Handbook on Pest and Disease Control of Mulberry and Silkworm

Total Page:16

File Type:pdf, Size:1020Kb

Handbook on Pest and Disease Control of Mulberry and Silkworm J >--' l ' :_,. ' ' ~.' • •• / ~ ..._,.,. \j).,~: ... i ( :_-; : ~ ECONOMIC AND SOCIAL COMMISSION FOR ASIA AND THE PACIFIC .·J . / ... ' HANDBOOK ON PEST AND DISEASE CONTROL OF MULBERRY AND SILKWORM (:.\. ~~ iJ?.~ --7~ UNITED NATIONS ST/ESCAP/888 The views expressed in this publication are those of the author and do not necessarily reflect those of the United Nations orof any of the Governments of the countries or territories mentioned in the studies. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ii PREFACE It is well known that the Asian and Pacific region has an age-old tradition of producing and using silk, besides being the supplier of the commodity to the whole world. Recently, the silk trade, both within and outside the region, has become complex and competitive. To cope with this situation, there is a need to increase production as well as to improve the quality of silk. How­ ever, one of the most serious problems faced by many countries of the region in such efforts is the incidence of pests and diseases of both mulberry and silkworms. Indeed, cocoon and raw silk production, and ultimately the quality of silk produced, depend heavily on the success of silkworm rearing, and pests and diseases are an important factor affecting the productivity of silkworms. Thus, an effective means of increasing the production of silk and improving its quality is the control of such pests and diseases. Even by conservative estimates, pest and dis­ ease incidence combined accounts for about 20-25 per cent of crop loss. Many kinds of pests and diseases of mulberry and silkworm, along with appropriate measures to control them, have been identified in the producing countries; however, the information has not been made avail­ able widely enough. For these reasons, the Regional Consultative Group on Silk- an intergovernmental body established by ESCAP to promote multidisciplinary co-operative activities in silk - requested the ESCAP secretariat to compile an inventory of information on the principal pests and dis­ eases which are seriously affecting the productivity of both mulberry and silkworms, as well as on the control measures currently being adopted, and to distribute that information to con­ cerned countries. Supported by generous financial assistance from the Government of the Netherlands, ESCAP initiated a series of activities which culminate in the publication of the present handbook. This handbook, prepared on behalf of ESCAP by a team of specialists led by Dr. K. Sengupta from the Central Sericultural Research and Training Institute of Mysore, India, contains a large amount of technical information on the various pests and diseases occurring in the region and their control, supported by abundant illustrative materials and is mainly meant as a comprehensive and valuable guide for both extension workers and silk farmers. More­ over, the technical information contained herein has been carefully compiled and is expected to be valid for many years to come. We therefore hope that this handbook will also become an authoriative reference book for scientists and personnel involved in research and devel­ opment work in this field. S.A.M.S. Kibria Executive Secretary "The team of specialists led by Dr. K. Sengupta from the Central Sericultural Research and Training Institute of Mysore, India, comprises Dr. Pradip Kumar, Mr. Murthuza Baig and Mr. Govindaiah". 111 Contents Page INTRODUCTION .............................................................................................................................................. ix PART-I DISEASES AND PESTS OF MULBERRY PLANT Chapter-1: Diseases of mulberry and their control .............................................................................. 3 1.1. Fungal diseases...................................................................................................................... 3 1.1.1. Leaf spot .................................................................................................................. 3 1.1.2. Powdery mildew...................................................................................................... 4 1.1.3. Rust........................................................................................................................... 5 1.1.4. Root-rot ................................................................................................................... 7 1.1.5. Twig blight ............................................................................................................... 8 1.1.6. Minor fungal diseases ............................................................................................. 10 1.2. Bacterial diseases ................................................................................................................. 10 1.2.1. Bacterial blight ......................................................................................................... 10 1.3. Mycoplasma diseases ........................................................................................................... 11 1.3.1. Dwarf diseases ......................................................................................................... 11 1.4. Viral diseases ..................................................................................................... :................... 11 1.4.1. Mosaic diseases ....................................................................................................... 