Quantum Field Theory for Economics and Finance Belal Ehsan Baaquie Frontmatter More Information

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Field Theory for Economics and Finance Belal Ehsan Baaquie Frontmatter More Information Cambridge University Press 978-1-108-42315-1 — Quantum Field Theory for Economics and Finance Belal Ehsan Baaquie Frontmatter More Information QUANTUM FIELD THEORY FOR ECONOMICS AND FINANCE An introduction to how the mathematical tools from quantum field theory can be applied to economics and finance, this book provides a wide range of quan- tum mathematical techniques for designing financial instruments. The ideas of Lagrangians, Hamiltonians, state spaces, operators and Feynman path integrals are demonstrated to be the mathematical underpinning of quantum field theory and are employed to formulate a comprehensive mathematical theory of asset pricing as well as of interest rates, which are validated by empirical evidence. Numerical algorithms and simulations are applied to the study of asset pricing models as well as of nonlinear interest rates. A range of economic and financial topics is shown to have quantum mechanical formulations, including options, coupon bonds, nonlinear interest rates, risky bonds and the microeconomic action functional. This is an invaluable resource for experts in quantitative finance and in mathematics who have no specialist knowledge of quantum field theory. belal ehsan baaquie is a professor at the International Centre for Education in Islamic Finance. He received his training in theoretical physics at Caltech and Cornell University, specializing in quantum field theory. He later developed an interest in finance and economics, and started applying quantum mathematics to these fields. He has written two books on quantum finance: Quantum Finance (Cambridge University Press, 2007) and Interest Rates and Coupon Bonds in Quantum Finance (Cambridge University Press, 2009), in addition to several other books focusing on topics from quantum mechanics and mathematics to books on leading ideas in science. © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-42315-1 — Quantum Field Theory for Economics and Finance Belal Ehsan Baaquie Frontmatter More Information © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-42315-1 — Quantum Field Theory for Economics and Finance Belal Ehsan Baaquie Frontmatter More Information QUANTUM FIELD THEORY FOR ECONOMICS AND FINANCE BELAL EHSAN BAAQUIE The International Centre for Education in Islamic Finance © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-42315-1 — Quantum Field Theory for Economics and Finance Belal Ehsan Baaquie Frontmatter More Information University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India 79 Anson Road, #06–04/06, Singapore 079906 Cambridge University Press is part of the University of Cambridge. It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence. www.cambridge.org Information on this title: www.cambridge.org/9781108423151 DOI: 10.1017/9781108399685 © Cambridge University Press 2018 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2018 Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall A catalogue record for this publication is available from the British Library. Library of Congress Cataloging-in-Publication Data Names: Baaquie, B. E., author. Title: Quantum field theory for economics and finance / Belal Ehsan Baaquie, The International Centre for Education in Islamic Finance, Singapore. Description: Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2018. | Includes bibliographical references and index. Identifiers: LCCN 2017061436 | ISBN 9781108423151 (Hardback : alk. paper) Subjects: LCSH: Economics–Mathematical models. | Finance–Mathematical models. | Quantum field theory. Classification: LCC HB135 .B28 2018 | DDC 330.01/530143–dc23 LC record available at https://lccn.loc.gov/2017061436 ISBN 978-1-108-42315-1 Hardback Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-42315-1 — Quantum Field Theory for Economics and Finance Belal Ehsan Baaquie Frontmatter More Information This book is dedicated to all the scholars, thinkers and visionaries who have been striving and contributing to enhance the knowledge and wisdom of humanity. © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-42315-1 — Quantum Field Theory for Economics and Finance Belal Ehsan Baaquie Frontmatter More Information © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-42315-1 — Quantum Field Theory for Economics and Finance Belal Ehsan Baaquie Frontmatter More Information Contents Foreword page xvii Preface xix Acknowledgments xxv 1 Synopsis 1 1.1 Organization of the book 2 1.2 What is a quantum field? 