The Chiral Anomaly
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thermal Evolution of the Axial Anomaly
Thermal evolution of the axial anomaly Gergely Fej}os Research Center for Nuclear Physics Osaka University The 10th APCTP-BLTP/JINR-RCNP-RIKEN Joint Workshop on Nuclear and Hadronic Physics 18th August, 2016 G. Fejos & A. Hosaka, arXiv: 1604.05982 Gergely Fej}os Thermal evolution of the axial anomaly Outline aaa Motivation Functional renormalization group Chiral (linear) sigma model and axial anomaly Extension with nucleons Summary Gergely Fej}os Thermal evolution of the axial anomaly Motivation Gergely Fej}os Thermal evolution of the axial anomaly Chiral symmetry is spontaneuously broken in the ground state: < ¯ > = < ¯R L > + < ¯L R > 6= 0 SSB pattern: SUL(Nf ) × SUR (Nf ) −! SUV (Nf ) Anomaly: UA(1) is broken by instantons Details of chiral symmetry restoration? Critical temperature? Axial anomaly? Is it recovered at the critical point? Motivation QCD Lagrangian with quarks and gluons: 1 L = − G a G µνa + ¯ (iγ Dµ − m) 4 µν i µ ij j Approximate chiral symmetry for Nf = 2; 3 flavors: iT aθa iT aθa L ! e L L; R ! e R R [vector: θL + θR , axialvector: θL − θR ] Gergely Fej}os Thermal evolution of the axial anomaly Details of chiral symmetry restoration? Critical temperature? Axial anomaly? Is it recovered at the critical point? Motivation QCD Lagrangian with quarks and gluons: 1 L = − G a G µνa + ¯ (iγ Dµ − m) 4 µν i µ ij j Approximate chiral symmetry for Nf = 2; 3 flavors: iT aθa iT aθa L ! e L L; R ! e R R [vector: θL + θR , axialvector: θL − θR ] Chiral symmetry is spontaneuously broken in the ground state: < ¯ > = < ¯R L > + < ¯L R -
Chiral Anomaly Without Relativity Arxiv:1511.03621V1 [Physics.Pop-Ph]
Chiral anomaly without relativity A.A. Burkov Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, and ITMO University, Saint Petersburg 197101, Russia Perspective on J. Xiong et al., Science 350, 413 (2015). The Dirac equation, which describes relativistic fermions, has a mathematically inevitable, but puzzling feature: negative energy solutions. The physical reality of these solutions is unques- tionable, as one of their direct consequences, the existence of antimatter, is confirmed by ex- periment. It is their interpretation that has always been somewhat controversial. Dirac’s own idea was to view the vacuum as a state in which all the negative energy levels are physically filled by fermions, which is now known as the Dirac sea. This idea seems to directly contradict a common-sense view of the vacuum as a state in which matter is absent and is thus generally disliked among high-energy physicists, who prefer to regard the Dirac sea as not much more than a useful metaphor. On the other hand, the Dirac sea is a very natural concept from the point of view of a condensed matter physicist, since there is a direct and simple analogy: filled valence bands of an insulating crystal. There exists, however, a phenomenon within the con- arXiv:1511.03621v1 [physics.pop-ph] 26 Oct 2015 text of the relativistic quantum field theory itself, whose satisfactory understanding seems to be hard to achieve without assigning physical reality to the Dirac sea. This phenomenon is the chiral anomaly, a quantum-mechanical violation of chiral symmetry, which was first observed experimentally in the particle physics setting as a decay of a neutral pion into two photons. -
Roman Jackiw: a Beacon in a Golden Period of Theoretical Physics
Roman Jackiw: A Beacon in a Golden Period of Theoretical Physics Luc Vinet Centre de Recherches Math´ematiques, Universit´ede Montr´eal, Montr´eal, QC, Canada [email protected] April 29, 2020 Abstract This text offers reminiscences of my personal interactions with Roman Jackiw as a way of looking back at the very fertile period in theoretical physics in the last quarter of the 20th century. To Roman: a bouquet of recollections as an expression of friendship. 