12 1.5. Nematode diseases ............................................................................................................... 12 1.5.1. Root-knot nematode ............................................................................................... 12 1.6. Deficiency diseases ............................................................................................................... 14 1.6.1 Mineral deficiency in mulberry ............................................................................. 14 Chapter-2: Pests of mulberry and their control .................................................................................... 17 2.1. Lepidoptera .......................................................................................................................... 17 2.1.1. Biharhairycaterpillar ............................................................................................ 17 2.1.2. Cutworm .................................................................................................................. 17 2.1.3. Moringa hairy caterpillar........................................................................................ 18 2.1.4. Tussock caterpillar.................................................................................................. 19 V Contents (Continued) Page 2.1.5. Brown tail moth ······· ···························································································· 21 2.1.6. Wasp moth .............................................................................................................. 21 2.1.7. Ce,yxgodarti, Bdv ................................................................................................... 22 2.1.8. Spanworm ................................................................................................................ 22 2.1.9. Mulberry pyralid ................................................................................................... 23 2.1.10. Leaf-roller ... ·························· ........................................................................................... 24 2.1.11. Leaf-tier ... ·················-·· ............................................................................................... 24 2.1.12. Clear-winged moth ................................................................................................. 25 2.1.13. White caterpillar ..................................................................................................... 25 2.1.14. Wild silkworm ......................................................................................................... 26 2.2. Hemiptera .............................................................................................................................. 26 2.2.1. Black scale insect ........................................................................................................ 27 2.2.2. Mulberry scale insect ................................................................................................ 27 2.2.3. Soft scale insect .......................................................................................................... 28 2.2.4. Red scale insect .......................................................................................................... 29 2.2.5. Mealy bug.................................................................................................................... 29 2.2.6. Mulberry mealy bug .................................................................................................. 30 2.2.7. Jassid ............................................................................................................................ 31 2.3. Coleoptera ...........................................................................................................................
Recommended publications
  • Download Download
    Agr. Nat. Resour. 54 (2020) 499–506 AGRICULTURE AND NATURAL RESOURCES Journal homepage: http://anres.kasetsart.org Research article Checklist of the Tribe Spilomelini (Lepidoptera: Crambidae: Pyraustinae) in Thailand Sunadda Chaovalita,†, Nantasak Pinkaewb,†,* a Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand b Department of Entomology, Faculty of Agriculture at Kamphaengsaen, Kasetsart University, Kamphaengsaen Campus, Nakhon Pathom 73140, Thailand Article Info Abstract Article history: In total, 100 species in 40 genera of the tribe Spilomelini were confirmed to occur in Thailand Received 5 July 2019 based on the specimens preserved in Thailand and Japan. Of these, 47 species were new records Revised 25 July 2019 Accepted 15 August 2019 for Thailand. Conogethes tenuialata Chaovalit and Yoshiyasu, 2019 was the latest new recorded Available online 30 October 2020 species from Thailand. This information will contribute to an ongoing program to develop a pest database and subsequently to a facilitate pest management scheme in Thailand. Keywords: Crambidae, Pyraustinae, Spilomelini, Thailand, pest Introduction The tribe Spilomelini is one of the major pests in tropical and subtropical regions. Moths in this tribe have been considered as The tribe Spilomelini Guenée (1854) is one of the largest tribes and the major pests of economic crops such as rice, sugarcane, bean belongs to the subfamily Pyraustinae, family Crambidae; it consists of pods and corn (Khan et al., 1988; Hill, 2007), durian (Kuroko 55 genera and 5,929 species worldwide with approximately 86 genera and Lewvanich, 1993), citrus, peach and macadamia, (Common, and 220 species of Spilomelini being reported in North America 1990), mulberry (Sharifi et.
