Beekeeping and Its Importance Beekeeping Is the Science and Arts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Minimizing Honey Bee Exposure to Pesticides1 J
ENY-162 Minimizing Honey Bee Exposure to Pesticides1 J. D. Ellis, J. Klopchin, E. Buss, L. Diepenbrock, F. M. Fishel, W. H. Kern, C. Mannion, E. McAvoy, L. S. Osborne, M. Rogers, M. Sanford, H. Smith, B. S. Stanford, P. Stansly, L. Stelinski, S. Webb, and A. Vu2 Introduction state, and international partners to identify ways to reduce pesticide exposure to beneficial pollinators, while including Growers and pesticide applicators have a number of options appropriate label restrictions to safeguard pollinators, the when faced with a pest problem: do nothing, or apply environment, and humans. More information can be found some type of cultural, chemical, biological, or physical here: epa.gov/pollinator-protection. The bottom line is that method to mitigate the damage. The action to be taken the label is the law—it must be followed. should be chosen after weighing the risks and benefits of all available options. There are many situations where pest control is necessary and chemical controls must be Pollinator Importance used. Certain chemistries of insecticides, fungicides, and The western honey bee (Apis mellifera, Figure 1) is conceiv- herbicides are known to have negative and long-term ably the most important pollinator in Florida and American impacts on bees, other pollinators, and other beneficial agricultural landscapes (Calderone 2012). Over 50 major arthropods. Fortunately, there are pesticides that have crops in the United States and at least 13 in Florida either minimal impacts on pollinators and beneficial organisms. depend on honey bees for pollination or produce more The pollinator-protection language that is required to be yield when honey bees are plentiful (Delaplane and on US pesticide labels outlines how best to minimize these Mayer 2000). -
Bee Health: the Role of Pesticides
Bee Health: The Role of Pesticides Renée Johnson Specialist in Agricultural Policy M. Lynne Corn Specialist in Natural Resources Policy February 17, 2015 Congressional Research Service 7-5700 www.crs.gov R43900 Bee Health: The Role of Pesticides Summary Over the past few decades there has been heightened concern about the plight of honey bees as well as other bee species. Given the importance of honey bees and other bee species to food production, many have expressed concern about whether a “pollinator crisis” has been occurring in recent decades. Although honey bee colony losses due to bee pests, parasites, pathogens, and disease are not uncommon, there is the perception that bee health has been declining more rapidly than in prior years, both in the United States and globally. This situation gained increased attention in 2006 as some commercial beekeepers began reporting sharp declines in their honey bee colonies. Because of the severity and unusual circumstances of these colony declines, scientists named this phenomenon colony collapse disorder (CCD). Since then, honey bee colonies have continued to dwindle each year, for reasons not solely attributable to CCD. The U.S. Department of Agriculture (USDA) reports that CCD may not be the only or even the major cause of bee colony losses in recent years. In the United States, USDA estimates of overwinter colony losses from all causes have averaged nearly 30% annually since 2006. The precise reasons for honey bee losses are not yet known. USDA and most scientists working on the subject seem to agree that no research conclusively points to one single cause for the large number of honey bee deaths. -
Preventing Pests and Pathogens in Honey Bee Colonies