1 Introduction I owe much to Roman Jackiw: my postdoctoral fellowship at MIT under his supervision has shaped my scientific life and becoming friend with him and So Young Pi has been a privilege. Looking back at the last decades of the past century gives a sense without undue nostalgia, I think, that those were wonderful years for Theoretical Physics, years that have witnessed the preeminence of gauge field theories, deep interactions with modern geometry and topology, the overwhelming revival of string theory and remarkably fruitful interactions between particle and condensed matter physics as well as cosmology. Roman was a main actor in these developments and to be at his side and benefit from his guidance and insights at that time was most fortunate. Owing to his leadership and immense scholarship, also because he is a great mentor, Roman has always been surrounded by many and has thus arXiv:2004.13191v1 [physics.hist-ph] 27 Apr 2020 generated a splendid network of friends and colleagues. Sometimes, with my own students, I reminisce about how it was in those days; I believe it is useful to keep a memory of the way some important ideas shaped up and were relayed. -
Effective Lagrangian for Axial Anomaly and Its Applications in Dirac And
www.nature.com/scientificreports OPEN Efective lagrangian for axial anomaly and its applications in Dirac and Weyl semimetals Received: 25 April 2018 Chih-Yu Chen, C. D. Hu & Yeu-Chung Lin Accepted: 9 July 2018 A gauge invariant efective lagrangian for the fermion axial anomaly is constructed. The dynamical Published: xx xx xxxx degree of freedom for fermion feld is preserved. Using the anomaly lagrangian, the scattering cross section of pair production γγ → e−e+ in Dirac or Weyl semimetal is computed. The result is compared with the corresponding result from Dirac lagrangian. It is found that anomaly lagrangain and Dirac lagrangian exhibit the same E B pattern, therefore the E B signature may not serve a good indicator of the existence of axial anomaly. Because anomaly generates excessive right-handed electrons and positrons, pair production can give rise to spin current by applying gate voltage and charge current with depositing spin flters. These experiments are able to discern genuine anomaly phenomena. Axial anomaly1,2, sometimes referred to as chiral anomaly in proper context, arises from the non-invariance of fermion measure under axial γ5 transformation3, it is a generic property of quantum fermion feld theory, massive or massless. Te realization of axial anomaly in condensed matter is frst explored by Nielsen and Ninomiya4. It is argued that in the presence of external parallel electric and magnetic felds, there is net production of chiral charge and electrons move from lef-handed (LH) Weyl cone to right-handed (RH) Weyl cone, the induced anomaly current causes magneto-conductivity prominent. Aji5 investigated pyrochlore iridates under magnetic feld. -
Π0 Decay Precision-Tests the Chiral Anomaly Harvey B
NUCLEAR PHYSICS p0 decay precision-tests the chiral anomaly More precise neutral pion lifetime measurements probe quantum symmetry breaking By Harvey B. Meyer point, it was assumed that a symmetry of the errors in quadrature, this amounts to a classical Lagrangian would protect p0 from tension of 1.8 standard deviations versus ost subatomic particles are decaying in the limit of massless up and the combined result of the PrimEx-I and strongly interacting composites down quarks and lead to a longer lifetime. -II experiments, 8.34 (60.13) × 10−17 s. Al- called hadrons. Most hadrons are However, it turns out to be impossible to reg- though this difference could be a statisti- unstable and decay on extremely ularize quantum chromodynamics without cal fluctuation, it provides motivation to short time scales (10−22 s) to lighter breaking that symmetry. Therefore, the latter revisit the theory prediction. The gp pp hadrons. The electrically neutral is not respected by the quantum fluctuations reaction also has a sharp low-energy pre- Mpion, p0, is the lightest hadron and decays of the quantum chromodynamics fields and diction based on the chiral anomaly (6, 7) on a time scale of 10−16 s in 98.8% of cases does not protect p0 from decaying. and is being investigated by the COMPASS into two photons, gg, through the electro- The quantum origin of the symmetry experiment (8). magnetic interaction. Historically, under- breaking leads to an exact prediction for the The gg decay width of p0 has recently standing this time scale presented a major strength of p0 coupling to gg and hence the been evaluated from first principles using Downloaded from challenge to theoreticians. -