    [Show full text]
  • Bitki Koruma Bülteni / Plant Protection Bulletin, 2020, 60 (3) : 39-45
    Bitki Koruma Bülteni / Plant Protection Bulletin, 2020, 60 (3) : 39-45 Bitki Koruma Bülteni / Plant Protection Bulletin http://dergipark.gov.tr/bitkorb Original article A pest that could be posing a threat to mulberry production of Turkey: Glyphodes pyloalis (Walker, 1859) (Lepidoptera: Crambidae) Türkiye dut üretimini tehdit edebilecek bir zararlı: Glyphodes pyloalis (Walker, 1859) (Lepidoptera: Crambidae) Gürsel ÇETİNa* Pınar HEPHIZLI GÖKSELa Mustafa ÖZDEMİRb Yılmaz BOZa a*Directorate of Ataturk Central Horticultural Research Institute, Süleyman Bey Mah., Yalı Cad., 77100 Yalova, Turkey bPlant Protection Central Research Institute, Gayret Mah. Fatih Sultan Mehmet Bulv. 06172 Yenimahalle, Ankara, Turkey ARTICLE INFO ABSTRACT Article history: Mulberry, Morus spp. (Moraceae) is naturally cultivated in Turkey, and no DOI: 10.16955/bitkorb.669491 chemical input used during the production process. Hitherto, major and common Received : 02.01.2020 species of insect and acari caused the economic yield and quality losses in the Accepted : 28.05.2020 mulberry production have not been recorded. On the other hand, lesser mulberry snout moth, Glyphodes pyloalis (Walker, 1859) (Lepidoptera: Crambidae), Keywords: considered being one of the most important pests of mulberry around the world Lesser mulberry snout moth, Glyphodes pyloalis, Morus spp., was detected in the province of Yalova in the last week of August in 2018 for the Crambidae, Lepidoptera first time. Larvae of this pest caused serious damage to leaves of white mulberry (Morus alba L., 1753), black mulberry (Morus nigra L., 1753), and weeping white * Corresponding author: Gürsel ÇETİN mulberry (Morus alba cv. ‘Pendula’) (Urticales: Moraceae) whereas it has newly [email protected] just occurred.
    [Show full text]
  • (BZC & MZC Entomology Students) Sericulture Farm. Shadnagar
    ZOOLOGY FIELD TRIPS: B.Sc (BZC & MZC Entomology students) Sericulture Farm. Shadnagar (17 Sep 2019) The Department of Zoology has a study trip for the Students of B.Sc (BZC / MZC) final year (Entomology) to the Sericulture farm in Shadnagar. We have Visited Three Centers: 1. State Horticulture and Sericulture Office – a Government Institution located in Lingojiguda, Shadnagar under the supervision of Mrs. Nagaratna, disrict sericulture officer. 2. A private farm – where the larvae are reared from eggs to Pupal stage using Mulberry leaves. 3. A Forest area – where Mulberry plantation and Nursery is located. In the First place, the reeling of the Silk Cocoons is done. They purchase Cocoons from the private farm. The Cocoons are then separated based on the quality. The Finest quality of silk is produced from healthy cocoons. Each Cocoon produces 1200 meters of silk. Silk produced from 6 cocoons, is woven as one thread which is very soft & delicate, this is used in fine Kashmiri silk sarees. It weighs very less & the Silk is very soft. In some cases 12-15 cocoons are used which gives a rough texture to silk. The Second quality Cross breed cocoons are yellow in color which is usually mixed with other threads. The Third type is Double cocoons which produce Dupian silk. When unhealthy larvae form cocoons, flimsy silk is produced. In the next step, the larvae are killed inside the Cocoon by keeping them in ovens. The dead cocoons are stored in large trays in big racks in a room. The trays are numbered & dated. Everyday few cocoons are taken for reeling.