8 Part I Introduction 11 2 Quantum mechanics 13 2.1 Introduction 13 2.2 Quantum principles 14 2.3 Theory of measurement 16 2.4 Dirac delta function 17 2.5 Schrodinger¨ and Heisenberg formalism 19 2.6 Feynman path integral 20 2.7 Hamiltonian and path integral 23 2.8 Hamiltonian from Lagrangian 24 2.9 Summary 27 2.10 Appendix: Dirac bracket and vector notation 28 2.11 Appendix: Gaussian integration 30 3 Classical field theory 35 3.1 Introduction 35 3.2 Lagrangian mechanics 36 3.3 Classical field equation 38 3.4 Free scalar field 40 3.5 Symmetries 41 3.6 Noether’s theorem 43 vii © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-42315-1 — Quantum Field Theory for Economics and Finance Belal Ehsan Baaquie Frontmatter More Information viii Contents 3.7 Stress tensor 44 3.8 Spontaneous symmetry breaking 46 3.9 Landau–Ginzburg Lagrangian 49 3.10 Higgs mechanism 54 3.11 Lorentz group 56 3.12 Relativistic fields 58 3.13 Summary 62 4 Acceleration action 63 4.1 Action and Hamiltonian 63 4.2 Transition amplitude: Hamiltonian 64 4.3 Limiting case: τ = 069 4.4 Transition amplitude: Path integral derivation 70 4.5 Summary 76 5 Option theory* 77 5.1 Introduction 77 5.2 Options on a security 77 5.3 European call and put option 78 5.4 Quantum mechanical pricing of options 80 5.5 Martingale condition: Hamiltonian 82 5.6 Hamiltonian and option pricing 82 5.7 Black–Scholes Hamiltonian: Pricing kernel 85 5.8 Black–Scholes option price 87 5.9 Option pricing 88 5.10 Option price: Baaquie–Yang (BY) model 90 5.11 Martingale: Conditional probability 91 5.12 Market time 92 5.13 Empirical results 93 5.14 FX options and market instability 97 5.15 Summary 100 6 Path integral of asset prices* 101 6.1 Introduction 101 6.2 Microeconomic potential 103 6.3 Microeconomic action functional 105 6.4 Equilibrium asset prices 108 6.5 Feynman perturbation expansion 111 6.6 Nonlinear terms: Feynman diagrams 116 6.7 Normalization 118 6.8 Path integral: Monte Carlo simulation 121 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-42315-1 — Quantum Field Theory for Economics and Finance Belal Ehsan Baaquie Frontmatter More Information Contents ix 6.9 Mapping model to market data 125 6.10 Equity and FX rates 127 6.11 Single and multiple commodities fit 130 6.12 Empirical microeconomic potential 131 6.13 Multiple commodities and market data 133 6.14 Commodity coupling coefficient ij 134 6.15 Fits for GII, GIJ 135 6.16 Summary 139 (0) 6.17 Appendix: Derivation of DIJ 142 Part II Linear quantum fields 147 7 Scalar quantum field 149 7.1 Introduction 149 7.2 Two-dimensional quantum field 150 7.3 Fock space 151 7.4 Scalar field: Hamiltonian 160 7.5 Heisenberg operators 161 7.6 Fourier expansion 163 7.7 Creation and destruction operators 165 7.8 Energy eigenstates 167 7.9 Schrodinger wave functional 168 7.10 Unequal time commutation equations 169 7.11 The Feynman propagator 172 7.12 Complex scalar field 176 7.13 Free scalar field: Path integral 179 7.14 Continuation to Euclidean time 181 7.15 Summary 185 8 Dirac spinor field 187 8.1 Introduction 187 8.2 Dirac equation 188 8.3 Dirac Lagrangian and Hamiltonian 190 8.4 Euclidean Dirac Lagrangian 192 8.5 Plane wave solutions 192 8.6 Quantization 195 8.7 Positrons: Hole theory 198 8.8 Antiparticles 199 8.9 Hamiltonian, charge and momentum 200 8.10 Charge conjugation 202 8.11 Dirac field: Casimir force 205 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-42315-1 — Quantum Field Theory for Economics and Finance Belal Ehsan Baaquie Frontmatter More Information x Contents 8.12 Casimir force: (Anti-)periodic 210 8.13 Summary 213 9 Photon gauge field 215 9.1 Introduction 215 9.2 Hamiltonian and state space 216 9.3 Hamiltonian gauge-fixing: Coulomb gauge 219 9.4 Coulomb gauge: Normal modes 223 9.5 Gauge symmetry and path integral 227 9.6 Gauge-fixing the action 228 9.7 Ghost field: Finite time path integral 231 9.8 Feynman and Landau