Anomaly Constraint on Massless QCD and the Role of Skyrmions in Chiral Symmetry Breaking
Prepared for submission to JHEP Anomaly constraint on massless QCD and the role of Skyrmions in chiral symmetry breaking Yuya Tanizaki RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 USA E-mail: [email protected] Abstract: We discuss consequences of the ’t Hooft anomaly matching condition for Quantum Chromodynamics (QCD) with massless fundamental quarks. We derive the new discrete ’t Hooft anomaly of massless QCD for generic numbers of color Nc and flavor Nf , and an exotic chiral-symmetry broken phase without quark-bilinear condensate is ruled out from possible QCD vacua. We show that the U(1)B baryon number symmetry is anomalously broken when the (Z2Nf )A discrete axial symmetry and the flavor symmetry are gauged. In the ordinary chiral symmetry breaking, the Skyrmion current turns out to reproduce this ’t Hooft anomaly of massless QCD. In the exotic chiral symmetry break- ing, however, the anomalous breaking of U(1)B does not take the correct form, and it is inconsistent with anomaly matching. This no-go theorem is based only on symmetries and anomalies, and thus has a wider range of applicability to the QCD phase diagram than the previous one obtained by QCD inequalities. Lastly, as another application, we check that duality of N = 1 supersymmetric QCD with Nf ≥ Nc + 1 satisfies the new anomaly matching. arXiv:1807.07666v3 [hep-th] 23 Aug 2018 Contents 1 Introduction1 2 Symmetry of massless QCD4 2.1 Symmetry group of massless Nf -flavor QCD5 2.2 Other equivalent expressions of the flavor symmetry6 2.3 Background -
Reflections on a Revolution John Iliopoulos, Reply by Sheldon Lee Glashow
INFERENCE / Vol. 5, No. 3 Reflections on a Revolution John Iliopoulos, reply by Sheldon Lee Glashow In response to “The Yang–Mills Model” (Vol. 5, No. 2). Internal Symmetries As Glashow points out, particle physicists distinguish To the editors: between space-time and internal symmetry transforma- tions. The first change the point of space and time, leaving Gauge theories brought about a profound revolution in the the fundamental equations unchanged. The second do not way physicists think about the fundamental forces. It is this affect the space-time point but transform the dynamic vari- revolution that is the subject of Sheldon Glashow’s essay. ables among themselves. This fundamentally new concept Gauge theories, such as the Yang–Mills model, use two was introduced by Werner Heisenberg in 1932, the year mathematical concepts: group theory, which is the natural the neutron was discovered, but the real history is more language to describe the physical property of symmetry, complicated.3 Heisenberg’s 1932 papers are an incredible and differential geometry, which connects in a subtle way mixture of the old and the new. For many people at that symmetry and dynamics. time, the neutron was a new bound state of a proton and Although there exist several books, and many more an electron, like a small hydrogen atom. Heisenberg does articles, relating historical aspects of these theories,1 a not reject this idea. Although for his work he considers real history has not yet been written. It may be too early. the neutron as a spin one-half Dirac fermion, something When a future historian undertakes this task, Glashow’s incompatible with a proton–electron bound state, he notes precise, documented, and authoritative essay will prove that “under suitable circumstances [the neutron] can invaluable. -
Symmetric Point Flavour Singlet Axial Vector Current Renormalization At