    [Show full text]
  • Wax, Wings, and Swarms: Insects and Their Products As Art Media
    Wax, Wings, and Swarms: Insects and their Products as Art Media Barrett Anthony Klein Pupating Lab Biology Department, University of Wisconsin—La Crosse, La Crosse, WI 54601 email: [email protected] When citing this paper, please use the following: Klein BA. Submitted. Wax, Wings, and Swarms: Insects and their Products as Art Media. Annu. Rev. Entom. DOI: 10.1146/annurev-ento-020821-060803 Keywords art, cochineal, cultural entomology, ethnoentomology, insect media art, silk 1 Abstract Every facet of human culture is in some way affected by our abundant, diverse insect neighbors. Our relationship with insects has been on display throughout the history of art, sometimes explicitly, but frequently in inconspicuous ways. This is because artists can depict insects overtly, but they can also allude to insects conceptually, or use insect products in a purely utilitarian manner. Insects themselves can serve as art media, and artists have explored or exploited insects for their products (silk, wax, honey, propolis, carmine, shellac, nest paper), body parts (e.g., wings), and whole bodies (dead, alive, individually, or as collectives). This review surveys insects and their products used as media in the visual arts, and considers the untapped potential for artistic exploration of media derived from insects. The history, value, and ethics of “insect media art” are topics relevant at a time when the natural world is at unprecedented risk. INTRODUCTION The value of studying cultural entomology and insect art No review of human culture would be complete without art, and no review of art would be complete without the inclusion of insects. Cultural entomology, a field of study formalized in 1980 (43), and ambitiously reviewed 35 years ago by Charles Hogue (44), clearly illustrates that artists have an inordinate fondness for insects.
    [Show full text]
  • The Sally Walker Conservation Fund at Zoo Outreach Organization to Continue Key Areas of Her Interest
    Building evidence for conservaton globally Journal of Threatened Taxa ISSN 0974-7907 (Online) ISSN 0974-7893 (Print) 26 November 2019 (Online & Print) PLATINUM Vol. 11 | No. 14 | 14787–14926 OPEN ACCESS 10.11609/jot.2019.11.14.14787-14926 J TT www.threatenedtaxa.org ISSN 0974-7907 (Online); ISSN 0974-7893 (Print) Publisher Host Wildlife Informaton Liaison Development Society Zoo Outreach Organizaton www.wild.zooreach.org www.zooreach.org No. 12, Thiruvannamalai Nagar, Saravanampat - Kalapat Road, Saravanampat, Coimbatore, Tamil Nadu 641035, India Ph: +91 9385339863 | www.threatenedtaxa.org Email: [email protected] EDITORS English Editors Mrs. Mira Bhojwani, Pune, India Founder & Chief Editor Dr. Fred Pluthero, Toronto, Canada Dr. Sanjay Molur Mr. P. Ilangovan, Chennai, India Wildlife Informaton Liaison Development (WILD) Society & Zoo Outreach Organizaton (ZOO), 12 Thiruvannamalai Nagar, Saravanampat, Coimbatore, Tamil Nadu 641035, Web Design India Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India Deputy Chief Editor Typesetng Dr. Neelesh Dahanukar Indian Insttute of Science Educaton and Research (IISER), Pune, Maharashtra, India Mr. Arul Jagadish, ZOO, Coimbatore, India Mrs. Radhika, ZOO, Coimbatore, India Managing Editor Mrs. Geetha, ZOO, Coimbatore India Mr. B. Ravichandran, WILD/ZOO, Coimbatore, India Mr. Ravindran, ZOO, Coimbatore India Associate Editors Fundraising/Communicatons Dr. B.A. Daniel, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Mrs. Payal B. Molur, Coimbatore, India Dr. Mandar Paingankar, Department of Zoology, Government Science College Gadchiroli, Chamorshi Road, Gadchiroli, Maharashtra 442605, India Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA Editors/Reviewers Ms. Priyanka Iyer, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Subject Editors 2016-2018 Fungi Editorial Board Ms. Sally Walker Dr.
