Geographic Distribution and Niche Divergence of Two Stink- Bugs, Parastrachia Japonensis and Parastrachia Nagaensis

Total Page:16

File Type:pdf, Size:1020Kb

Geographic Distribution and Niche Divergence of Two Stink- Bugs, Parastrachia Japonensis and Parastrachia Nagaensis Journal of Insect Science: Vol. 13 | Article 102 Zhu et al. Geographic distribution and niche divergence of two stink- bugs, Parastrachia japonensis and Parastrachia nagaensis Gengping Zhu1a*, Guoqing Liu2b, Wenjun Bu2c, Jerzy A. Lis3d 1Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China 2Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China 3Department of Biosystematics, Opole University, Oleska 22, 45-052 Opole, Poland Abstract Parastrachiidae is a small stinkbug family containing only one genus and two species, Parastra- chia japonensis (Scott) (Hemiptera: Heteroptera: Pentatomoidea) and Parastrachia nagaensis Distant. The geographic distribution of the genus has been poorly studied. Niche conservatism refers to that idea that closely related species are more ecologically similar than would be ex- pected, whereas niche divergence predicts they occupy distinct niche spaces. The existence of only two species within one genus suggests niche conservatism or differentiation might exist among them. Herein, the distribution of the genus was mapped, potential distributions were pre- dicted using ecological niche modeling, and climate spaces occupied by the two species were identified and compared. Our outlined map supports the general spreading route proposed by Schaefer et al. The potential distributions suggest that the genus’ range could extend beyond its presently known distribution, and further investigation into this area could aid in their conserva- tion, particularly P. nagaensis. The niche space inferred by ecological niche modeling suggests the two species do not occupy identical habitat, but the differences between their models could simply be due to the differential availability of habitat in the different regions that they occupy. Keywords: ecological niche, ecological niche modeling, potential distribution, principle component analysis Abbreviations: AUC, area under the curve; ENM, ecological niche modeling, PCA, principal component analysis Correspondence: a [email protected], b [email protected], c [email protected], d [email protected], *Corresponding author Editor: Robert Jetton was editor of this paper. Received: 3 February 2012 Accepted: 5 October 2013 Published: 5 October 2013 Copyright: This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed. ISSN: 1536-2442 | Vol. 13, Number 102 Cite this paper as: Zhu G, Liu G, Bu W, Lis JA. 2013. Geographic distribution and niche divergence of two stinkbugs, Parastrachia japonensis and Parastrachia nagaensis. Journal of Insect Science 13:102. Available online: http://www.insectscience.org/13.102 Journal of Insect Science | http://www.insectscience.org 1 Journal of Insect Science: Vol. 13 | Article 102 Zhu et al. Introduction Sigwalt and Lis 2008; Lis and Ziaja 2010). However, the geographic distribution of the It is widely accepted that ecology plays an genus throughout the world, and especially in important role in speciation (Rice et al. 2003; China, has been poorly studied (Schaefer et al. Rissler and Apodaca 2007; Pyron and Bur- 1988; Schaefer and Kikuhara 2007). The fact brink 2009). Generally, the speciation event that there are only two species within one ge- takes place in geographic dimensions and may nus suggests niche conservatism or not be accompanied by ecological innovation differentiation might exist among them. (Peterson et al. 1999; Pyron and Burbrink 2009; McCormack et al. 2010; Peterson Principle component analysis (PCA) and eco- 2011). When populations enter into a new en- logical niche modeling (ENM) are two vironment, however, the ecological niche of a approaches that have been widely used to species might diverge to adapt to the novel study niche conservatism and differentiation environment, and subsequent natural selection (Broennimann et al. 2007; Fitzpatrick et al. might promote this process and facilitate spe- 2007; Warren et al. 2008; Rödder and Lötters ciation (Graham et al. 2004; Wiens and 2009; McCormack et al. 2010; Medley 2010; Graham 2005; Sánchez-Fernández et al. Zhu et al. 2012). PCA uses pooled environ- 2011). Ecological niche differences among mental variables associated with species different species can be visualized and ana- occurrence to reveal reduced significant