Recommended publications
  • Interview Call List for the Junior Research Fellow (JRF) Positions Department of Solid State Physics (SSP), IACS Kolkata
    Interview call list for the Junior Research Fellow (JRF) positions Department of Solid State Physics (SSP), IACS Kolkata Research opportunities at the Department of Solid State Physics, IACS Kolkata: The faculty members of the Department of Solid State Physics are actively engaged in cutting edge research in various areas of Experimental and Theoretical Condensed Matter Physics. JRF positions are available in the group of following faculty members: Available positions: 1). Experimental Condensed Matter Physics: Prof. A.J. Pal, Prof. S. Giri, Dr. S. Datta, Dr. M. Mandal and Dr. D. Mukherjee 2). Theoretical and Computational Condensed Matter Physics: Prof. I. Dasgupta More details about the research activities of the above mentioned faculty members are available in their respective web-page. -------------------------------------------- Interview Schedule Wednesday, 03/January/2018 Time - 10:30 am to 2 pm Reporting at 10 am, Office of SSP, Room-215, Centenary Building, IACS Sr No Name Address Vill-Hatabari(Malancha Abasan), P.O-Contai A_1 Abhishek Maiti, Jadavpur University Dist-Purba Medinipur, West Bengal-721401 ARNAB BERA VILL-CHABBISHPUR, P.O-DHARASIMUL, A_2 Ramakrishna Mission DIST-HOOGHLY, PIN-712416 Vivekananda University WEST BENGAL ASHOK DAS VILL- NIRODGARH, P.O+ P.S- PANDUA, A_3 Burdwan University DIST- HOOGHLY, PIN NO-712149 BISWAJIT PABI Vill- Bonsujapur, P.O.- Galigram (M.P.), P.S.- A_4 Burdwan University Galsi, Dist- Purba Bardhaman Pin-713406 Chumki Nayak Vill+P.O- Jamgora, Dist- Paschim , Bardhaman, A_5 Kazi Nazrul University Pin- 713385,W.B. C/O-SUKDEB DINDA, Deb Kumar Dinda VILL+P.O.-SUBDI, P.S.-NANDIGRAM, A_6 West Bengal State University DIST-PURBA MEDINIPUR, PIN-721430 Debjani Banerjee vill.-Goswamipur, P.O.- Beliatore, P.S.- A_7 Kazi Nazrul University Beliatore, Dist.-Bankura, West Bengal-722203 Debraj Bose 118/1, Briji West Manikanchan Appt, Garia A_8 University of Hyderabad Kolkata -700084 Time - 3 pm to 6:30 pm Reporting at 2:30 pm, Office of SSP, Room-215, Centenary Building, IACS Sr.
    [Show full text]
  • Ashok Das ADDRESS
    CURRICULUM VITAE NAME: Ashok Das ADDRESS: Department of Physics and Astronomy University of Rochester Rochester, NY 14627-0171 Telephone: 585-275-2955 Fax: 585-276-0018 Email: [email protected] 7 Dawn Valley Drive Rochester, NY 14623-5293 Telephone: 585-359-9054 DATE OF BIRTH: March 23, 1953 NATIONALITY: USA EDUCATION: B.S. (Honours) University of Delhi, India 1972 M.S. University of Delhi, India 1974 Ph.D. SUNY at Stony Brook, 1977 THESIS: Spin 3/2 Fields and Supergravity Theories HONOURS: lst in 40,000 candidates in H.S.C. Examination (1968). 2nd in 3,000 candidates in P.U.S. Examination (1969). 2nd in 300 candidates in B.S. (Honors) Examination (1972). 2nd in 200 candidates in M.S. Examination (1974). Excellence in Undergraduate Teaching Dept. of Physics and Astronomy, University of Rochester, 1987. Excellence in Undergraduate Teaching Dept. of Physics and Astronomy, University of Rochester, 1990. Edward Peck Curtis Award for Excellence in Undergraduate Teaching University of Rochester, 1991. Excellence in Undergraduate Teaching Dept. Physics and Astronomy, University of Rochester, 1997. Excellence in Undergraduate Teaching Dept. Physics and Astronomy, University of Rochester, 2005. William H. Riker University Award for Excellence in Graduate Teaching University of Rochester, 2005. 1 Outstanding Junior Investigator (DOE), 1983{1989. Head, High Energy Theory Group, 1990{1995. Fulbright Fellowship, 1997{1998. Fellow, American Physical Society, 2002. Rockefeller Foundation Award (for residency in Bellagio), 2004. Fulbright Fellowship, 2006-2007. SCHOLARSHIPS: National Merit Scholar 1968{1972 (India) University Grants Commission Scholar 1972{1974 (India) PROFESSIONAL POSITIONS: 1977{1979, City College of New York, Research Associate.