    [Show full text]
  • Studies on the Susceptibility and Cross Infectivity of Mulberry Pest
    Journal of Entomology and Zoology Studies 2021; 9(2): 962-965 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Studies on the susceptibility and cross infectivity www.entomoljournal.com JEZS 2021; 9(2): 962-965 of mulberry pest Glyphodes pyloalis Walker to © 2021 JEZS Received: 16-01-2021 silkworm, Bombyx mori L Accepted: 21-02-2021 Abeera Imtiyaz College of Temperate Sericulture, Abeera Imtiyaz, Iqra Rafiq, KA Sahaf, Shabir A Bhat, ZI Buhroo, Sher-e-Kashmir University of Agricultural Sciences and Technology Shaheen Gul and S Maqbool of Kashmir Srinagar, Jammu and Kashmir, India Abstract Iqra Rafiq In the present study, susceptibility of the mulberry pest G. pyloalis Walker to the pathogens of silkworm, College of Temperate Sericulture, B. mori L. and susceptibility of the silkworm, B. mori to the pathogens of mulberry pest G. pyloalis was Sher-e-Kashmir University of ascertained. During the study various stages of G. pyloalis were found infected with the Microsporidian Agricultural Sciences and Technology of Kashmir Srinagar, Jammu and (Pebrine) and Nuclear Polyhedral Virus (BmNPV) whereas, fungal and bacterial pathogens were not Kashmir, India observed during the present study. The mean incidence of microsporidian and NPV was observed as 4.22% and 5.99%., respectively. Silkworm, Bombyx mori inoculated with the pathogens isolated from G. KA Sahaf pyloalis (Microsporidian and Nuclear Polyhedral Virus) showed high mortality at larval and pupal stages. College of Temperate Sericulture, Sher-e-Kashmir University of However, silkworms inoculated with Microsporidian showed mortality of 53.66% at larval stage whereas Agricultural Sciences and Technology silkworms inoculated with Nuclear Polyhedral Virus showed mortality of 61.00% at larval stage.
    [Show full text]
  • Master Thesis
    Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Forest Mycology and Plant Pathology Uppsala 2011 Taxonomic and phylogenetic study of rust fungi forming aecia on Berberis spp. in Sweden Iuliia Kyiashchenko Master‟ thesis, 30 hec Ecology Master‟s programme SLU, Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Forest Mycology and Plant Pathology Iuliia Kyiashchenko Taxonomic and phylogenetic study of rust fungi forming aecia on Berberis spp. in Sweden Uppsala 2011 Supervisors: Prof. Jonathan Yuen, Dept. of Forest Mycology and Plant Pathology Anna Berlin, Dept. of Forest Mycology and Plant Pathology Examiner: Anders Dahlberg, Dept. of Forest Mycology and Plant Pathology Credits: 30 hp Level: E Subject: Biology Course title: Independent project in Biology Course code: EX0565 Online publication: http://stud.epsilon.slu.se Key words: rust fungi, aecia, aeciospores, morphology, barberry, DNA sequence analysis, phylogenetic analysis Front-page picture: Barberry bush infected by Puccinia spp., outside Trosa, Sweden. Photo: Anna Berlin 2 3 Content 1 Introduction…………………………………………………………………………. 6 1.1 Life cycle…………………………………………………………………………….. 7 1.2 Hyphae and haustoria………………………………………………………………... 9 1.3 Rust taxonomy……………………………………………………………………….. 10 1.3.1 Formae specialis………………………………………………………………. 10 1.4 Economic importance………………………………………………………………... 10 2 Materials and methods……………………………………………………………... 13 2.1 Rust and barberry
    [Show full text]
  • Full-Length Transcriptome of Thalassiosira Weissflogii As
    marine drugs Communication Full-Length Transcriptome of Thalassiosira weissflogii as a Reference Resource and Mining of Chitin-Related Genes Haomiao Cheng 1,2,3, Chris Bowler 4, Xiaohui Xing 5,6,7, Vincent Bulone 5,6,7, Zhanru Shao 1,2,* and Delin Duan 1,2,8,* 1 CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; [email protected] 2 Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China 3 University of Chinese Academy of Sciences, Beijing 100049, China 4 Institut de Biologie de l’ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; [email protected] 5 Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 10691 Stockholm, Sweden; [email protected] (X.X.); [email protected] (V.B.) 6 Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, Australia 7 Adelaide Glycomics, School of Agriculture Food and Wine, University of Adelaide, Waite Campus, Urrbrae 5064, Australia 8 State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao 266400, China * Correspondence: [email protected] (Z.S.); [email protected] (D.D.) Citation: Cheng, H.; Bowler, C.; Xing, X.; Bulone, V.; Shao, Z.; Duan, D. Abstract: β-Chitin produced by diatoms is expected to have significant economic and ecological Full-Length Transcriptome of value due to its structure, which consists of parallel chains of chitin, its properties and the high Thalassiosira weissflogii as a Reference abundance of diatoms.