com- lyzed to assess the likely ecological and ponents that account for the observed evolutionary forces that shape the species’ distribution. The defining niche space of re- geographical distributions and habitat prefer- duced dimension allows investigation of niche ences (Graham et al. 2004; Wiens and conservatism and differentiation. ENM seeks Graham 2005; Raxworthy et al. 2007; to characterize environmental conditions that Sánchez-Fernández et al. 2011). are suitable for the species, and then to identi- fy where suitable environments are distributed Parastrachiidae is a small stinkbug family spatially (Pearson 2007). ENM has been wide- containing only one genus and two species, ly used in biological responses to climate Parastrachia japonensis (Scott) (Hemiptera: change, setting conservation priorities, and the Heteroptera: Pentatomoidea) and Parastra- study of evolutionary biology (Guisan and chia nagaensis Distant. The genus has Thuiller 2005; Raxworthy et al. 2007; Rissler attracted the attention of some heteropterists and Apodaca 2007; Martínez-Gordillo et al. due to its unstable position in Pentatomoidea 2010). (i.e., in different families or subfamilies) (Goel and Schaefer 1970; Schaefer et al. In this study, the global distribution of the ge- 1988; Gapud 1991; Hasan and Kitching 1993; nus was mapped with many records, Hasan and Nasreen 1994; Schuh and Slater especially in China, potential distributions 1995), and the maternal care behavior of P. were predicted using ENM, and niche spaces japonensis (Tsukamoto et al. 1994; Filippi et occupied by the two species were identified al. 1995a, b, 2000a, b, 2001; Nomakuchi et al. and compared using PCA and ENM. The eco- 1998, 2001; Hironaka et al. 2003a, b, 2005, logical niche of a species here can be defined 2007). The genus was raised to the family lev- as “a set of environmental conditions under el (Sweet and Schaefer 2002), which was which it is able to maintain populations with- widely accepted (Grazia et al. 2008; Pluot- out immigrational subsidy” (Grinnell 1917, Journal of Insect Science | http://www.insectscience.org 2 Journal of Insect Science: Vol. 13 | Article 102 Zhu et al. Table 1. Principal components analysis of 13 environmental vari- climatic variables were chosen. Among the ables associated with occurrences of the genus Parastrachia, variables, 6 (i.e., BIO 1, 5, 6, 12, 13, 14) were eigenvalues for significant variables (> 0.8) are in bold. summarizing aspects of temperature and pre- cipitation and were obtained from WorldClim (Hijmans et al. 2005), and 3 (i.e., BIO 20, 21, 22) were summarizing aspects of radiation from CliMond (Kriticos et al. 2011). Topog- raphy variables represented by elevation, slope, aspect, and compound topographic in- dex were derived from the US Geological Survey’s HYDRO1k Elevation Derivative Da- tabase (USGS 2001). Variables at a resolution of 2.5 min were used for model calibration. Principle component analysis 1924). This study also highlighted the correla- PCA was used to explore significant variables tive approach for biodiversity conservation, that related to the genus’distribution and to especially for the localized endemic species. compare niche spaces occupied by the 2 spe- cies. After superimposing the occurrence data Materials and Methods on bioclimate and topography grids, values for each record were extracted in ArcGIS 10. A Occurrence data correlation matrix of 40 × 13 was prepared for Occurrence records were assembled from ex- the PCA performed in SPSS 19 (IBM 2009). isting literature (Tsukamoto and Tojo 1992; To facilitate data visualization, the occurrence Hironaka et al. 2003a; Schaefer and Kikuhara records were pooled for P. nagaensis and P. 2007; Hosokawa et al. 2010) and our speci- japonensis respectively. mens (see Supplementary Figure 1). Localities were georeferenced in Google Maps Ecological niche modeling (http://maps.google.com), Gazetteer of China A wide range of methods have been explored (1997), or BioGeomancer for ENM. Among them, the maximum entro- (http://bg.berkeley.edu/latest/), then mapped py algorithm implemented in the Maxent in ArcGIS 10 (ESRI 2006). A total of 34 and software (Phillips et al. 2004, 2006; Elith et al. 6 occurrence records were prepared for P. ja- 2011) generally performs better than other ponensis and P. nagaensis respectively. algorithms (Elith et al. 2006; Phillips et al. 2006; Ortega-Huerta and Peterson 2008). Environmental variables Maximum entropy is a machine-learning Environmental variables were selected by technique that predicts species distributions by considering climate and topography factors using detailed environmental variables associ- that might affect the genus’ distribution (Tsu- ated with species occurrence. It follows the kamoto et al. 1994; Filippi et al. 1995a, b, principle of maximum entropy and spreads 2000a, b, 2001; Nomakuchi et al. 1998, 2001; out probability as uniformly as possible, but Hironaka et al. 2003a, b, 2005, 2007) (Table subject to the caveat that they must match 1). Annual trends and extreme or limiting bio- empirical information such as known