BestBest ManagementManagement PracticesPractices toto PreventPrevent thethe SpreadSpread ofof PestsPests andand PathogensPathogens inin HoneybeeHoneybee ColoniesColonies Photos by Rob Snyder (used with permission) Many pest and disease problems in managed honeybee hives can be avoided by practic- ing good sanitation and cultural controls. Prevention is the first and best line of defense against organisms that can harm your colonies. Sanitation Tools should be sterilized with flame and scrubbed with isopropyl alcohol after working in or inspecting a hive. Avoid using other beekeeper’s tools that have not been properly cleaned. Clothing and gloves that are exposed to a hive where disease is suspected needs to be scrubbed and disinfected with 10% bleach solution or disposed. If not using gloves, rinse hands with rubbing alcohol then scrub with soap and water after working in a hive that appears to have been infected with disease. When disease is suspected, practice the previously mentioned steps between working hive to hive in the same beeyard. Cultural Controls When purchasing a bee colony, find out if the seller has been treating with antibiotics for patho- gens. Treated colonies could already be infected with disease, even in the absence of symptoms. Never switch frames from a box that is suspected to have pests and pathogens to a box without such problems. Do not purchase or accept used frames, boxes, or other beekeeping equipment that have not been inspected and certified by your county’s bee inspector. Boxes infected with American Foulbrood should be marked with the letters “AFB” followed by the year to prevent unintentional contamination. Equipment that has been infected with American Foulbrood must be treated or burned and buried. -
(BZC & MZC Entomology Students) Sericulture Farm. Shadnagar
ZOOLOGY FIELD TRIPS: B.Sc (BZC & MZC Entomology students) Sericulture Farm. Shadnagar (17 Sep 2019) The Department of Zoology has a study trip for the Students of B.Sc (BZC / MZC) final year (Entomology) to the Sericulture farm in Shadnagar. We have Visited Three Centers: 1. State Horticulture and Sericulture Office – a Government Institution located in Lingojiguda, Shadnagar under the supervision of Mrs. Nagaratna, disrict sericulture officer. 2. A private farm – where the larvae are reared from eggs to Pupal stage using Mulberry leaves. 3. A Forest area – where Mulberry plantation and Nursery is located. In the First place, the reeling of the Silk Cocoons is done. They purchase Cocoons from the private farm. The Cocoons are then separated based on the quality. The Finest quality of silk is produced from healthy cocoons. Each Cocoon produces 1200 meters of silk. Silk produced from 6 cocoons, is woven as one thread which is very soft & delicate, this is used in fine Kashmiri silk sarees. It weighs very less & the Silk is very soft. In some cases 12-15 cocoons are used which gives a rough texture to silk. The Second quality Cross breed cocoons are yellow in color which is usually mixed with other threads. The Third type is Double cocoons which produce Dupian silk. When unhealthy larvae form cocoons, flimsy silk is produced. In the next step, the larvae are killed inside the Cocoon by keeping them in ovens. The dead cocoons are stored in large trays in big racks in a room. The trays are numbered & dated. Everyday few cocoons are taken for reeling. -
BEEKEEPING: General Information by R
BEEKEEPING: General Information by R. A. Morse and E. J. Dyce A Cornell Cooperative Extension Publication Information Bulletin 90 The New York State College of Agriculture and Life Sciences is a statutory college of the State University, at Cornell University, Ithaca, N.Y. 2 BEEKEEPING: This bulletin provides general informa Honey Bee as a Pollinator tion about beekeeping that is not usually General Information included in current publications. Informa The pollination of agricultural crops is by R. A. Morse and E. J. Dyce tion on specific beekeeping problems can the most important contribution of honey be obtained by writing to the Office of bees to our national economy. Although Apiculture, Department of Entomology, the value of honey bees for pollination Contents Cornell University, Ithaca, NY 14853. cannot be estimated , it is many times the 2 Extent of Beekeeping Industry total value of both the honey and bees wax that they produce . Without cross 2 Honey Bee as a Pollinator Extent of Beekeeping Industry pollination many crops would not set seed 3 Who Keeps Bees? or produce fruit. Many insects other than In New York State about 8,500 people the honey bee can carry pollen from one 3 Where Bees Can Be Kept keep at least 125,000 colonies of honey plant to another; but in areas where agri 4 A Skilled Occupation bees. The annual production is about 8 culture has been intensified, such as the million pounds of honey and 120,000 fruit areas in New York State, the number 4 How to Acquire a Knowledge of pounds of beeswax. -