    [Show full text]
  • Sericulture 1.Sericulture Is the Rearing of Silkworms to Produce Silk. 2.The Term Sericulture Is Derived from a Greek Word Sericos
    Sericulture 1.Sericulture is the rearing of silkworms to produce silk. 2.The term sericulture is derived from a Greek word sericos. 3.The word sericos means silk. 4.The word culture refers to rearing. Life cycle of Mulberry silkworm ( Bombyx mori ) 1.life cycle of Bombyx mori comprises four stages. 2.They are egg, larva, pupa and adult. 3.The duration of life cycle is approximately 45 days. 4.The egg is oval in shape. 5.The egg as outer covering called chorion. 6.It has an opening at one end . it is called micropyle. 7.The egg hatches out into a larva. 8.The larval period consists of 20-24 days. 9.The larva is black in colour. 10.The body is covered with bristles. 11.It undergoes the process of moulting. 12.Larval life consists of 5 larval stages. 13.Moulting results in the production of the 5th instar larva. 14.The larva is phytophagous. (plant eater) 15.It is a voracious feeder. 16.It feeds actively on mulberry leaves. 17.Then the larva passes onto the next stage called pupa. 18.Pupa is covered by a cocoon. The cocoon is made up of silk fibre secreted by the 5th instar larva. 19.Pupa lives inside the cocoon. 20.Pupa does not move and feed. 21.Adult organs develop during this stage. 22.Pupa consists of head, thorax and abdomen. 23.The pupal stage lasts for about 10-12 days. 24.The adult emerges from pupa. 25.The adult life lasts for about 3-5 days. 26.The adults do not feed.
    [Show full text]
  • CV Dr Jalali Sendi
    Curriculum Vitae Dr. Jalal Jalali Sendi Professor Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran. E mail: [email protected] Tel. Office: +981333690817 Cell phone: +989113309574 Personal Link: https://staff.guilan.ac.ir/jalali/index.php?a=0&lg=1 Researcher ID : C-5364-2017 Author ID : 38561500900 Orc ID: 0000-0002-4917-1068 Educational Qualifications: B.S.(1982) M.S.(1985) Ph.D.(1991)- specialized in Insect Physiology Banaras Hindu University, Uttar Pradesh, India Research Grants: 1) Botanical pesticides from indigenous plants of Guilan Province against insect pests of economic importance University of Guilan, Reseach Office Grant 1385 2) Establishment of a new cell line from hemocyte of rose sawfly Arge rosae (Hym Argidae) and investigation on the responses to pathogenic factors by these cells Iranian National Science Foundation (INSF) Grant No. 911003789 3) Effect of essential Oil and extract formulation of Sweetworm wood Artemisia annua L. on larvae and a cell line of lesser mulberry snout moth, Glyphodes pyloalis Walker Iranian National Science Foundation (INSF) Grant No. 98004512 Publications Book Chapter 1. Artemisia annua - Pharmacology and Biotechnology Chapter 13. Recent Developments in Controlling Insect, Acari, Nematode, and Plant Pathogens of Agricultural and Medical Importance by Artemisia annua L. (Asteraceae) Spriger pp 229-247 2. Recent Progress in Medicinal Plants Chapter 5. Biological Activities of Essential oils on Insects Research Articles: (From 1990 – 2020) ٢. 3. Srivastava,K.P.,Katyar,R.L.,Tiwari,R.K.,Tiwari,J.N. and J.Jalali.1990.Effects of a juvenoid on the morphogenesis of the female reproductive organs in Dysdercus koenigii Fabr.(Hemiptera).Proceedings of the Indian National Science Academy Part- B (Biological Sciences) .