LTH 1228 Symmetric point flavour singlet axial vector current renormalization at two loops J.A. Gracey, Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, P.O. Box 147, Liverpool, L69 3BX, United Kingdom. Abstract. We calculate the two loop correction to the quark 2-point function with the non-zero momentum insertion of the flavour singlet axial vector current at the fully symmetric subtraction point for massless quarks in the modified minimal subtraction (MS) scheme. The Larin method is used to handle γ5 within dimensional regularization at this loop order ensuring that the effect of the chiral anomaly is properly included within the construction. arXiv:2001.11282v2 [hep-ph] 21 Jul 2020 1 1 Introduction. One of the more curious experimental results over a generation ago was that of the EMC collabo- ration, [1]. They measured the origin of the proton spin and discovered that against expectations it was not due in a major part to the valence quarks. As the proton is a bound state of three quarks it was widely assumed that the combination of their quark spins would be the source 1 of the overall spin- 2 of the proton. Instead the experiment observed that the gluons binding the quarks together give a sizeable contribution. This was surprising due to the fact that in some sense the gluons are sea partons. While the original experiment was subsequently refined and improved to confirm the original observation, [2, 3, 4, 5], a clear theoretical understand- ing was sought to explain the phenomenon. As such a venture requires the use of the strong sector of the Standard Model described by Quantum Chromodynamics (QCD), tools had to be developed and refined to tackle the problem. -
Anomaly: a New Mechanism to Generate Massless Bosons
S S symmetry Review Axial UA(1) Anomaly: A New Mechanism to Generate Massless Bosons Vicente Azcoiti Departamento de Física Teórica, Facultad de Ciencias, and Centro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, Pedro Cerbuna 9, 50009 Zaragoza, Spain; [email protected] Abstract: Prior to the establishment of QCD as the correct theory describing hadronic physics, it was realized that the essential ingredients of the hadronic world at low energies are chiral symmetry and its spontaneous breaking. Spontaneous symmetry breaking is a non-perturbative phenomenon, and, thanks to massive QCD simulations on the lattice, we have at present a good understanding of the vacuum realization of the non-abelian chiral symmetry as a function of the physical temperature. As far as the UA(1) anomaly is concerned, and especially in the high temperature phase, the current situation is however far from satisfactory. The first part of this article is devoted to reviewing the present status of lattice calculations, in the high temperature phase of QCD, of quantities directly related to the UA(1) axial anomaly. In the second part, some recently suggested interesting physical implications of the UA(1) anomaly in systems where the non-abelian axial symmetry is fulfilled in the vacuum are analyzed. More precisely it is argued that, if the UA(1) symmetry remains effectively broken, the topological properties of the theory can be the basis of a mechanism, other than Goldstone’s theorem, to generate a rich spectrum of massless bosons at the chiral limit. Keywords: chiral transition; lattice QCD; U(1) anomaly; topology; massless bosons Citation: Azcoiti, V. -
Spontaneous CPT Violation and Quantum Anomalies in a Model for Matter–Antimatter Asymmetry in the Cosmos †
universe Review Spontaneous CPT Violation and Quantum Anomalies in a Model for Matter–Antimatter Asymmetry in the Cosmos † Nick E. Mavromatos * and Sarben Sarkar Theoretical Particle Physics and Cosmology Group, Department of Physics, King’s College London, Strand, London WC2R 2LS, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-207-848-2168 † This paper is based on the talk at the 7th International Conference on New Frontiers in Physics (ICNFP 2018), Crete, Greece, 4–12 July 2018. Received: 27 November 2018; Accepted: 20 December 2018; Published: 25 December 2018 Abstract: We review scenarios of baryogenesis through leptogenesis at early epochs of the universe, in string-inspired minimal extensions of the Standard Model (SM), involving heavy right-handed Majorana neutrinos. Spontaneous violation of CPT symmetry is induced by appropriate (in general, temperature-dependent) backgrounds of the Kalb–Ramond (KR) axion field, which has its origins in the (bosonic) massless string multiplet. As interesting features of the model, we also discuss two issues associated with quantum (chiral) anomalies: (i) the non-contribution of the KR axion background to the (anomalous) chiral magnetic effect, which arises in the presence of external electromagnetic fields and non-zero chiral chemical potentials of charged fermions; and (ii) the potential role of quantum fluctuations of the KR axion on the (anomalous) radiative generation of a Majorana mass for the right-handed neutrinos themselves. Keywords: leptogenesis; CPT violation; string effective theories 1. Introduction It is well known [1–3] that the Standard Model (SM) of particle physics cannot explain the observed (primarily baryonic) matter–antimatter asymmetry in the universe [4,5], which requires nB − n nB − n Dn(T ∼ 1 GeV) = B ∼ B = (8.4 − 8.9) × 10−11 (1) nB + nB s −6 for (cosmic) times t ∼ 10 s and temperatures T ∼ 1 GeV. -
Baryon Asymmetry of the Universe
Baryon asymmetry of the Universe Alexey Boyarsky PPEU 2014 1 Observed matter-antimatter asymmetry Main questions: Why do the Earth, the Solar system and our • galaxy consists of of matter and not of antimatter? Why we do not see any traces of antimatter in the universe except • of those where antiparticles are created in collisions of ordinary particles? This looks really strange, as the properties of matter and antimatter • are very similar. Alexey Boyarsky PPEU 2014 2 Baryon asymmetry of the Universe There are two possibilities: Observed universe is asymmetric and does not contain any • antimatter The universe consists of domains of matter and antimatter • separated by voids to prevent annihilation. The size of these zones should be greater than 1000 Mpc, in order not to contradict observations of the diffuse γ spectrum. The second option, however, contradicts to the large scale isotropy of the cosmic microwave background. Thus, we are facing the question: Why the universe is globally asymmetric? Alexey Boyarsky PPEU 2014 3 γ-rays from antiproton annihilation 100 -1 ] 10 -1 sr -1 10-2 MeV -1 s -2 10-3 10-4 COMPTEL -5 Schönfelder et al. (1980) Flux [photons cm 10 Trombka et al. (1977) White et al. (1977) 10-6 1 10 Photon Energy [MeV] Data and expectations for the diffuse γ-ray spectrum (upper curve d = 20 Mpc, lower curve d = 1000 Mpc) Alexey Boyarsky PPEU 2014 4 Antiprotons in the universe Example: antiproton-to-proton fraction in GeV: 10−7 10−3 − Alexey Boyarsky PPEU 2014 5 Positrons in the universe Example: positron-to-electron fraction -
2017 Breakthrough Prizes in Mathematics and Fundamental
COMMUNICATION 2017 Breakthrough Prizes Awarded Jean Bourgain Joseph Polchinski Andrew Strominger Cumrun Vafa Breakthrough Prize in Mathematics be obtained from the results of Weil and Deligne on the Jean Bourgain of the Institute for Advanced Study, Riemann hypothesis over finite fields), as well as the de- Princeton, New Jersey, has been selected as the recipient velopment (with Gamburd and Sarnak) of the affine sieve of the 2017 Breakthrough Prize in Mathematics by the that has proven to be a powerful tool for analyzing thin Breakthrough Prize Foundation. Bourgain was honored for groups. Most recently, with Demeter and Guth, Bourgain “major contributions across an incredibly diverse range of has established several important decoupling theorems areas, including harmonic analysis, functional analysis, er- in Fourier analysis that have had applications to partial godic theory, partial differential equations, mathematical differential equations, combinatorial incidence geometry, physics, combinatorics, and theoretical computer science.” and analytic number theory, in particular solving the Main The prize carries a cash award of US$3 million. Conjecture of Vinogradov, as well as obtaining new bounds The Notices asked Terence Tao of the University of Cal- on the Riemann zeta function.” ifornia Los Angeles to comment on the work of Bourgain (Tao was on the Breakthrough Prize committee and was Biographical Sketch: Jean Bourgain also one of the nominators of Bourgain). Tao responded: Jean Bourgain was born in 1954 in Oostende, Belgium. He “Jean Bourgain is an unparalleled problem-solver in anal- received his PhD (1977) and his habilitation (1979) from ysis who has revolutionized many areas of the subject by the Free University of Brussels.