Wax, Wings, and Swarms: Insects and Their Products As Art Media
Wax, Wings, and Swarms: Insects and their Products as Art Media Barrett Anthony Klein Pupating Lab Biology Department, University of Wisconsin—La Crosse, La Crosse, WI 54601 email: [email protected] When citing this paper, please use the following: Klein BA. Submitted. Wax, Wings, and Swarms: Insects and their Products as Art Media. Annu. Rev. Entom. DOI: 10.1146/annurev-ento-020821-060803 Keywords art, cochineal, cultural entomology, ethnoentomology, insect media art, silk 1 Abstract Every facet of human culture is in some way affected by our abundant, diverse insect neighbors. Our relationship with insects has been on display throughout the history of art, sometimes explicitly, but frequently in inconspicuous ways. This is because artists can depict insects overtly, but they can also allude to insects conceptually, or use insect products in a purely utilitarian manner. Insects themselves can serve as art media, and artists have explored or exploited insects for their products (silk, wax, honey, propolis, carmine, shellac, nest paper), body parts (e.g., wings), and whole bodies (dead, alive, individually, or as collectives). This review surveys insects and their products used as media in the visual arts, and considers the untapped potential for artistic exploration of media derived from insects. The history, value, and ethics of “insect media art” are topics relevant at a time when the natural world is at unprecedented risk. INTRODUCTION The value of studying cultural entomology and insect art No review of human culture would be complete without art, and no review of art would be complete without the inclusion of insects. Cultural entomology, a field of study formalized in 1980 (43), and ambitiously reviewed 35 years ago by Charles Hogue (44), clearly illustrates that artists have an inordinate fondness for insects. -
Small Scale Beekeeping Knowledge and Learning Unit
SMALL SCALE BEEKEEPING Knowledge and Learning Unit The Peace Corps Knowledge and Learning Unit (KLU), a department of the Office of Overseas Programming and Training Support (OPATS), makes the strategies and technologies developed by Peace Corps Volunteers, their co-workers, and their counterparts available to development organizations and workers who might find them usefuI. KLU works with Peace Corps technical and training specialists to identify and develop information to support Volunteers and overseas staff. KLU also produces and distributes training guides, curricula, lesson plans, project reports, manuals, and other material. Peace Corps-generated materials are also developed in the field. Some materials are reprinted “as- is”; others provide a source of field-based information for the production of manuals or for research in particular program areas. Materials submitted to KLU become part of the Peace Corps’ larger contribution to development. This publication was produced by the Peace Corps with funding from the U.S. Agency for International Development’s (USAID) Bureau of Food Security. It is distributed through KLU. For further information about KLU materials (periodicals, books, videos, etc.) and information services, or for additional copies of this manual, please contact KLU and refer to the KLU catalog number that appears on the publication: Peace Corps Overseas Programming and Training Support Knowledge and Learning Unit 1111 20th Street, NW Washington, DC 20526 Abridged Dewey Decimal Classification (DDC) Number: 638 Share Your Experience! Add your experience to the Peace Corps library of resources. Send your materials to us so we can share them with other development workers. Your technical insights serve as the basis for a generation of KLU materials, reprints, and training materials. -
Introduction to Honey Bees and Beekeeping What Aren’T Honey Bees