    [Show full text]
  • 3Rd HELLENIC SCIENTIFIC CONFERENCE in APICULTURE- SERICULTURE Thessaloniki 21-22 April 2007
    3rd HELLENIC SCIENTIFIC CONFERENCE IN APICULTURE- SERICULTURE Thessaloniki 21-22 April 2007 HELLENIC SCIENTIFIC SOCIETY OF APICULTURE- SERICULTURE NUMBER OF DRONE CELLS IN THE NATURAL-BUILT HONEYCOMBS OF A. M. MACEDONICA Goras G., Dislis S., Konstas N., Thrasyvoulou A. Laboratory of Apiculture – Sericulture, Faculty of Agriculture, Aristotle University of Thessaloniki, . [email protected] Beekeeping as a biological agriculture requires the replacement of all of the honeycombs. Using frames with foundation comb provides uniformity with minimal structure of dronecells but biological wax is limited and it is not always free of residues. As a solution it could be proposed to “force” bees to build the frames without using foundation combs, but in this case, the number of dronecells would be higher. This number depends on the bee race but there in no paper that it refers to this characteristic for the indigenous of Greece. In this paper present the first data concerns the production of dronecells in beecolonies with and without foundation comb. The experimental group provided with frames with foundation comb, produced less drone cells (0,03% per bee colony) in relation to the second group, which built natural honeycombs and so produced more dronecells (20,6% per bee colony). These average numbers present significant differences and this is also occurs after the comparison of the number of worker cells that the two experimental groups produced. First group produced mainly worker cells (99,97% per colony), while the second group produced 79,3% worker cells per colony. Finally we can establish that in each experimental group there is a great variance among the colonies that concerns the number of dronecells, regardless of the use (CV% : 316,7%) or not (CV% : 67%) foundation combs.
    [Show full text]
  • Survival and Characteristics of Ice Nucleation-Active Bacteria on Mulberry Trees (Morus Spp.) and in Mulberry Pyralid (Glyphodes Pyloalis)*
    日 植 病 報61: 439-443 (1995) Ann. Phytopathol. Soc. Jpn. 61: 439-443 (1995) Survival and Characteristics of Ice Nucleation-active Bacteria on Mulberry Trees (Morus spp.) and in Mulberry Pyralid (Glyphodes pyloalis)* Kyoichi TAKAHASHI**,***, Kenji WATANABE** and Mamoru SATO** Abstract Survival and population proportion of ice nucleation-active (INA) bacteria on mulberry tree and in an insect, mulberry pyralid, were investigated. Two groups of epiphytic bacteria, Pseudomonas syringae and Erwinia herbicola group bacteria formed dominant bacterial floras on mulberry leaves. E. herbicola group bacteria also distributed in most larvae of mulberry pyralid, but P. syringae was detectable in only some of them. Population frequency of INA P. syringae against total P. syringae in mulberry trees was very high (48.1%), whereas that of E. herbicola group bacteria was low (0.5%). Two group of INA bacteria were identified as P. syringae pv. mori and as Erwinia ananas which has not been detected from mulberry. These two species of INA bacteria were also first found in the insect, mulberry pyralid. A relationship between population of the INA bacteria and frost damage of mulberry trees was discussed. (Received January 25, 1995; Accepted May 18, 1995) Key words: ice nucleation-active bacteria, Pseudomonas syringae pv. mori, Erwinia herbicola, Erwinia ananas, mulberry pyralid, mulberry trees. syringae surviving on mulberry trees have not been INTRODUCTION detected and also there has been no information on the survival of INA bacteria in insects feeding mulberry Frost formation in plants requires the presence of leaves. suitable ice nucleus. Maki et al. found out that Pseudo- This paper deals with the results of the survival and monas syringae harbored an ability as ice nucleus11), and identification of INA bacteria on mulberry trees and in Arny et al.
    [Show full text]