Recommended publications
  • Maternal Care in Acanthosomatinae (Insecta: Heteroptera: Acanthosomatidae)̶Correlated Evolution with Title Morphological Change
    Maternal care in Acanthosomatinae (Insecta: Heteroptera: Acanthosomatidae)̶correlated evolution with Title morphological change Author(s) Tsai, Jing-Fu; Kudo, Shin-ichi; Yoshizawa, Kazunori BMC Evolutionary Biology, 15, 258 Citation https://doi.org/10.1186/s12862-015-0537-4 Issue Date 2015-11-19 Doc URL http://hdl.handle.net/2115/63251 Rights(URL) http://creativecommons.org/licenses/by/4.0 Type article File Information 10.1186_s12862-015-0537-4.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Tsai et al. BMC Evolutionary Biology (2015) 15:258 DOI 10.1186/s12862-015-0537-4 RESEARCH ARTICLE Open Access Maternal care in Acanthosomatinae (Insecta: Heteroptera: Acanthosomatidae)— correlated evolution with morphological change Jing-Fu Tsai1,3*, Shin-ichi Kudo2 and Kazunori Yoshizawa1 Abstract Background: Maternal care (egg-nymph guarding behavior) has been recorded in some genera of Acanthosomatidae. However, the origin of the maternal care in the family has remained unclear due to the lack of phylogenetic hypotheses. Another reproductive mode is found in non-caring species whose females smear their eggs before leaving them. They possess pairs of complex organs on the abdominal venter called Pendergrast’s organ (PO) and spread the secretion of this organ onto each egg with their hind legs, which is supposed to provide a protective function against enemies. Some authors claim that the absence of PO may be associated with the presence of maternal care. No study, however, has tested this hypothesis of a correlated evolution between the two traits. Results: We reconstructed the molecular phylogeny of the subfamily Acanthosomatinae using five genetic markers sequenced from 44 species and one subspecies with and without maternal care.
    [Show full text]
  • (Pentatomidae) DISSERTATION Presented
    Genome Evolution During Development of Symbiosis in Extracellular Mutualists of Stink Bugs (Pentatomidae) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alejandro Otero-Bravo Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2020 Dissertation Committee: Zakee L. Sabree, Advisor Rachelle Adams Norman Johnson Laura Kubatko Copyrighted by Alejandro Otero-Bravo 2020 Abstract Nutritional symbioses between bacteria and insects are prevalent, diverse, and have allowed insects to expand their feeding strategies and niches. It has been well characterized that long-term insect-bacterial mutualisms cause genome reduction resulting in extremely small genomes, some even approaching sizes more similar to organelles than bacteria. While several symbioses have been described, each provides a limited view of a single or few stages of the process of reduction and the minority of these are of extracellular symbionts. This dissertation aims to address the knowledge gap in the genome evolution of extracellular insect symbionts using the stink bug – Pantoea system. Specifically, how do these symbionts genomes evolve and differ from their free- living or intracellular counterparts? In the introduction, we review the literature on extracellular symbionts of stink bugs and explore the characteristics of this system that make it valuable for the study of symbiosis. We find that stink bug symbiont genomes are very valuable for the study of genome evolution due not only to their biphasic lifestyle, but also to the degree of coevolution with their hosts. i In Chapter 1 we investigate one of the traits associated with genome reduction, high mutation rates, for Candidatus ‘Pantoea carbekii’ the symbiont of the economically important pest insect Halyomorpha halys, the brown marmorated stink bug, and evaluate its potential for elucidating host distribution, an analysis which has been successfully used with other intracellular symbionts.