    [Show full text]
  • PHYSICS 2. Year of Establishment
    Evaluative Report of the Department 1. Name of the Department : PHYSICS 2. Year of establishment : in 1947, in Govt. College, Hoshiarpur (Punjab). In August 1958, the department was shifted to the present campus. 3. Is the Department part of a School/Faculty of the university? : Yes , Faculty of University. 4. Names of programmes offered (UG, PG, M.Phil., Ph.D., Integrated Masters; Integrated Ph.D., D.Sc., D.Litt., etc.) : UG, PG, Ph.D 5. Interdisciplinary programmes and departments involved: Teaching and research work: M.Tech in Nano Science & Nano Technology and Medical Physics. 6. Courses in collaboration with other universities, industries, foreign institutions, etc. :NIL 7. Details of programmes discontinued, if any, with reasons : M.Phil(2012-2013) 8. Examination System: Annual/Semester/Trimester/Choice Based Credit System : SEMESTER 9. Participation of the department in the courses offered by other departments : Few faculty members are Adjunct faculty in M.Tech. Nano Science & Nano Technology. Teaching is also carried out in Medical Physics. 10. Number of teaching posts sanctioned, filled and actual (Professors/Associate Professors/Asst. Professors/others) Sanctioned Filled Actual (including (CAS & MPS) Professor 13 8 Associate Professors 13 5 Asst. Professors 20 11 Others 7 ( re- employed 11. Faculty profile with name, qualification, designation, area of specialization, experience and research under guidance : ANNEXURE I Name Qualification Designation Specialization No. of Years N0. of of Experience Ph.D./ M.Phil Students guides for the last 4 years 12. List of senior Visiting Fellows, adjunct faculty, emeritus professors : List attached as Annexure II 13. Percentage of classes taken by temporary faculty – programme-wise information: Nil 14.
    [Show full text]
  • Theoretical and Mathematical Physics New Books and Highlights in 2020/2021
    Now available on WorldSciNet Theoretical and Mathematical Physics New Books and Highlights in 2020/2021 Textbook Textbook Textbook Mathematical Methods of Theoretical Physics Roman Jackiw by Karl Svozil (Technische Universität Wien, Austria) 80th Birthday Festschrift edited by Antti Niemi (University of Stockholm, Sweden), This book contains very detailed proofs and demonstrations of common Terry Tomboulis (University of California, Los Angeles, USA) & mathematical methods used in theoretical physics. It combines and unifies Kok Khoo Phua (Nanyang Technological University, Singapore) many expositions of the subject and thus is accessible to a very wide range of students, such as those interested in experimental and applied physics. The ○ Dedicated to Roman Jackiw, a theoretical physicist known for content is divided into three parts: linear vector spaces, functional analysis his fundamental contributions in high energy physics, gravita- and differential equations. tion, condensed matter and the physics of fluids. ○ With contributions from prominent scientists including two No- 332pp Mar 2020 bel laureates and one Field Medalist. 978-981-120-840-9 US$78 £70 ○ Also included are personal recollections and humorous anec- dotes from Jackiw’s friends and colleagues. Lectures on Quantum Field Theory 336pp Aug 2020 (2nd Edition) 978-981-121-066-2 US$118 £105 by Ashok Das (University of Rochester, USA) “Comprehensive yet at the beginner’s level, lucid and informal, this new An Introduction to Inverse Problems in Physics edition of Lectures on Quantum Field Theory contains new material by M Razavy (University of Alberta, Canada) including two new chapters and two additional appendices. The book This book is a compilation of different methods of formulating and solving will be of interest to students of mathematics and theoretical physics, inverse problems in physics from classical mechanics to the potentials and teachers and researchers.” nucleus-nucleus scattering.