Introduction to Honey Bees and Beekeeping What aren’t Honey Bees Honey Bee Bumble Bee Not Honey Bee Nests Bald Face Hornet Wasp (yellow jacket) The Honey Bee Apis mellifera Anatomy and Biology Compound Eye Thousands of individual lenses (3000 – 9000) Hairs tell wind direction, flight speed, collect pollen Excellent motion detection – high flicker threshold - move slowly! Comparison of light wavelengths visible to humans and bees ▬ Don’t see red, no photoreceptor for it ▬ Can see ultraviolet light (needed to find nectar) ▬ Detects polarized light (navigation) Nectar guide = UV-absorbing area of a flower Antennae - majority of bees' sensory organs are located in the antennae - 170 odor receptors (chemoreceptors), O2, CO2, moisture - locates pollen-rich flowers and hive pheromones - used for communication by touching Mandibles (jaws) • eat pollen for food; • cut and shape wax; • feed larvae and queen; • clean the hive; • groom themselves; • fighting. Thorax • Point of Attachment for – Six Legs – Two Pairs of Wings • Wings held together by hooks Pollen Baskets Honey Bee Stinger Removing Bee Stingers http://www.dave-cushman.net/bee/beestings.html Use your hive tool Worker, Drone, & Queen The Population of a Colony Depends on: - the egg laying ability of the queen, - the space available in the hive, - the incoming food supply. MikeHaberland Complete Metamorphosis 1) Queen lays egg In brood cell Egg 2) Worker feeds hatched larva Larvae 3) Larva reaches full growth 4) Worker caps cell 5) Larva spins cocoon and Pupa becomes pupa 6) Adult bee leaves cell Adult https://forum.teksyndicate.com/t/bee-syndicate-s1-e3-8-17-2015-how-brood-you-do/86119 Honey Bee Development Days after egg is laid Cell Adult emerges Start of Larvae hatches Larva Pupa capped from cell Fertility Queen 3 5 ½ 7 ½ - 8 8 16 Approx. -
Sericulture 1.Sericulture Is the Rearing of Silkworms to Produce Silk. 2.The Term Sericulture Is Derived from a Greek Word Sericos
Sericulture 1.Sericulture is the rearing of silkworms to produce silk. 2.The term sericulture is derived from a Greek word sericos. 3.The word sericos means silk. 4.The word culture refers to rearing. Life cycle of Mulberry silkworm ( Bombyx mori ) 1.life cycle of Bombyx mori comprises four stages. 2.They are egg, larva, pupa and adult. 3.The duration of life cycle is approximately 45 days. 4.The egg is oval in shape. 5.The egg as outer covering called chorion. 6.It has an opening at one end . it is called micropyle. 7.The egg hatches out into a larva. 8.The larval period consists of 20-24 days. 9.The larva is black in colour. 10.The body is covered with bristles. 11.It undergoes the process of moulting. 12.Larval life consists of 5 larval stages. 13.Moulting results in the production of the 5th instar larva. 14.The larva is phytophagous. (plant eater) 15.It is a voracious feeder. 16.It feeds actively on mulberry leaves. 17.Then the larva passes onto the next stage called pupa. 18.Pupa is covered by a cocoon. The cocoon is made up of silk fibre secreted by the 5th instar larva. 19.Pupa lives inside the cocoon. 20.Pupa does not move and feed. 21.Adult organs develop during this stage. 22.Pupa consists of head, thorax and abdomen. 23.The pupal stage lasts for about 10-12 days. 24.The adult emerges from pupa. 25.The adult life lasts for about 3-5 days. 26.The adults do not feed. -
3Rd HELLENIC SCIENTIFIC CONFERENCE in APICULTURE- SERICULTURE Thessaloniki 21-22 April 2007
3rd HELLENIC SCIENTIFIC CONFERENCE IN APICULTURE- SERICULTURE Thessaloniki 21-22 April 2007 HELLENIC SCIENTIFIC SOCIETY OF APICULTURE- SERICULTURE NUMBER OF DRONE CELLS IN THE NATURAL-BUILT HONEYCOMBS OF A. M. MACEDONICA Goras G., Dislis S., Konstas N., Thrasyvoulou A. Laboratory of Apiculture – Sericulture, Faculty of Agriculture, Aristotle University of Thessaloniki, . [email protected] Beekeeping as a biological agriculture requires the replacement of all of the honeycombs. Using frames with foundation comb provides uniformity with minimal structure of dronecells but biological wax is limited and it is not always free of residues. As a solution it could be proposed to “force” bees to build the frames without using foundation combs, but in this case, the number of dronecells would be higher. This number depends on the bee race but there in no paper that it refers to this characteristic for the indigenous of Greece. In this paper present the first data concerns the production of dronecells in beecolonies with and without foundation comb. The experimental group provided with frames with foundation comb, produced less drone cells (0,03% per bee colony) in relation to the second group, which built natural honeycombs and so produced more dronecells (20,6% per bee colony). These average numbers present significant differences and this is also occurs after the comparison of the number of worker cells that the two experimental groups produced. First group produced mainly worker cells (99,97% per colony), while the second group produced 79,3% worker cells per colony. Finally we can establish that in each experimental group there is a great variance among the colonies that concerns the number of dronecells, regardless of the use (CV% : 316,7%) or not (CV% : 67%) foundation combs. -