    [Show full text]
  • Host Orientation Using Volatiles in the Phoretic Nematode Caenorhabditis
    © 2014. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2014) 217, 3197-3199 doi:10.1242/jeb.105353 SHORT COMMUNICATION Host orientation using volatiles in the phoretic nematode Caenorhabditis japonica Etsuko Okumura1,2,* and Toyoshi Yoshiga1,3,‡ ABSTRACT host-biased phoresy with the burrower bug Parastrachia japonensis Host orientation is the most important step in host-searching Scott (Kiontke et al., 2002; Yoshiga et al., 2013). Dauer larvae (DL), nematodes; however, information on direct cues from hosts to evoke a developmentally arrested and phoretic stage of the nematode and this behaviour is limited. Caenorhabditis japonica establishes a a developmental analogue of IJs in EPNs, are predominantly found species-specific phoresy with Parastrachia japonensis. Dauer larvae on P. japonensis adult females throughout the year in fields. Only (DL), the non-feeding and phoretic stage of C. japonica, are the nematode benefits from this phoresy. The nematode uses the host predominantly found on female phoretic hosts, but the mechanisms insect to prolong its own survival (Tanaka et al., 2012) and for underlying the establishment of this phoresy remain unknown. To transport to food resources, such as the nest of the host insect where determine whether C. japonica DL are able to recognize and orient the mother insect stores fruits of Schoepfia jasminodora Siebold & themselves to a host using a volatile cue from the host, we developed Zuccarini for her nymphs, as well as eggs and nymphal carcasses a Y-tube olfactory assay system in which C. japonica DL were (Okumura et al., 2013b; Yoshiga et al., 2013). Thus, the phoresy is significantly attracted to the air from P.
    [Show full text]
  • Invasive Stink Bugs and Related Species (Pentatomoidea) Biology, Higher Systematics, Semiochemistry, and Management
    Invasive Stink Bugs and Related Species (Pentatomoidea) Biology, Higher Systematics, Semiochemistry, and Management Edited by J. E. McPherson Front Cover photographs, clockwise from the top left: Adult of Piezodorus guildinii (Westwood), Photograph by Ted C. MacRae; Adult of Murgantia histrionica (Hahn), Photograph by C. Scott Bundy; Adult of Halyomorpha halys (Stål), Photograph by George C. Hamilton; Adult of Bagrada hilaris (Burmeister), Photograph by C. Scott Bundy; Adult of Megacopta cribraria (F.), Photograph by J. E. Eger; Mating pair of Nezara viridula (L.), Photograph by Jesus F. Esquivel. Used with permission. All rights reserved. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-1-4987-1508-9 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materi- als or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, micro- filming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
    [Show full text]
  • Regulatory Elements Hox Cis Multigenome DNA
    Downloaded from genome.cshlp.org on November 8, 2008 - Published by Cold Spring Harbor Laboratory Press View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors Multigenome DNA sequence conservation identifies Hox cis -regulatory elements Steven G. Kuntz, Erich M. Schwarz, John A. DeModena, et al. Genome Res. published online November 3, 2008 Access the most recent version at doi:10.1101/gr.085472.108 P<P Published online November 3, 2008 in advance of the print journal. Email alerting Receive free email alerts when new articles cite this article - sign up in the box at the service top right corner of the article or click here Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by PubMed from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication. To subscribe to Genome Research go to: http://genome.cshlp.org/subscriptions/ Copyright © 2008, Cold Spring Harbor Laboratory Press Downloaded from genome.cshlp.org on November 8, 2008 - Published by Cold Spring Harbor Laboratory Press Methods Multigenome DNA sequence conservation identifies Hox cis-regulatory elements Steven G. Kuntz,1,2 Erich M. Schwarz,1 John A. DeModena,1,2 Tristan De Buysscher,1 Diane Trout,1 Hiroaki Shizuya,1 Paul W. Sternberg,1,2,3 and Barbara J.