    [Show full text]
  • Hep2001 Is Derived C M for the Exactly C M , Can Be Constructed for C M 6= 0, Where These Ideas Can Be B † =0And B [email protected] , and A
    Workshop on Integrable Field Theories, Solitons and Duality. PROCEEDINGS Monodromy, Duality and Integrability of Two Dimensional String Effective Action Ashok Das∗†, J. Maharana‡ and A. Melikyan† † Department of Physics and Astronomy University of Rochester, Rochester, NY 14627-0171, USA. hep2001 E-mail: [email protected], [email protected] ‡ Institute of Physics Bhubaneswar -751005, India E-mail: [email protected] Abstract: In this talk, we show how the monodromy matrix, , can be constructed for M the two dimensional tree level string effective action. The pole structure of is derived c M using its factorizability property. It is shown that the monodromy matrix transforms non-trivially under the non-compact T-duality group, which leaves the effectivec action invariant and this can be used to construct the monodromy matrix for more complicated backgrounds starting from simpler ones. We construct, explicitly, for the exactly M solvable Nappi-Witten model, both when B =0andB= 0, where these ideas can be 6 c directly checked. 1. Introduction The field theories in two space-time dimensions have attracted considerable attention over the past few decades. They possess a variety of interesting features. Some of these field theories, capture several salient characteristics of four dimensional theories and, therefore, such two dimensional models are used as theoretical laboratories. Moreover, the nonper- turbative properties of field theories are much simpler to study in two dimensional models. There are classes of two dimensional theories which are endowed with a rich symmetry structure: integrable models [1] and conformal field theories [2, 3] belong to this special ∗Speaker. Workshop on Integrable Field Theories, Solitons and Duality.
    [Show full text]
  • A Theory: a View from the Outside
    V -A theory: a view from the outside Ashok Das Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA and Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700064, INDIA Abstract In this talk I will review the V -A theory within the context of the prevalent experimental results at the time. It is a great pleasure for me to be able to participate in this celebration in honor of Professor George Sudarshan. Let me say right away that unlike the other speakers in this session, I haven’t had the opportunity to collaborate with George yet. On the other hand, George is still young and who knows! Much of what is being discussed in this session happened many, many years ago. I am, of course, not going to tell you how old I am. Let me simply say that all of this happened long before my time, which is the reason for the title of my talk. The only reason I agreed to speak in this session is because George is a dear friend, a former student of Rochester and I felt that I had access to all the resources of Rochester. This was before I knew who else were going to be speaking in this session and that the organizers had kindly deprived me of part of my resources, thank you very much! So, I had to work very hard, go back to the old papers and the archives and reconstruct events. What I learnt is that the story of V -A theory is a fascinating one.
    [Show full text]
  • Doe Outstanding Junior Investigator Program Awardees
    DOE OUTSTANDING JUNIOR INVESTIGATOR PROGRAM AWARDEES FISCAL PRINCIPAL INSTITUTION AT YEAR INVESTIGATOR TIME OF AWARD PROPOSAL TITLE 2009 Aaron Chou Fermilab Axion Search via Resonant Photon Regeneration Valerie Halyo Princeton University Diamond Pixel Luminosity Telescopes Jelena Maricic Drexel Enhancing the Precision of Low Energy Neutrino Experiments with a Novel Calibration System Pietro Musumeci UC Los Angeles Electron Bunch Trains for External Injection into High Gradient High Frequency Advanced Accelerators Joel Giedt Rensselaer Lattice Field Theory Beyond the Standard Model Polytechnic Institute Stefano Profumo UC Santa Cruz Theoretical Techniques and Computational Tools for the Identification of Particle Dark Matter and Baryogenesis Matthew Schwartz Harvard University Theoretical Methods for Distinguishing Signal from Background at the