron] can invaluable.
    [Show full text]
  • 2017 Breakthrough Prizes in Mathematics and Fundamental
    COMMUNICATION 2017 Breakthrough Prizes Awarded Jean Bourgain Joseph Polchinski Andrew Strominger Cumrun Vafa Breakthrough Prize in Mathematics be obtained from the results of Weil and Deligne on the Jean Bourgain of the Institute for Advanced Study, Riemann hypothesis over finite fields), as well as the de- Princeton, New Jersey, has been selected as the recipient velopment (with Gamburd and Sarnak) of the affine sieve of the 2017 Breakthrough Prize in Mathematics by the that has proven to be a powerful tool for analyzing thin Breakthrough Prize Foundation. Bourgain was honored for groups. Most recently, with Demeter and Guth, Bourgain “major contributions across an incredibly diverse range of has established several important decoupling theorems areas, including harmonic analysis, functional analysis, er- in Fourier analysis that have had applications to partial godic theory, partial differential equations, mathematical differential equations, combinatorial incidence geometry, physics, combinatorics, and theoretical computer science.” and analytic number theory, in particular solving the Main The prize carries a cash award of US$3 million. Conjecture of Vinogradov, as well as obtaining new bounds The Notices asked Terence Tao of the University of Cal- on the Riemann zeta function.” ifornia Los Angeles to comment on the work of Bourgain (Tao was on the Breakthrough Prize committee and was Biographical Sketch: Jean Bourgain also one of the nominators of Bourgain). Tao responded: Jean Bourgain was born in 1954 in Oostende, Belgium. He “Jean Bourgain is an unparalleled problem-solver in anal- received his PhD (1977) and his habilitation (1979) from ysis who has revolutionized many areas of the subject by the Free University of Brussels.
    [Show full text]
  • PHYSICS 2. Year of Establishment
    Evaluative Report of the Department 1. Name of the Department : PHYSICS 2. Year of establishment : in 1947, in Govt. College, Hoshiarpur (Punjab). In August 1958, the department was shifted to the present campus. 3. Is the Department part of a School/Faculty of the university? : Yes , Faculty of University. 4. Names of programmes offered (UG, PG, M.Phil., Ph.D., Integrated Masters; Integrated Ph.D., D.Sc., D.Litt., etc.) : UG, PG, Ph.D 5. Interdisciplinary programmes and departments involved: Teaching and research work: M.Tech in Nano Science & Nano Technology and Medical Physics. 6. Courses in collaboration with other universities, industries, foreign institutions, etc. :NIL 7. Details of programmes discontinued, if any, with reasons : M.Phil(2012-2013) 8. Examination System: Annual/Semester/Trimester/Choice Based Credit System : SEMESTER 9. Participation of the department in the courses offered by other departments : Few faculty members are Adjunct faculty in M.Tech. Nano Science & Nano Technology. Teaching is also carried out in Medical Physics. 10. Number of teaching posts sanctioned, filled and actual (Professors/Associate Professors/Asst. Professors/others) Sanctioned Filled Actual (including (CAS & MPS) Professor 13 8 Associate Professors 13 5 Asst. Professors 20 11 Others 7 ( re- employed 11. Faculty profile with name, qualification, designation, area of specialization, experience and research under guidance : ANNEXURE I Name Qualification Designation Specialization No. of Years N0. of of Experience Ph.D./ M.Phil Students guides for the last 4 years 12. List of senior Visiting Fellows, adjunct faculty, emeritus professors : List attached as Annexure II 13. Percentage of classes taken by temporary faculty – programme-wise information: Nil 14.