    [Show full text]
  • Downloaded February 13, 2013)
    Bacterial associates of seed-parasitic wasps (Hymenoptera: Megastigmus) Paulson et al. Paulson et al. BMC Microbiology 2014, 14:224 http://www.biomedcentral.com/1471-2180/14/224 Paulson et al. BMC Microbiology 2014, 14:224 http://www.biomedcentral.com/1471-2180/14/224 RESEARCH ARTICLE Open Access Bacterial associates of seed-parasitic wasps (Hymenoptera: Megastigmus) Amber R Paulson*, Patrick von Aderkas and Steve J Perlman Abstract Background: The success of herbivorous insects has been shaped largely by their association with microbes. Seed parasitism is an insect feeding strategy involving intimate contact and manipulation of a plant host. Little is known about the microbial associates of seed-parasitic insects. We characterized the bacterial symbionts of Megastigmus (Hymenoptera: Torymidae), a lineage of seed-parasitic chalcid wasps, with the goal of identifying microbes that might play an important role in aiding development within seeds, including supplementing insect nutrition or manipulating host trees. We screened multiple populations of seven species for common facultative inherited symbionts. We also performed culture independent surveys of larvae, pupae, and adults of M. spermotrophus using 454 pyrosequencing. This major pest of Douglas-fir is the best-studied Megastigmus, and was previously shown to manipulate its tree host into redirecting resources towards unfertilized ovules. Douglas-fir ovules and the parasitoid Eurytoma sp. were also surveyed using pyrosequencing to help elucidate possible transmission mechanisms of the microbial associates of M. spermotrophus. Results: Three wasp species harboured Rickettsia; two of these also harboured Wolbachia. Males and females were infected at similar frequencies, suggesting that these bacteria do not distort sex ratios. The M.
    [Show full text]
  • The Food Plants of Some 'Primitive' Pentatomoidea (Hemiptera: Heteroptera)
    University of Connecticut OpenCommons@UConn ANSC Articles Department of Animal Science 1988 The food plants of some 'primitive' Pentatomoidea (Hemiptera: Heteroptera). Carl W. Schaefer University of Connecticut, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/ansc_articles Part of the Entomology Commons Recommended Citation Schaefer, Carl W., "The food lp ants of some 'primitive' Pentatomoidea (Hemiptera: Heteroptera)." (1988). ANSC Articles. 9. https://opencommons.uconn.edu/ansc_articles/9 9!E THE FOOD PLANTS OF SOME "PRIWtrTTIVE" PENTATOMOIDEA(HEMIPTERA: HETEROPTERA) CARL W. SCHAEFER Department of Ecotogy and Evolutionar.t Biolog.r, Unit,ersity of Connecticut, Storrs, CT 06268 U.S.A. ,ABSTR.ACT The iood plants of the Cydnidae (Cydninae,Sehirinae, Scaptocorinae, Amnestinae, Garsauriinae, Thau- mastellinae,Parastrachiinae, Corimelaeninae), Plataspidae, Megarididae, Cyrtocoridae, and Lestoniidae, compiled {iom the literature, are discussed.So too are the habitats ofthese insects,most ofwhich live on or are associatedwith the ground. This associationsupports an earlier assertionihat life on the ground was the way of lile o{ the early hemipterans. Most of these groups are polyphagous. However, the Plataspidae feed largely upon legumes, the Scaptocorinaeupon the roots ol Gramineae,some Cydninae also upon legumes,and many Sehirinaeupon members of the advanced dicot subclassAsteridae. Fallen seedsand roots are the preferred plant parts. A group ol mostly small drab shieldbugsappears to be primitive
    [Show full text]
  • Hemiptera: Heteroptera: Pentatomoidea)