Large Hadron Collider Jacob Wacker SLAC Discovering Beyond the Standard Model Physics with Proton Colliders and Table Top Experiments 2008 Frederick Denef Harvard University OJI-Black Holes, String Vacua and Superconductors Ivan Furic Florida, University of TeV Muons - Heralds of New Physics at the LHC Karsten Heeger Wisconsin, University of Precision Studies of the Reactor Antineutrino Spectrum and the Search for Theta 13 at Daya Bay Dragan Huterer Michigan, University of Probing the Nature of Dark Energy With SNAP and DES Jonathan Link Virginia Polytechnical Experimental Studies in Neutrino Masses and Mixing Angles Institute Yurii Maravin Kansas State University The Path to Discoveries With the
    [Show full text]
  • Particle Physics & Quantum Field Theory
    Now available on WorldSciNet Particle Physics & Quantum Field Theory New & Notable Books in 2021-2022 Textbook Textbook Lectures on Quantum Field Theory Lectures on Accelerator (2nd Edition) Physics by Ashok Das (University of Rochester, USA) by Alexander Wu Chao (SLAC National Accelerator Laboratory, USA) Reviews of the First Edition: “This book is a comprehensive introduction to Accelerators have been driving research modern quantum field theory. The topics under and industrial advances for decades. This consideration would be of great interest for textbook illustrates the physical principles every physicist and mathematician who are behind these incredible machines, often with interested in methods of the quantum physics.” intuitive pictures and simple mathematical Zentralblatt MATH models. Pure formalisms are avoided as This book comprises the lectures of a two- much as possible. The style is informal and semester course on quantum field theory, accessible to graduate-level students without presented in an informal and personal prior knowledge in accelerators. manner. The course starts with relativistic one-particle systems, and develops the basics 700pp Oct 2020 of quantum field theory with an analysis on 978-981-122-796-7(pbk) US$88 £75 the representations of the Poincaré group. The second edition includes two 978-981-122-673-1 US$188 £165 new chapters, one on Nielsen identities and the other on basics of global supersymmetry. Beam Acceleration in Crystals 940pp Jul 2020 and Nanostructures 978-981-122-216-0(pbk) US98 £85 Proceedings
    [Show full text]
  • DEPARTMENT of PHYSICS Swapna Mahapatra Utkal University, Bhubaneswar Department of Physics a Brief Profile
    DEPARTMENT OF PHYSICS Swapna Mahapatra Utkal University, Bhubaneswar Department of Physics A Brief Profile Year of Establishment-1967 Recognised under UGC-SAP, DST-FIST, DST-PURSE Vision •To take the leadership in setting the standard of Physics Education in terms of Teaching and Research in the State and in the Country. •To create and sustain the conditions for our students to experience a unique educational training that is intellectually, socially and personally transformative. Mission 1.To make quality education accessible to talented boys and girls. 2. Strive to maintain high academic standard in teaching and research consistent with global scenario. 3. Reach out to the peripheral sectors and public at large in spreading the culture of scientific education and research. Brief History of the Department • Instrumental in setting up of Institute of Physics, Bhubaneswar. • Played a pivotal role in Modernizing Physics Education and Research in the State and establishing Odisha Physical Society. • IBM 1130 : beginning of Computer age (1970) in the State. • Initiation of PGDCA programme Dept. of CSA, UU • Nodal point for the NCERT ‘CLASS’ project for schools. Programmes offered • Post Graduation, M.Phil. and Ph.D. courses. M.Sc. (32+32) M.Phil. (10) Ph.D. (10 - Maximum) • M.Sc. Special papers i) Advanced Particle Physics ii) Advanced Condensed Matter Physics • M.Sc. examinations : Semester and Choice Based Credit System • M. Phil. (2 Semesters) with Dissertation. • Ph.D. Course work (1 Semester) Faculty Profile Name Designation Qualification Area of research Swapna Mahapatra Professor & Head Ph.D (IOP) Particle Physics, Gravitation &Cosmology Shesansu Sekhar Pal Reader Ph.D (IOP) High Energy Physics Prafulla Kumar Panda Reader Ph.D (IOP) Nuclear Physics & Particle Physics Pramoda K.