Traditional Knowledge of the Utilization of Edible Insects in Nagaland, North-East India
foods Article Traditional Knowledge of the Utilization of Edible Insects in Nagaland, North-East India Lobeno Mozhui 1,*, L.N. Kakati 1, Patricia Kiewhuo 1 and Sapu Changkija 2 1 Department of Zoology, Nagaland University, Lumami, Nagaland 798627, India; [email protected] (L.N.K.); [email protected] (P.K.) 2 Department of Genetics and Plant Breeding, Nagaland University, Medziphema, Nagaland 797106, India; [email protected] * Correspondence: [email protected] Received: 2 June 2020; Accepted: 19 June 2020; Published: 30 June 2020 Abstract: Located at the north-eastern part of India, Nagaland is a relatively unexplored area having had only few studies on the faunal diversity, especially concerning insects. Although the practice of entomophagy is widespread in the region, a detailed account regarding the utilization of edible insects is still lacking. The present study documents the existing knowledge of entomophagy in the region, emphasizing the currently most consumed insects in view of their marketing potential as possible future food items. Assessment was done with the help of semi-structured questionnaires, which mentioned a total of 106 insect species representing 32 families and 9 orders that were considered as health foods by the local ethnic groups. While most of the edible insects are consumed boiled, cooked, fried, roasted/toasted, some insects such as Cossus sp., larvae and pupae of ants, bees, wasps, and hornets as well as honey, bee comb, bee wax are consumed raw. Certain edible insects are either fully domesticated (e.g., Antheraea assamensis, Apis cerana indica, and Samia cynthia ricini) or semi-domesticated in their natural habitat (e.g., Vespa mandarinia, Vespa soror, Vespa tropica tropica, and Vespula orbata), and the potential of commercialization of these insects and some other species as a bio-resource in Nagaland exists. -
Chapter 22. South-Central Asia
Chapter 22 South Central Asia Chapter 22 SOUTH-CENTRAL ASIA Overview In this region, the use of edible insects has been reported in India, Nepal, Pakistan and Sri Lanka. The use of at least 52 species has been reported, belonging to at least 45 genera, 26 families and 10 orders. The complete taxonomic identity (genus and species) is known for 47 of the species. Gope and Prasad (1983), who conducted nutrient analyses on eight of some 20 species used in the state of Manipur, India, encourage insect consumption, especially in view of the fact that many people cannot afford fish or other animal meat. In Samia ricini, the eri silkworm, the region provides one of the best examples of how environmental benefits can be reaped from the use of "multiple product" edible insects. The species feeds on the castor plant which grows well on poor soils, thus helping to prevent soil erosion; castor bean oil is sold for industrial and medicinal uses; excess leaves are fed to the caterpillars which produce silk used in commerce and a pupa that is a high-protein food (India) or animal feedstuff (Nepal); and the caterpillar frass and other rearing residue can be used for pond fish production. Regional Taxonomic Inventory Taxa and stages consumed Countries Coleoptera Cerambycidae (long‑horned beetles) Batocera rubus (Linn.), adult? India, Sri Lanka Coelosterma scabrata (author?) India Coelosterma sp. India Neocerambyx paris (author?) India Xysterocera globosa (author?) India Xysterocera sp. India Curculionidae (weevils, snout beetles) Rhynchophorus chinensis (author?) Sri Lanka Rhynchophorus ferrugineus Oliv., larva Sri Lanka Dytiscidae (predaceous diving beetles) Eretes stictus Linn.