    [Show full text]
  • What Comes Beyond the Standard Models Bled, July 11–19, 2016
    i i “proc16” — 2016/12/12 — 10:17 — page I — #1 i i BLEJSKE DELAVNICE IZ FIZIKE LETNIK 17, STˇ . 2 BLED WORKSHOPS IN PHYSICS VOL. 17, NO. 2 ISSN 1580-4992 Proceedings to the 19th Workshop What Comes Beyond the Standard Models Bled, July 11–19, 2016 Edited by Norma Susana MankoˇcBorˇstnik Holger Bech Nielsen Dragan Lukman DMFA – ZALOZNIˇ STVOˇ LJUBLJANA, DECEMBER 2016 i i i i i i “proc16” — 2016/12/12 — 10:17 — page II — #2 i i The 19th Workshop What Comes Beyond the Standard Models, 11.– 19. July 2016, Bled was organized by Society of Mathematicians, Physicists and Astronomers of Slovenia and sponsored by Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana Society of Mathematicians, Physicists and Astronomers of Slovenia Beyond Semiconductor (MatjaˇzBreskvar) Scientific Committee John Ellis, CERN Roman Jackiw, MIT Masao Ninomiya, Okayama Institute for Quantum Physics Organizing Committee Norma Susana MankoˇcBorˇstnik Holger Bech Nielsen Maxim Yu. Khlopov The Members of the Organizing Committee of the International Workshop “What Comes Beyond the Standard Models”, Bled, Slovenia, state that the articles published in the Proceedings to the 19th Workshop “What Comes Beyond the Standard Models”, Bled, Slovenia are refereed at the Workshop in intense in-depth discussions. i i i i i i “proc16” — 2016/12/12 — 10:17 — page III — #3 i i Workshops organized at Bled . What Comes Beyond the Standard Models (June 29–July 9, 1998), Vol. 0 (1999) No. 1 (July 22–31, 1999) (July 17–31, 2000) (July 16–28, 2001), Vol. 2 (2001) No. 2 (July 14–25, 2002), Vol.
    [Show full text]
  • Conceptual Foundations of Quantum Field Theory Quantum Field Theory Is a Powerful Language for the Description of The
    Conceptual foundations of quantum ®eld theory Quantum ®eld theory is a powerful language for the description of the sub- atomic constituents of the physical world and the laws and principles that govern them. This book contains up-to-date in-depth analyses, by a group of eminent physicists and philosophers of science, of our present understanding of its conceptual foundations, of the reasons why this understanding has to be revised so that the theory can go further, and of possible directions in which revisions may be promising and productive. These analyses will be of interest to students of physics who want to know about the foundational problems of their subject. The book will also be of interest to professional philosophers, historians and sociologists of science. It contains much material for metaphysical and methodological re¯ection on the subject; it will also repay historical and cultural analyses of the theories discussed in the book, and sociological analyses of the way in which various factors contribute to the way the foundations are revised. The authors also re¯ect on the tension between physicists on the one hand and philosophers and historians of science on the other, when revision of the foundations becomes an urgent item on the agenda. This work will be of value to graduate students and research workers in theoretical physics, and in the history, philosophy and sociology of science, who have an interest in the conceptual foundations of quantum ®eld theory. For Bob and Sam Conceptual foundations of quantum ®eld theory EDITOR TIAN YU CAO Boston University PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge CB2 1RP, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cup.cam.ac.uk 40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org 10 Stamford Road, Oakleigh, Melbourne 3166, Australia # Cambridge University Press 1999 This book is in copyright.