    Zootaxa 2693: 60–62 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) Pretarsal structures in the family Parastrachiidae (Hemiptera: Heteroptera: Pentatomoidea) JERZY A. LIS Department of Biosystematics, Opole University, Oleska 22, 45-052 Opole, Poland. E-mail: [email protected], http://www.cydnidae.uni.opole.pl Parastrachiidae, for a long time regarded as a subfamily within the Cydnidae (e.g., Schaefer et al. 1988; Schuh and Slater 1995; Gapud 1991), was raised to family level by Sweet and Schaefer (2002), and this position was then accepted by many heteropterists (e.g., Lis and Heyna 2001; Lis and Schaefer 2005; Hironaka et al. 2007; Schaefer and Kikuhara 2007; Lis 2010). Until not long ago, this taxon (despite its taxonomic, subfamilial or familial, level) included only a single genus, namely Parastrachia Scott, with two species, i.e., P. japonensis (Scott), and P. nagaensis Distant. Recently, a study on the spermathecae of the Cydnidae sensu lato and its related families (Pluot-Sigwalt and Lis 2008) showed that the spermatheca of Parastrachia japonensis is very similar to that of Dismegistus sanguineus de Geer. A close relationship of these genera was also confirmed by results of studies based on their DNA sequences (Grazia et al. 2008). The aim of this paper is to describe the pretarsal structures in species of the genera (Parastrachia and Dismegistus) included presently in Parastrachiidae, and compare them to those recently described in the Cydnidae s.l. (Lis and Ziaja 2010). Material and methods The following species were examined using the SEM technique: Parastrachia nagaensis Distant, 1908 [Japan], P.
    [Show full text]
  • Phylogenetic Relationships of Family Groups in Pentatomoidea Based on Morphology and DNA Sequences (Insecta: Heteroptera)
    Cladistics Cladistics 24 (2008) 1–45 10.1111/j.1096-0031.2008.00224.x Phylogenetic relationships of family groups in Pentatomoidea based on morphology and DNA sequences (Insecta: Heteroptera) Jocelia Graziaa,*, Randall T. Schuhb and Ward C. Wheelerb aCNPq Researcher, Department of Zoology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; bDivision of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA Accepted 18 March 2008 Abstract Phylogenetic relationships within the Pentatomoidea are investigated through the coding and analysis of character data derived from morphology and DNA sequences. In total, 135 terminal taxa were investigated, representing most of the major family groups; 84 ingroup taxa are coded for 57 characters in a morphological matrix. As many as 3500 bp of DNA data are adduced for each of 52 terminal taxa, including 44 ingroup taxa, comprising the 18S rRNA, 16S rRNA, 28S rRNA, and COI gene regions. Character data are analysed separately and in the form of a total evidence analysis. Major conclusions of the phylogenetic analysis include: the concept of Urostylididae is restricted to that of earlier authors; the Saileriolinae is raised to family rank and treated as the sister group of all Pentatomoidea exclusive of Urostylididae sensu stricto; a broadly conceived Cydnidae, as recognized by Dolling, 1981, is not supported; the placement of Thaumastellidae within the Pentatomoidea is affirmed and the taxon is recognized at family rank rather than as a subfamily
    [Show full text]
  • Ecology of Caenorhabditis Species* §
    Ecology of Caenorhabditis species* § Karin Kiontke , Department of Biology, New York University, New York, NY 10003 USA § Walter Sudhaus , Institut für Biologie/Zoologie, Freie Universität Berlin, D-14195 Berlin, Germany Table of Contents 1. Introduction ............................................................................................................................2 2. Associations with other animals .................................................................................................. 2 2.1. Necromeny ..................................................................................................................2 2.2. Phoresy .......................................................................................................................3 2.3. Possible adaptations to nematode-invertebrate associations .................................................... 3 2.4. Vertebrate associations ................................................................................................... 3 3. Ecology of Caenorhabditis species ..............................................................................................3 3.1. Ecology of C. briggsae, C. elegans and C. remanei ..............................................................4 4. Ecology of the Caenorhabditis stem species and evolution of ecological features within Caenorhabditis .. 5 4.1. The Caenorhabditis stem species ..................................................................................... 5 4.2. Evolutionary trends within Caenorhabditis