    [Show full text]
  • Quantum Field Theory” at Jamia
    December 18, 2012 Press Release: A Lecture Series on “Quantum Field Theory” at Jamia The Centre for Theoretical Physics (CTP), Jamia Millia Islamia is going to organize a series of Lectures on the broad topic “Quantum Field Theory” by Professor Ashok Das, University of Rochester, USA. Following are the details of Lectures to be held: Lecture # 1 on 19.12.2012 from 3.30-4.30 PM “Quantization of an Angular Variable” Lecture # 2 on 20.12.2012 from 3.30-4.30 PM “Supersymmetry and Shape Invariance and the Legendre Equations” Lecture # 3 on 21.12.2012 from 3.30-4.30 PM “Hamiltonian Description of PT Symmetric Quantum Mechanics” Venue: Seminar Hall, Centre for Theoretical Physics, Jamia Millia Islamia Professor Ashok Das received his B.S. (1972) and M.S. (1974) in Physics from the University of Delhi and his Ph.D. in Physics from the State University of New York at Stony Brook in 1977. He is the recipient of University and Department awards for his teaching, including the Department Award for Excellence in Undergraduate Teaching, Department of Physics and Astronomy, University of Rochester four times (1987, 1990, 1997 and 2006)), the Edward Peck Curtis Award for Excellence in Undergraduate Teaching (1991) and the 2006 University Award for Excellence in Graduate Teaching. He was named a Department of Energy Outstanding Junior Investigator (1983-1989) and received a Rockefeller Foundation Award in 2004. He received Fulbright Fellowships twice in 1997 and one in 2006. Prof. Das was elected a Fellow of the American Physical Society in 2002. All are cordially invited.
    [Show full text]
  • Causal Amplitudes in the Schwinger Model at Finite Temperature
    Causal amplitudes in the Schwinger model at finite temperature Ashok Das,a;b R. R. Franciscoc and J. Frenkelc∗ a Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171, USA b Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700064, India and c Instituto de F´ısica, Universidade de S~aoPaulo, 05508-090, S~aoPaulo, SP, BRAZIL We show, in the imaginary time formalism, that the temperature dependent parts of all the retarded (advanced) amplitudes vanish in the Schwinger model. We trace this behavior to the CPT invariance of the theory and give a physical interpretation of this result in terms of forward scattering amplitudes of on-shell thermal particles. PACS numbers: 11.10.Wx In two earlier papers [1, 2] we derived the complete into a right handed and a left handed sector where thermal effective action for 0 + 1 dimensional QED as 1 1 1 1 well as for 1 + 1 dimensional Schwinger model (massless R = ( + γ ) ; L = ( γ ); 2 5 2 − 5 QED) in the real time (closed time path) formalism [3, 4]. 0 1 ± x x The structure of the effective action in terms of the dou- x = ± ;@± = @0 @1;A± = A0 A1: (3) bled thermal degrees of freedom allowed us to prove al- 2 ± ± gebraically that all the temperature dependent retarded At zero temperature the quantum corrections couple the (advanced) amplitudes vanish in these theories. While two sectors through the chiral anomaly. However, at fi- the algebraic proof in the real time formalism is indeed nite temperature there is no ultraviolet divergence and, quite simple and straightforward, it does not shed any therefore, there is no coupling between the two sectors so light on the physical origin of such an interesting result.
    [Show full text]
  • International Centre for Theoretical Physics V
    IC/91/125 I C UR-1215 - wU ER-13065-667 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS V ZERO CURVATURE CONDITION OF OSp(2/2) AND THE ASSOCIATED SUPERGRAVITY THEORY Ashok Das Wen-Jui Huang INTERNATIONAL ATOMIC ENERGY and AGENCY Shibaji Roy UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL MIRAMARE - TRIESTE ORGANIZATION T " I 1091/125 UR-1215 ER-13065-667 Abstract The N = 2 fermionic extensions of the KdV equations are derived from the zero International Atomic Energy Agency curvature condition associated with the graded Lie algebra of OSp(2/2). These equations and United Nations Educational Scientific and Cultural Organization lead to two bi-Hamiltonian systems one of which is supersymmetric. We also derive the INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS one-parameter family of JV = 2 supersymmetric KdV equation without a bi-Hamiltonian structure in this approach. Following our earlier proposal, we interpret the zero curvature condition as a gauge anomaly equation which brings out the underlying current algebra for ZERO CURVATURE CONDITION OF OSp(2/2) AND THE ASSOCIATED SUPERGRAVTTY THEORY the corresponding 2D-supergravity theory. This current algebra is, then, used to obtain the operator product expansions of various fields of this theory. Ashok Das * International Centre for Theoretical Physics, Trieste, Italy Wen-Jui Huang and Shibaji Roy *" Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA. MIRAMARE-TRIESTE June 1991 Permanent address: Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA. Address after 1 October 1991: International Centre for Theoretical Physics, Trieste, Italy. T * 9 I. Introduction with the appropriate field variables of a supergravity theory, the dynamical equations of the Integrable models have been studied quite extensively in the recent past [1-8].
    [Show full text]