    [Show full text]
  • Swarthmore College Bulletin (June 1997)
    SSWWAARRTTHHMMOORREE College Bulletin June 1997 The Future of Dying Tom Preston ’55 on physician- assisted suicide Eugene M. Lang ’38, shown here surrounded by some of the current Lang Opportunity Scholars, has pledged $30 million to Swarthmore, the largest gift in College history and among the most generous ever given to a liberal arts college. Lang came to the campus in April E E L to meet prospective Lang G N E J - G Scholars for the Class of N E D 2001. For more on Eugene Lang’s “Fund for the Future,” please turn to page 6. SWARTHMORE COLLEGE BULLETIN • JUNE 1997 10 The New Face of Honors The Honors Program had fallen on hard times when the faculty voted sweeping reforms in 1994. Now enrollment is up, and students are enjoying new flexibility in preparing for external exams. Take a look at what’s happened to the College’s signa- ture program through the eyes of faculty members and students. Editor: Jeffrey Lott D Associate Editor: Nancy Lehman ’87 16 Elegant Euclid News Editor: Kate Downing Former math hater Nick Jackiw ’88 invented one of the most Class Notes Editor: Carol Brévart F widely used software programs in mathematics education, Desktop Publishing: Audree Penner R Geometer’s Sketchpad. With it two 16-year-olds created a novel T Designer: Bob Wood solution to a problem first posed by Euclid 2,300 years ago. Editor Emerita: Maralyn Orbison Gillespie ’49 A P6 P4 P2 By Eric Rich Associate Vice President for External Affairs: Barbara Haddad Ryan ’59 20 The Future of Dying Cover: Physician and Supreme Modern medicine has changed the nature of dying, argues Court plaintiff Thomas Preston ’55.
    [Show full text]
  • Hans Bethe, My Teacher
    Hans Bethe, My Teacher The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Jackiw, Roman. “Hans Bethe, My Teacher.” Physics in Perspective (PIP) 11.1 (2009): 98-103. As Published http://dx.doi.org/10.1007/s00016-008-0412-4 Publisher Birkhäuser Basel Version Original manuscript Citable link http://hdl.handle.net/1721.1/51720 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Hans Bethe, My Teachera Roman Jackiwb I sketch my experiences with Hans Bethe (1906-2005) as a teacher at Cornell University, beginning with my doctoral studies in 1961 and continuing with my work with him on an intermediate textbook on quantum mechanics. Key Words: Hans A. Bethe; Cornell University; physics teaching; nuclear physics; quantum mechanics. In recent times we have seen many appreciations and testimonials about Hans Bethe’s outstanding achievements: extraordinary breadth of physics research, significant involvement with social, political, and policy issues, important activity in the industrial and technological arenas. I am sure Hans would be pleased with these encomiums. But perhaps he would wonder why there is little mention of his qualities as pedagogue. After all, Professor Bethe was fundamentally a teacher, imparting his knowledge not only to physics colleagues, not only to people in society, government, and industry, but most importantly also to students, many of whom became distinguished physicists. Even though he received the Oersted Medal of the American Association of Physics Teachers in 1983 for his teaching, I think that this aspect of his a Based on my talk at the Bethe Memorial, Aspen Center for Physics, Aspen, CO, in August 2006.
    [Show full text]
  • Quantum [Un]Speakables Springer-Verlag Berlin Heidelberg Gmbh
    Quantum [Un]speakables Springer-Verlag Berlin Heidelberg GmbH ONLINE LIBRARY Physics and Astronomy http://www.springer.de/phys/ R.A. Bertlmann A. Zeilinger Quantum [Un]speakables From Bell to Quantum Information With 141 Figures, 4 in Color t Springer Professor Dr. Reinhold A. Bertlmann University of Vienna, Institute for Theoretical Physics Boltzmanngasse 5, 1090 Vienna, Austria e-mail: [email protected] Professor Dr. Anton Zeilinger University of Vienna, Institute for Experimental Physics Boltzmanngasse 5, 1090 Vienna, Austria e-mail: [email protected] Library of Congress Cataloging-in-Publication Data Quantum [un]speakables : from Bell to quantum information I [edited by] R.A. Bertimann, A. Zeilinger. p. cm. Includes biblographical references and index. ISBN 3540427562 (acid-free pa­ per) 1. Bell's theorem--Congresses. 3. Bell, J.S.--Congress. I. Bell, J.S. II. Bertlmann, Reinhold A. III. Zeilinger, Anton. QC174.17.B45 Q36 2002 530.12--dc21 2002021641 ISBN 978-3-642-07664-0 ISBN 978-3-662-05032-3 (eBook) DOI 10.1007/978-3-662-05032-2 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag Berlin Heidelberg GmbH. Violations are liable for prosecution under the German Copyright Law.
    [Show full text]