    [Show full text]
  • Hemiptera: Heteroptera) Revealed by Bayesian Phylogenetic Analysis of Nuclear Rdna Sequences 481-496 75 (3): 481– 496 20.12.2017
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arthropod Systematics and Phylogeny Jahr/Year: 2017 Band/Volume: 75 Autor(en)/Author(s): Lis Jerzy A., Ziaja Dariusz J., Lis Barbara, Gradowska Paulina Artikel/Article: Non-monophyly of the “cydnoid” complex within Pentatomoidea (Hemiptera: Heteroptera) revealed by Bayesian phylogenetic analysis of nuclear rDNA sequences 481-496 75 (3): 481– 496 20.12.2017 © Senckenberg Gesellschaft für Naturforschung, 2017. Non-monophyly of the “cydnoid” complex within Pentatomoidea (Hemiptera: Heteroptera) revealed by Bayesian phylogenetic analysis of nuclear rDNA sequences Jerzy A. Lis *, Dariusz J. Ziaja, Barbara Lis & Paulina Gradowska Department of Biosystematics, Opole University, Oleska 22, 45-052 Opole, Poland; Jerzy A. Lis * [[email protected]]; Dariusz J. Ziaja [[email protected]]; Barbara Lis [[email protected]]; Paulina Gradowska [[email protected]] — * Corresponding author Accepted 02.x.2017. Published online at www.senckenberg.de/arthropod-systematics on 11.xii.2017. Editors in charge: Christiane Weirauch & Klaus-Dieter Klass Abstract The “cydnoid” complex of pentatomoid families, including Cydnidae, Parastrachiidae, Thaumastellidae, and Thyreocoridae, is morphologi- cally defined by the presence of an array of more or less flattened stout setae (called coxal combs), situated on the distal margin of coxae. These structures, suggested to prevent the coxal-trochanteral articulation from injuries caused by particles of soil, sand or dust, by their nature and function are unknown elsewhere in the Heteroptera. As such, coxal combs were regarded as a synapomorphy of this group of families, and enabled the definition of it as a monophylum.
    [Show full text]
  • Morphology of the Spermatheca in the Cydnidae (Hemiptera: Heteroptera): Bearing of Its Diversity on Classification and Phylogeny
    Eur. J. Entomol. 105: 279–312, 2008 http://www.eje.cz/scripts/viewabstract.php?abstract=1332 ISSN 1210-5759 (print), 1802-8829 (online) Morphology of the spermatheca in the Cydnidae (Hemiptera: Heteroptera): Bearing of its diversity on classification and phylogeny DOMINIQUE PLUOT-SIGWALT1 and JERZY A. LIS2 1Biologie et Évolution des Insectes, École Pratique des Hautes Études et Muséum National d’Histoire Naturelle, 45 rue Buffon, F-75005 Paris, France; e-mail: [email protected] 2Department of Biosystematics, Division of Invertebrate Zoology, University of Opole, Oleska 22, PL-45-052 Opole, Poland; e-mail: [email protected] Key words. Heteroptera, Pentatomomorpha, Pentatomoidea, Cydnidae, Amaurocorinae stat. n., vaginal structures, spermatheca, parietovaginal gland, ring sclerite, fecundation canal, morphology, classification, phylogeny Abstract. Cuticular parts of the spermatheca and associated vaginal structures (chiefly the ring sclerites of the parietovaginal glands) have been examined and compared in 190 cydnid species representing 65 genera and all five subfamilies currently recognized in the family (Amnestinae, Cephalocteinae, Cydninae, Garsauriinae, Sehirinae). Four species belonging to genera formerly included within the Cydnidae (Dismegistus, Parastrachia, Thaumastella, Thyreocoris) were also examined. Morphology of the three main parts of the spermatheca [seminal receptacle (distal bulb), intermediate part (pump apparatus), spermathecal duct] is described. Four main types of spermathecae can be recognized from the distal receptacle and the intermediate part: the amaurocorine type (in Sehirinae: Amaurocorini), amnestine type (in Amnestinae), garsauriine type (in Garsauriinae), and “cydnoid” type (in Cephalocteinae + Cydni- nae: Cydnini, Geotomini + Sehirinae: Sehirini). No synapomorphy of these types was found which suggests that the currently con- ceived Cydnidae are not monophyletic.
    [Show full text]